12n
0693
(K12n
0693
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 12 9 11 3 6 5 7 10
Solving Sequence
3,8
9
4,11
7 12 6 5 2 1 10
c
8
c
3
c
7
c
11
c
6
c
5
c
2
c
1
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.19530 × 10
101
u
27
5.30605 × 10
101
u
26
+ ··· + 2.74772 × 10
105
b + 4.81437 × 10
105
,
1.14694 × 10
104
u
27
5.23246 × 10
104
u
26
+ ··· + 2.69277 × 10
107
a + 4.77354 × 10
108
,
u
28
+ 4u
27
+ ··· 75264u + 25088i
I
u
2
= h−168189u
12
+ 367074u
11
+ ··· + 485b 207077, 34213u
12
+ 74426u
11
+ ··· + 97a 40975,
u
13
3u
12
3u
11
+ 4u
10
+ u
9
+ 5u
8
+ 12u
7
23u
6
15u
5
+ 13u
4
+ 12u
3
u
2
3u 1i
I
v
1
= ha, 82026v
8
2033115v
7
+ ··· + 764761b + 1552510,
7v
9
+ 3v
8
+ 2v
7
14v
6
23v
5
+ 33v
4
v
3
8v
2
+ v + 1i
* 3 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.20 × 10
101
u
27
5.31 × 10
101
u
26
+ · · · + 2.75 × 10
105
b + 4.81 ×
10
105
, 1.15 × 10
104
u
27
5.23 × 10
104
u
26
+ · · · + 2.69 × 10
107
a + 4.77 ×
10
108
, u
28
+ 4u
27
+ · · · 75264u + 25088i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
0.000425935u
27
+ 0.00194315u
26
+ ··· + 23.7900u 17.7273
0.0000435014u
27
+ 0.000193107u
26
+ ··· + 1.17208u 1.75213
a
7
=
0.000282338u
27
+ 0.00130937u
26
+ ··· + 17.6311u 10.2877
0.0000612204u
27
+ 0.000273967u
26
+ ··· + 5.23614u 2.64624
a
12
=
0.000456925u
27
+ 0.00211671u
26
+ ··· + 25.6324u 17.7624
0.0000693492u
27
+ 0.000324215u
26
+ ··· + 2.03194u 2.70300
a
6
=
0.000335467u
27
+ 0.00156198u
26
+ ··· + 18.8607u 12.1578
0.0000866890u
27
+ 0.000392041u
26
+ ··· + 6.92109u 3.65218
a
5
=
0.0000436460u
27
+ 0.000197226u
26
+ ··· + 1.36979u 2.04087
0.0000155704u
27
+ 0.0000694627u
26
+ ··· + 1.84303u 0.799131
a
2
=
0.0000475456u
27
0.000214384u
26
+ ··· 2.60369u + 2.27196
8.68541 × 10
6
u
27
0.0000387931u
26
+ ··· + 0.605212u + 0.376080
a
1
=
0.0000592164u
27
0.000266688u
26
+ ··· 3.21282u + 2.84000
5.14630 × 10
7
u
27
+ 3.68556 × 10
6
u
26
+ ··· + 1.08406u 0.0509325
a
10
=
0.000450336u
27
+ 0.00204929u
26
+ ··· + 25.1559u 19.3277
0.0000492022u
27
+ 0.000219246u
26
+ ··· + 1.32187u 1.74134
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000152878u
27
0.000780946u
26
+ ··· 9.76931u 4.69330
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
28
16u
27
+ ··· + 419u 49
c
3
, c
8
u
28
+ 4u
27
+ ··· 75264u + 25088
c
5
u
28
4u
27
+ ··· + 9u 9
c
6
, c
9
u
28
+ 3u
27
+ ··· + 300u + 59
c
7
, c
11
u
28
+ 2u
27
+ ··· 1173u 1219
c
10
u
28
u
27
+ ··· 246402u 218849
c
12
u
28
u
27
+ ··· + 26513u + 36713
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
28
4y
27
+ ··· 168113y + 2401
c
3
, c
8
y
28
+ 78y
27
+ ··· + 603717632y + 629407744
c
5
y
28
+ 2y
27
+ ··· 657y + 81
c
6
, c
9
y
28
+ y
27
+ ··· 86696y + 3481
c
7
, c
11
y
28
+ 42y
27
+ ··· + 5986831y + 1485961
c
10
y
28
+ 53y
27
+ ··· + 367398468196y + 47894884801
c
12
y
28
+ 29y
27
+ ··· 4800844229y + 1347844369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.661495 + 0.747398I
a = 1.101650 + 0.440671I
b = 0.236907 + 0.377211I
2.93456 1.71766I 11.35116 + 2.24777I
u = 0.661495 0.747398I
a = 1.101650 0.440671I
b = 0.236907 0.377211I
2.93456 + 1.71766I 11.35116 2.24777I
u = 0.893984 + 0.439919I
a = 1.294490 + 0.133923I
b = 0.543436 0.602243I
0.665833 0.463592I 8.88124 0.80143I
u = 0.893984 0.439919I
a = 1.294490 0.133923I
b = 0.543436 + 0.602243I
0.665833 + 0.463592I 8.88124 + 0.80143I
u = 0.060146 + 1.078200I
a = 0.399755 0.111241I
b = 0.264455 0.608981I
1.30627 + 3.65816I 0.62607 9.21590I
u = 0.060146 1.078200I
a = 0.399755 + 0.111241I
b = 0.264455 + 0.608981I
1.30627 3.65816I 0.62607 + 9.21590I
u = 1.083710 + 0.326182I
a = 0.046362 0.438180I
b = 0.577733 + 1.217650I
5.85717 + 6.56767I 13.7398 3.9298I
u = 1.083710 0.326182I
a = 0.046362 + 0.438180I
b = 0.577733 1.217650I
5.85717 6.56767I 13.7398 + 3.9298I
u = 0.775820 + 0.972482I
a = 0.054417 + 0.688396I
b = 0.727007 1.203150I
5.97045 + 2.54425I 12.99283 2.62358I
u = 0.775820 0.972482I
a = 0.054417 0.688396I
b = 0.727007 + 1.203150I
5.97045 2.54425I 12.99283 + 2.62358I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617923 + 0.406438I
a = 0.883763 + 0.285545I
b = 0.084653 + 1.144210I
2.45728 1.44782I 2.14877 + 4.95256I
u = 0.617923 0.406438I
a = 0.883763 0.285545I
b = 0.084653 1.144210I
2.45728 + 1.44782I 2.14877 4.95256I
u = 0.585624 + 0.073997I
a = 2.22803 + 5.22433I
b = 0.602252 + 0.484797I
2.72280 + 3.22335I 17.5168 5.4562I
u = 0.585624 0.073997I
a = 2.22803 5.22433I
b = 0.602252 0.484797I
2.72280 3.22335I 17.5168 + 5.4562I
u = 0.528658
a = 1.02003
b = 0.374611
0.770752 12.6200
u = 0.034927 + 0.413671I
a = 0.949151 0.071475I
b = 0.603455 0.835991I
0.83719 + 2.37006I 4.55412 1.61124I
u = 0.034927 0.413671I
a = 0.949151 + 0.071475I
b = 0.603455 + 0.835991I
0.83719 2.37006I 4.55412 + 1.61124I
u = 1.45117 + 2.14148I
a = 0.387432 0.739268I
b = 0.38855 + 2.09377I
13.0799 5.8001I 0
u = 1.45117 2.14148I
a = 0.387432 + 0.739268I
b = 0.38855 2.09377I
13.0799 + 5.8001I 0
u = 1.61598 + 2.05576I
a = 0.526861 + 0.699488I
b = 0.90112 1.94803I
12.8917 + 14.5389I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61598 2.05576I
a = 0.526861 0.699488I
b = 0.90112 + 1.94803I
12.8917 14.5389I 0
u = 0.68402 + 3.16013I
a = 0.253756 + 0.635446I
b = 0.88797 2.12249I
14.7956 5.0968I 0
u = 0.68402 3.16013I
a = 0.253756 0.635446I
b = 0.88797 + 2.12249I
14.7956 + 5.0968I 0
u = 3.30423
a = 0.685085
b = 1.91176
19.0273 0
u = 2.12239 + 3.48864I
a = 0.128967 0.107770I
b = 2.33997 + 1.80408I
4.30987 2.62944I 0
u = 2.12239 3.48864I
a = 0.128967 + 0.107770I
b = 2.33997 1.80408I
4.30987 + 2.62944I 0
u = 0.33576 + 4.88530I
a = 0.000754 0.466782I
b = 0.15589 + 3.19045I
16.2350 2.8419I 0
u = 0.33576 4.88530I
a = 0.000754 + 0.466782I
b = 0.15589 3.19045I
16.2350 + 2.8419I 0
7
II. I
u
2
= h−1.68 × 10
5
u
12
+ 3.67 × 10
5
u
11
+ · · · + 485b 2.07 ×
10
5
, 34213u
12
+ 74426u
11
+ · · · + 97a 40975, u
13
3u
12
+ · · · 3u 1i
(i) Arc colorings
a
3
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
352.711u
12
767.278u
11
+ ··· + 1835.11u + 422.423
346.781u
12
756.854u
11
+ ··· + 1801.01u + 426.963
a
7
=
108.392u
12
229.979u
11
+ ··· + 618.918u + 146.784
72.8722u
12
+ 159.480u
11
+ ··· 373.122u 87.5443
a
12
=
850.616u
12
+ 1864.44u
11
+ ··· 4357.36u 1036.63
451.551u
12
+ 986.076u
11
+ ··· 2337.11u 552.301
a
6
=
256.862u
12
554.955u
11
+ ··· + 1386.02u + 329.524
26.2454u
12
57.5134u
11
+ ··· + 136.654u + 32.8907
a
5
=
108.489u
12
236.922u
11
+ ··· + 564.487u + 136.177
99.1175u
12
216.994u
11
+ ··· + 509.775u + 120.435
a
2
=
134.734u
12
+ 294.435u
11
+ ··· 700.140u 168.068
63.9381u
12
+ 139.845u
11
+ ··· 328.381u 77.8763
a
1
=
207.606u
12
+ 453.915u
11
+ ··· 1074.26u 256.612
39.5340u
12
+ 86.2351u
11
+ ··· 204.540u 48.4680
a
10
=
487.445u
12
1061.71u
11
+ ··· + 2536.25u + 590.491
337.847u
12
737.219u
11
+ ··· + 1755.27u + 416.295
(ii) Obstruction class = 1
(iii) Cusp Shapes =
296049
485
u
12
650349
485
u
11
+ ··· +
1491522
485
u +
340092
485
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
13
+ 6u
12
+ ··· 3u + 1
c
3
u
13
+ 3u
12
+ ··· 3u + 1
c
4
u
13
6u
12
+ ··· 3u 1
c
5
u
13
+ 6u
12
+ ··· 3u 1
c
6
u
13
+ 3u
12
+ ··· 3u
2
1
c
7
u
13
+ 3u
11
+ ··· 3u + 1
c
8
u
13
3u
12
+ ··· 3u 1
c
9
u
13
3u
12
+ ··· + 3u
2
+ 1
c
10
u
13
3u
12
+ ··· 6u + 1
c
11
u
13
+ 3u
11
+ ··· 3u 1
c
12
u
13
+ 7u
12
+ ··· + 5u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
13
16y
12
+ ··· y 1
c
3
, c
8
y
13
15y
12
+ ··· + 7y 1
c
5
y
13
2y
12
+ ··· + 15y 1
c
6
, c
9
y
13
+ 5y
12
+ ··· 6y 1
c
7
, c
11
y
13
+ 6y
12
+ ··· 5y 1
c
10
y
13
15y
12
+ ··· + 2y 1
c
12
y
13
31y
12
+ ··· + 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.816041 + 0.000203I
a = 0.43426 1.55421I
b = 0.10456 1.52728I
1.72418 0.65957I 8.99705 2.64502I
u = 0.816041 0.000203I
a = 0.43426 + 1.55421I
b = 0.10456 + 1.52728I
1.72418 + 0.65957I 8.99705 + 2.64502I
u = 1.128350 + 0.374297I
a = 0.211847 0.624136I
b = 0.210034 + 0.823435I
6.59749 5.36054I 16.7957 + 3.3098I
u = 1.128350 0.374297I
a = 0.211847 + 0.624136I
b = 0.210034 0.823435I
6.59749 + 5.36054I 16.7957 3.3098I
u = 0.556612 + 0.262804I
a = 1.60330 + 0.51588I
b = 0.332363 0.723799I
1.55737 + 3.31191I 8.81382 5.67289I
u = 0.556612 0.262804I
a = 1.60330 0.51588I
b = 0.332363 + 0.723799I
1.55737 3.31191I 8.81382 + 5.67289I
u = 1.312050 + 0.498669I
a = 0.347834 0.510868I
b = 0.221139 + 1.245340I
4.99110 + 3.58519I 10.54784 4.86342I
u = 1.312050 0.498669I
a = 0.347834 + 0.510868I
b = 0.221139 1.245340I
4.99110 3.58519I 10.54784 + 4.86342I
u = 0.00605 + 1.41713I
a = 0.448731 0.123257I
b = 0.561559 0.310550I
0.87702 + 3.30359I 11.32603 + 0.21831I
u = 0.00605 1.41713I
a = 0.448731 + 0.123257I
b = 0.561559 + 0.310550I
0.87702 3.30359I 11.32603 0.21831I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.314233 + 0.325307I
a = 10.02810 6.71200I
b = 0.433075 + 0.722389I
3.04698 + 2.63834I 10.8062 21.0195I
u = 0.314233 0.325307I
a = 10.02810 + 6.71200I
b = 0.433075 0.722389I
3.04698 2.63834I 10.8062 + 21.0195I
u = 3.46490
a = 0.646768
b = 1.99317
18.8747 13.5730
12
III. I
v
1
= ha, 8.20 × 10
4
v
8
2.03 × 10
6
v
7
+ · · · + 7.65 × 10
5
b + 1.55 ×
10
6
, 7v
9
+ 3v
8
+ · · · + v + 1i
(i) Arc colorings
a
3
=
v
0
a
8
=
1
0
a
9
=
1
0
a
4
=
v
0
a
11
=
0
0.107257v
8
+ 2.65850v
7
+ ··· 0.280187v 2.03006
a
7
=
1
2.14626v
8
+ 0.185889v
7
+ ··· 0.429870v 1.30771
a
12
=
0.107257v
8
2.65850v
7
+ ··· + 0.280187v + 2.03006
1.38456v
8
+ 4.21937v
7
+ ··· 2.55986v 1.77273
a
6
=
2.14626v
8
0.185889v
7
+ ··· + 0.429870v + 2.30771
2.14626v
8
+ 0.185889v
7
+ ··· 0.429870v 1.30771
a
5
=
1.01346v
8
+ 0.464403v
7
+ ··· 1.07485v + 0.182471
7v
8
3v
7
2v
6
+ 14v
5
+ 23v
4
33v
3
+ v
2
+ 8v 1
a
2
=
1.01346v
8
0.464403v
7
+ ··· + 2.07485v 0.182471
7v
8
+ 3v
7
+ 2v
6
14v
5
23v
4
+ 33v
3
v
2
8v + 1
a
1
=
1.01346v
8
0.464403v
7
+ ··· + 1.07485v 0.182471
7v
8
+ 3v
7
+ 2v
6
14v
5
23v
4
+ 33v
3
v
2
8v + 1
a
10
=
5.30121v
8
5.22147v
7
+ ··· + 3.83160v + 0.359036
7.44747v
8
+ 5.03558v
7
+ ··· 3.40173v + 1.94867
(ii) Obstruction class = 1
(iii) Cusp Shapes =
17698695
764761
v
8
786460
764761
v
7
+
4755547
764761
v
6
34014228
764761
v
5
35615785
764761
v
4
+
111023508
764761
v
3
50152809
764761
v
2
10570795
764761
v
324941
764761
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
8
u
9
c
4
(u + 1)
9
c
5
u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1
c
6
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
7
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
9
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
c
10
, c
12
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
11
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
8
y
9
c
5
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
c
6
, c
9
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
11
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
10
, c
12
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.903964 + 0.094390I
a = 0
b = 0.140343 + 0.966856I
0.13850 2.09337I 5.49232 + 4.08340I
v = 0.903964 0.094390I
a = 0
b = 0.140343 0.966856I
0.13850 + 2.09337I 5.49232 4.08340I
v = 1.42091
a = 0
b = 0.512358
2.84338 14.1380
v = 0.476406 + 0.294981I
a = 0
b = 0.796005 + 0.733148I
6.01628 1.33617I 13.72452 1.86826I
v = 0.476406 0.294981I
a = 0
b = 0.796005 0.733148I
6.01628 + 1.33617I 13.72452 + 1.86826I
v = 0.352455 + 0.113243I
a = 0
b = 0.728966 0.986295I
5.24306 7.08493I 7.53426 + 10.08360I
v = 0.352455 0.113243I
a = 0
b = 0.728966 + 0.986295I
5.24306 + 7.08493I 7.53426 10.08360I
v = 0.53175 + 1.59553I
a = 0
b = 0.628449 + 0.875112I
2.26187 2.45442I 12.87375 + 1.42824I
v = 0.53175 1.59553I
a = 0
b = 0.628449 0.875112I
2.26187 + 2.45442I 12.87375 1.42824I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
9
)(u
13
+ 6u
12
+ ··· 3u + 1)(u
28
16u
27
+ ··· + 419u 49)
c
3
u
9
(u
13
+ 3u
12
+ ··· 3u + 1)(u
28
+ 4u
27
+ ··· 75264u + 25088)
c
4
((u + 1)
9
)(u
13
6u
12
+ ··· 3u 1)(u
28
16u
27
+ ··· + 419u 49)
c
5
(u
9
5u
8
+ 12u
7
15u
6
+ 9u
5
+ u
4
4u
3
+ 2u
2
+ u 1)
· (u
13
+ 6u
12
+ ··· 3u 1)(u
28
4u
27
+ ··· + 9u 9)
c
6
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
13
+ 3u
12
+ ··· 3u
2
1)(u
28
+ 3u
27
+ ··· + 300u + 59)
c
7
(u
9
+ u
8
+ ··· + u 1)(u
13
+ 3u
11
+ ··· 3u + 1)
· (u
28
+ 2u
27
+ ··· 1173u 1219)
c
8
u
9
(u
13
3u
12
+ ··· 3u 1)(u
28
+ 4u
27
+ ··· 75264u + 25088)
c
9
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
13
3u
12
+ ··· + 3u
2
+ 1)(u
28
+ 3u
27
+ ··· + 300u + 59)
c
10
(u
9
u
8
+ ··· u + 1)(u
13
3u
12
+ ··· 6u + 1)
· (u
28
u
27
+ ··· 246402u 218849)
c
11
(u
9
u
8
+ ··· + u + 1)(u
13
+ 3u
11
+ ··· 3u 1)
· (u
28
+ 2u
27
+ ··· 1173u 1219)
c
12
(u
9
u
8
+ ··· u + 1)(u
13
+ 7u
12
+ ··· + 5u + 1)
· (u
28
u
27
+ ··· + 26513u + 36713)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
9
)(y
13
16y
12
+ ··· y 1)
· (y
28
4y
27
+ ··· 168113y + 2401)
c
3
, c
8
y
9
(y
13
15y
12
+ ··· + 7y 1)
· (y
28
+ 78y
27
+ ··· + 603717632y + 629407744)
c
5
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
13
2y
12
+ ··· + 15y 1)(y
28
+ 2y
27
+ ··· 657y + 81)
c
6
, c
9
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
13
+ 5y
12
+ ··· 6y 1)(y
28
+ y
27
+ ··· 86696y + 3481)
c
7
, c
11
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
13
+ 6y
12
+ ··· 5y 1)(y
28
+ 42y
27
+ ··· + 5986831y + 1485961)
c
10
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
13
15y
12
+ ··· + 2y 1)
· (y
28
+ 53y
27
+ ··· + 367398468196y + 47894884801)
c
12
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
13
31y
12
+ ··· + 3y 1)
· (y
28
+ 29y
27
+ ··· 4800844229y + 1347844369)
18