12n
0695
(K12n
0695
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 11 9 12 3 6 1 8 6
Solving Sequence
3,9
4
8,12
7 6 10 1 11 5 2
c
3
c
8
c
7
c
6
c
9
c
12
c
11
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.13964 × 10
33
u
26
5.99682 × 10
33
u
25
+ ··· + 3.81255 × 10
34
b 2.47902 × 10
35
,
2.08631 × 10
34
u
26
1.00367 × 10
35
u
25
+ ··· + 7.62510 × 10
34
a 4.15461 × 10
36
,
u
27
+ 5u
26
+ ··· + 400u + 64i
I
u
2
= h176363u
14
+ 128033u
13
+ ··· + 74749b 928241, 61025u
14
+ 17351u
13
+ ··· + 74749a 408316,
u
15
3u
13
+ 4u
11
2u
10
+ u
9
+ 5u
8
5u
7
5u
6
u
5
+ 9u
4
+ 9u
3
4u
2
3u + 1i
I
u
3
= h4u
7
2u
6
6u
5
+ u
2
ba + 6u
4
+ 8u
3
+ b
2
2ba au 5u
2
4u + 7,
u
7
a + u
6
a 2u
7
+ u
5
a + u
6
2u
4
a + 3u
5
u
3
a 3u
4
+ 2u
2
a 4u
3
+ a
2
+ 3u
2
2a + 2u 4,
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
I
v
1
= ha, 4b v + 4, v
2
6v + 4i
* 4 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.14 × 10
33
u
26
6.00 × 10
33
u
25
+ · · · + 3.81 × 10
34
b 2.48 ×
10
35
, 2.09 × 10
34
u
26
1.00 × 10
35
u
25
+ · · · + 7.63 × 10
34
a 4.15 ×
10
36
, u
27
+ 5u
26
+ · · · + 400u + 64i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
12
=
0.273610u
26
+ 1.31627u
25
+ ··· + 187.951u + 54.4860
0.0298919u
26
+ 0.157291u
25
+ ··· + 24.8662u + 6.50226
a
7
=
0.603225u
26
+ 2.76296u
25
+ ··· + 357.964u + 98.6342
0.0171631u
26
0.0712776u
25
+ ··· 6.60142u 2.12730
a
6
=
0.603225u
26
+ 2.76296u
25
+ ··· + 357.964u + 98.6342
0.106750u
26
+ 0.472111u
25
+ ··· + 56.0584u + 14.0753
a
10
=
1.39047u
26
6.44135u
25
+ ··· 854.422u 239.806
0.0213532u
26
0.118447u
25
+ ··· 20.2449u 6.81187
a
1
=
1.11686u
26
5.12508u
25
+ ··· 666.471u 185.320
0.00853870u
26
+ 0.0388446u
25
+ ··· + 3.62131u 0.309612
a
11
=
0.266493u
26
+ 1.31042u
25
+ ··· + 196.198u + 58.3012
0.0227747u
26
+ 0.151445u
25
+ ··· + 33.1133u + 10.3175
a
5
=
1.34575u
26
+ 6.12897u
25
+ ··· + 782.304u + 214.401
0.228884u
26
+ 1.00389u
25
+ ··· + 115.833u + 29.0810
a
2
=
1.34575u
26
6.12897u
25
+ ··· 782.304u 214.401
0.0973818u
26
0.399745u
25
+ ··· 37.9426u 9.30362
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.27815u
26
5.86437u
25
+ ··· 764.039u 222.235
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
27
3u
26
+ ··· 36u + 16
c
3
, c
8
u
27
+ 5u
26
+ ··· + 400u + 64
c
5
, c
7
, c
11
u
27
+ u
26
+ ··· 5u 1
c
6
, c
9
, c
12
u
27
25u
25
+ ··· + 6u + 1
c
10
u
27
+ 19u
26
+ ··· 768u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
27
23y
26
+ ··· 2192y 256
c
3
, c
8
y
27
9y
26
+ ··· + 49920y 4096
c
5
, c
7
, c
11
y
27
+ 5y
26
+ ··· + 15y 1
c
6
, c
9
, c
12
y
27
50y
26
+ ··· + 68y 1
c
10
y
27
19y
26
+ ··· + 5636096y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.03853
a = 1.40893
b = 0.426622
2.58509 5.21480
u = 1.162780 + 0.105322I
a = 0.256922 + 0.751420I
b = 0.008028 + 1.317420I
2.12887 + 0.87840I 1.69411 + 0.10409I
u = 1.162780 0.105322I
a = 0.256922 0.751420I
b = 0.008028 1.317420I
2.12887 0.87840I 1.69411 0.10409I
u = 0.152365 + 1.192150I
a = 0.893744 + 0.183757I
b = 0.260772 + 0.484211I
3.95830 1.70076I 0.66920 + 3.77891I
u = 0.152365 1.192150I
a = 0.893744 0.183757I
b = 0.260772 0.484211I
3.95830 + 1.70076I 0.66920 3.77891I
u = 1.153410 + 0.362069I
a = 0.124158 0.993672I
b = 0.18813 1.67407I
1.52168 4.11639I 1.28531 + 7.66399I
u = 1.153410 0.362069I
a = 0.124158 + 0.993672I
b = 0.18813 + 1.67407I
1.52168 + 4.11639I 1.28531 7.66399I
u = 0.550134 + 1.176880I
a = 0.727410 + 0.882315I
b = 0.082313 + 0.573084I
6.85248 + 3.47221I 4.05373 4.83355I
u = 0.550134 1.176880I
a = 0.727410 0.882315I
b = 0.082313 0.573084I
6.85248 3.47221I 4.05373 + 4.83355I
u = 0.450239 + 1.331950I
a = 0.460049 + 0.710367I
b = 0.027730 + 0.522672I
5.01150 + 2.13942I 3.15739 + 7.15620I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.450239 1.331950I
a = 0.460049 0.710367I
b = 0.027730 0.522672I
5.01150 2.13942I 3.15739 7.15620I
u = 0.290484 + 0.513132I
a = 1.005030 0.448330I
b = 0.178104 + 0.233390I
1.086740 + 0.522072I 7.59034 2.64068I
u = 0.290484 0.513132I
a = 1.005030 + 0.448330I
b = 0.178104 0.233390I
1.086740 0.522072I 7.59034 + 2.64068I
u = 1.26259 + 0.65120I
a = 0.779025 + 0.806632I
b = 0.89947 + 1.69470I
1.93276 + 4.57399I 0.80312 3.71996I
u = 1.26259 0.65120I
a = 0.779025 0.806632I
b = 0.89947 1.69470I
1.93276 4.57399I 0.80312 + 3.71996I
u = 1.21341 + 0.77536I
a = 0.786921 + 0.889637I
b = 0.87894 + 1.94262I
4.69053 10.38600I 1.88291 + 6.53281I
u = 1.21341 0.77536I
a = 0.786921 0.889637I
b = 0.87894 1.94262I
4.69053 + 10.38600I 1.88291 6.53281I
u = 0.72141 + 1.25819I
a = 0.852837 + 0.774968I
b = 0.116207 + 0.690641I
1.18821 7.91289I 0.57657 + 4.83516I
u = 0.72141 1.25819I
a = 0.852837 0.774968I
b = 0.116207 0.690641I
1.18821 + 7.91289I 0.57657 4.83516I
u = 1.36519 + 0.61368I
a = 0.190407 1.118590I
b = 0.07359 1.82092I
7.80864 + 8.10776I 0.12578 8.54506I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.36519 0.61368I
a = 0.190407 + 1.118590I
b = 0.07359 + 1.82092I
7.80864 8.10776I 0.12578 + 8.54506I
u = 1.22422 + 0.88045I
a = 0.754688 + 0.924811I
b = 0.75841 + 2.06080I
0.5454 + 15.5229I 1.18119 7.76656I
u = 1.22422 0.88045I
a = 0.754688 0.924811I
b = 0.75841 2.06080I
0.5454 15.5229I 1.18119 + 7.76656I
u = 0.435512
a = 0.249742
b = 0.798841
1.27409 10.1920
u = 1.55472 + 0.34572I
a = 0.514140 + 0.857873I
b = 0.33875 + 1.54021I
9.70709 4.18623I 3.33842 + 3.07970I
u = 1.55472 0.34572I
a = 0.514140 0.857873I
b = 0.33875 1.54021I
9.70709 + 4.18623I 3.33842 3.07970I
u = 0.372671
a = 4.40350
b = 0.190276
7.09486 26.8760
7
II. I
u
2
= h1.76 × 10
5
u
14
+ 1.28 × 10
5
u
13
+ · · · + 7.47 × 10
4
b 9.28 ×
10
5
, 61025u
14
+ 17351u
13
+ · · · + 74749a 408316, u
15
3u
13
+ · · · 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
12
=
0.816399u
14
0.232124u
13
+ ··· + 2.19719u + 5.46249
2.35940u
14
1.71284u
13
+ ··· 2.65182u + 12.4181
a
7
=
4.03019u
14
1.09145u
13
+ ··· + 0.200738u + 9.47793
3.84659u
14
1.32358u
13
+ ··· 1.60207u + 11.9404
a
6
=
4.03019u
14
1.09145u
13
+ ··· + 0.200738u + 9.47793
4.62779u
14
1.33257u
13
+ ··· 0.846232u + 13.0319
a
10
=
1.59760u
14
0.241114u
13
+ ··· + 2.95303u + 6.55395
3.18414u
14
1.54132u
13
+ ··· 0.0217260u + 13.7507
a
1
=
0.781201u
14
+ 0.00899009u
13
+ ··· 0.755836u 1.09145
0.824733u
14
0.171521u
13
+ ··· 1.63010u 1.33257
a
11
=
0.964307u
14
+ 0.388567u
13
+ ··· + 5.09634u + 3.98178
2.50731u
14
1.09215u
13
+ ··· + 0.247321u + 10.9374
a
5
=
0.150290u
14
+ 0.121125u
13
+ ··· + 0.120028u + 0.232124
0.630911u
14
+ 0.112135u
13
+ ··· + 0.875865u + 1.32358
a
2
=
0.150290u
14
+ 0.121125u
13
+ ··· + 0.120028u + 0.232124
0.599460u
14
+ 0.0788238u
13
+ ··· 0.662778u 1.44470
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2294032
74749
u
14
+
1099194
74749
u
13
+ ··· +
2094016
74749
u
7660470
74749
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
15
+ 4u
14
+ ··· 5u + 1
c
3
u
15
3u
13
+ ··· 3u + 1
c
4
u
15
4u
14
+ ··· 5u 1
c
5
, c
11
u
15
+ 5u
13
+ ··· 3u + 1
c
6
, c
12
u
15
+ 3u
14
+ ··· 5u
2
1
c
7
u
15
+ 5u
13
+ ··· 3u 1
c
8
u
15
3u
13
+ ··· 3u 1
c
9
u
15
3u
14
+ ··· + 5u
2
+ 1
c
10
u
15
+ 5u
14
+ ··· + 3u
2
+ 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
15
14y
14
+ ··· + 21y 1
c
3
, c
8
y
15
6y
14
+ ··· + 17y 1
c
5
, c
7
, c
11
y
15
+ 10y
14
+ ··· + 5y 1
c
6
, c
9
, c
12
y
15
5y
14
+ ··· 10y 1
c
10
y
15
13y
14
+ ··· 6y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.395101 + 0.883245I
a = 0.283707 + 0.375012I
b = 0.846671 + 0.071188I
6.05368 0.92102I 7.55931 0.86682I
u = 0.395101 0.883245I
a = 0.283707 0.375012I
b = 0.846671 0.071188I
6.05368 + 0.92102I 7.55931 + 0.86682I
u = 1.16272
a = 1.84176
b = 0.922893
1.62169 4.25160
u = 0.790290 + 0.123203I
a = 0.852557 + 0.556939I
b = 0.44109 + 2.17069I
4.81976 + 0.84883I 3.58248 7.41027I
u = 0.790290 0.123203I
a = 0.852557 0.556939I
b = 0.44109 2.17069I
4.81976 0.84883I 3.58248 + 7.41027I
u = 0.286985 + 1.190230I
a = 0.329297 0.950489I
b = 0.138941 0.584308I
5.13698 2.55464I 3.03982 + 10.26539I
u = 0.286985 1.190230I
a = 0.329297 + 0.950489I
b = 0.138941 + 0.584308I
5.13698 + 2.55464I 3.03982 10.26539I
u = 1.049150 + 0.637502I
a = 0.057199 0.441891I
b = 0.258968 1.198930I
3.04339 2.80173I 4.84923 + 4.43441I
u = 1.049150 0.637502I
a = 0.057199 + 0.441891I
b = 0.258968 + 1.198930I
3.04339 + 2.80173I 4.84923 4.43441I
u = 1.326480 + 0.349849I
a = 0.688768 + 0.786265I
b = 0.22129 + 1.79626I
11.19200 3.11061I 6.06432 + 1.93594I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.326480 0.349849I
a = 0.688768 0.786265I
b = 0.22129 1.79626I
11.19200 + 3.11061I 6.06432 1.93594I
u = 1.29612 + 0.71007I
a = 0.051371 0.786186I
b = 0.00761 1.51725I
8.56116 + 7.21256I 5.69398 4.24135I
u = 1.29612 0.71007I
a = 0.051371 + 0.786186I
b = 0.00761 + 1.51725I
8.56116 7.21256I 5.69398 + 4.24135I
u = 0.474863
a = 3.57874
b = 1.81758
3.63405 14.5470
u = 0.325638
a = 4.85593
b = 7.19722
2.41576 45.3800
12
III. I
u
3
= h4u
7
2u
6
+ · · · 2ba + 7, u
7
a 2u
7
+ · · · 2a 4, u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
8
=
u
u
a
12
=
a
b
a
7
=
u
7
+ u
6
+ u
5
2u
4
+ bau u
3
+ 2u
2
a + u 2
2u
7
+ 2u
6
u
3
ba + 2u
5
4u
4
+ bau + u
2
a 3u
3
+ 4u
2
+ 2u 4
a
6
=
u
7
+ u
6
+ u
5
2u
4
+ bau u
3
+ 2u
2
a + u 2
2u
7
+ 2u
6
+ 2u
5
4u
4
+ bau 2u
3
+ 4u
2
+ u 4
a
10
=
u
4
a u
2
b + u
2
a + a
u
4
a u
2
b + 2u
2
a + b
a
1
=
u
3
u
3
u
a
11
=
u
2
b + u
2
a + a
u
2
b + u
2
a + b
a
5
=
u
5
u
u
5
+ u
3
u
a
2
=
u
5
+ u
u
7
u
5
+ 2u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 8u
5
4u
4
8u
3
+ 4u
2
+ 4u 6
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
4
c
3
, c
8
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
4
c
5
, c
7
, c
11
u
32
3u
31
+ ··· 168u 191
c
6
, c
9
, c
12
u
32
+ 3u
31
+ ··· + 202u + 71
c
10
(u
2
u 1)
16
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
4
c
3
, c
8
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
4
c
5
, c
7
, c
11
y
32
+ 11y
31
+ ··· 90108y + 36481
c
6
, c
9
, c
12
y
32
21y
31
+ ··· 309468y + 5041
c
10
(y
2
3y + 1)
16
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.410360 + 0.525233I
b = 1.206890 + 0.200385I
4.98850 + 1.13123I 0.584775 0.510791I
u = 0.570868 + 0.730671I
a = 0.410360 + 0.525233I
b = 0.73898 + 1.30166I
4.98850 + 1.13123I 0.584775 0.510791I
u = 0.570868 + 0.730671I
a = 1.07434 1.37508I
b = 0.054189 1.226940I
2.90719 + 1.13123I 0.584775 0.510791I
u = 0.570868 + 0.730671I
a = 1.07434 1.37508I
b = 1.27918 2.70546I
2.90719 + 1.13123I 0.584775 0.510791I
u = 0.570868 0.730671I
a = 0.410360 0.525233I
b = 1.206890 0.200385I
4.98850 1.13123I 0.584775 + 0.510791I
u = 0.570868 0.730671I
a = 0.410360 0.525233I
b = 0.73898 1.30166I
4.98850 1.13123I 0.584775 + 0.510791I
u = 0.570868 0.730671I
a = 1.07434 + 1.37508I
b = 0.054189 + 1.226940I
2.90719 1.13123I 0.584775 + 0.510791I
u = 0.570868 0.730671I
a = 1.07434 + 1.37508I
b = 1.27918 + 2.70546I
2.90719 1.13123I 0.584775 + 0.510791I
u = 0.855237 + 0.665892I
a = 0.449903 + 0.350297I
b = 0.005773 + 1.352800I
1.78843 + 2.57849I 3.72292 3.56796I
u = 0.855237 + 0.665892I
a = 0.449903 + 0.350297I
b = 0.377013 0.240663I
1.78843 + 2.57849I 3.72292 3.56796I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.855237 + 0.665892I
a = 1.17786 0.91709I
b = 0.197214 0.794544I
6.10726 + 2.57849I 3.72292 3.56796I
u = 0.855237 + 0.665892I
a = 1.17786 0.91709I
b = 1.16913 2.11707I
6.10726 + 2.57849I 3.72292 3.56796I
u = 0.855237 0.665892I
a = 0.449903 0.350297I
b = 0.005773 1.352800I
1.78843 2.57849I 3.72292 + 3.56796I
u = 0.855237 0.665892I
a = 0.449903 0.350297I
b = 0.377013 + 0.240663I
1.78843 2.57849I 3.72292 + 3.56796I
u = 0.855237 0.665892I
a = 1.17786 + 0.91709I
b = 0.197214 + 0.794544I
6.10726 2.57849I 3.72292 + 3.56796I
u = 0.855237 0.665892I
a = 1.17786 + 0.91709I
b = 1.16913 + 2.11707I
6.10726 2.57849I 3.72292 + 3.56796I
u = 1.09818
a = 0.562781
b = 0.22342 + 1.55964I
10.4506 5.86400
u = 1.09818
a = 0.562781
b = 0.22342 1.55964I
10.4506 5.86400
u = 1.09818
a = 1.47338
b = 0.894458
2.55489 5.86400
u = 1.09818
a = 1.47338
b = 0.275409
2.55489 5.86400
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.031810 + 0.655470I
a = 1.117270 0.709761I
b = 0.349632 0.574285I
1.56816 6.44354I 1.42845 + 5.29417I
u = 1.031810 + 0.655470I
a = 1.117270 0.709761I
b = 0.91467 1.90581I
1.56816 6.44354I 1.42845 + 5.29417I
u = 1.031810 + 0.655470I
a = 0.426759 + 0.271105I
b = 0.010873 0.550359I
6.32752 6.44354I 1.42845 + 5.29417I
u = 1.031810 + 0.655470I
a = 0.426759 + 0.271105I
b = 0.22670 + 1.49767I
6.32752 6.44354I 1.42845 + 5.29417I
u = 1.031810 0.655470I
a = 1.117270 + 0.709761I
b = 0.349632 + 0.574285I
1.56816 + 6.44354I 1.42845 5.29417I
u = 1.031810 0.655470I
a = 1.117270 + 0.709761I
b = 0.91467 + 1.90581I
1.56816 + 6.44354I 1.42845 5.29417I
u = 1.031810 0.655470I
a = 0.426759 0.271105I
b = 0.010873 + 0.550359I
6.32752 + 6.44354I 1.42845 5.29417I
u = 1.031810 0.655470I
a = 0.426759 0.271105I
b = 0.22670 1.49767I
6.32752 + 6.44354I 1.42845 5.29417I
u = 0.603304
a = 1.02442
b = 0.83799 + 2.18510I
4.79288 3.89450
u = 0.603304
a = 1.02442
b = 0.83799 2.18510I
4.79288 3.89450
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.603304
a = 2.68196
b = 0.939976
3.10281 3.89450
u = 0.603304
a = 2.68196
b = 3.44777
3.10281 3.89450
19
IV. I
v
1
= ha, 4b v + 4, v
2
6v + 4i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
8
=
v
0
a
12
=
0
1
4
v 1
a
7
=
v
0.5
a
6
=
2v + 2
0.5
a
10
=
6v 4
1
4
v
a
1
=
5v 4
1
a
11
=
2v + 2
1
4
v 1
a
5
=
5v + 4
1
a
2
=
5v 3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
45
8
v
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
c
3
, c
8
u
2
c
4
(u + 1)
2
c
5
, c
7
, c
10
u
2
u 1
c
6
u
2
+ 3u + 1
c
9
, c
12
u
2
3u + 1
c
11
u
2
+ u 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
8
y
2
c
5
, c
7
, c
10
c
11
y
2
3y + 1
c
6
, c
9
, c
12
y
2
7y + 1
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.763932
a = 0
b = 0.809017
0.657974 4.29710
v = 5.23607
a = 0
b = 0.309017
7.23771 29.4530
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
4
· (u
15
+ 4u
14
+ ··· 5u + 1)(u
27
3u
26
+ ··· 36u + 16)
c
3
u
2
(u
8
u
7
+ ··· + 2u 1)
4
(u
15
3u
13
+ ··· 3u + 1)
· (u
27
+ 5u
26
+ ··· + 400u + 64)
c
4
(u + 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
4
· (u
15
4u
14
+ ··· 5u 1)(u
27
3u
26
+ ··· 36u + 16)
c
5
(u
2
u 1)(u
15
+ 5u
13
+ ··· 3u + 1)(u
27
+ u
26
+ ··· 5u 1)
· (u
32
3u
31
+ ··· 168u 191)
c
6
(u
2
+ 3u + 1)(u
15
+ 3u
14
+ ··· 5u
2
1)(u
27
25u
25
+ ··· + 6u + 1)
· (u
32
+ 3u
31
+ ··· + 202u + 71)
c
7
(u
2
u 1)(u
15
+ 5u
13
+ ··· 3u 1)(u
27
+ u
26
+ ··· 5u 1)
· (u
32
3u
31
+ ··· 168u 191)
c
8
u
2
(u
8
u
7
+ ··· + 2u 1)
4
(u
15
3u
13
+ ··· 3u 1)
· (u
27
+ 5u
26
+ ··· + 400u + 64)
c
9
(u
2
3u + 1)(u
15
3u
14
+ ··· + 5u
2
+ 1)(u
27
25u
25
+ ··· + 6u + 1)
· (u
32
+ 3u
31
+ ··· + 202u + 71)
c
10
((u
2
u 1)
17
)(u
15
+ 5u
14
+ ··· + 3u
2
+ 1)
· (u
27
+ 19u
26
+ ··· 768u + 256)
c
11
(u
2
+ u 1)(u
15
+ 5u
13
+ ··· 3u + 1)(u
27
+ u
26
+ ··· 5u 1)
· (u
32
3u
31
+ ··· 168u 191)
c
12
(u
2
3u + 1)(u
15
+ 3u
14
+ ··· 5u
2
1)(u
27
25u
25
+ ··· + 6u + 1)
· (u
32
+ 3u
31
+ ··· + 202u + 71)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
4
· (y
15
14y
14
+ ··· + 21y 1)(y
27
23y
26
+ ··· 2192y 256)
c
3
, c
8
y
2
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
4
· (y
15
6y
14
+ ··· + 17y 1)(y
27
9y
26
+ ··· + 49920y 4096)
c
5
, c
7
, c
11
(y
2
3y + 1)(y
15
+ 10y
14
+ ··· + 5y 1)(y
27
+ 5y
26
+ ··· + 15y 1)
· (y
32
+ 11y
31
+ ··· 90108y + 36481)
c
6
, c
9
, c
12
(y
2
7y + 1)(y
15
5y
14
+ ··· 10y 1)(y
27
50y
26
+ ··· + 68y 1)
· (y
32
21y
31
+ ··· 309468y + 5041)
c
10
((y
2
3y + 1)
17
)(y
15
13y
14
+ ··· 6y 1)
· (y
27
19y
26
+ ··· + 5636096y 65536)
25