12n
0696
(K12n
0696
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 12 11 3 7 5 9 6
Solving Sequence
3,9 4,11
12 8 7 10 6 1 5 2
c
3
c
11
c
8
c
7
c
9
c
6
c
12
c
5
c
2
c
1
, c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−4.17337 × 10
102
u
27
1.93423 × 10
103
u
26
+ ··· + 3.84681 × 10
106
b + 1.79302 × 10
107
,
1.16409 × 10
103
u
27
5.28576 × 10
103
u
26
+ ··· + 7.69362 × 10
106
a + 4.42452 × 10
107
,
u
28
+ 4u
27
+ ··· 75264u + 25088i
I
u
2
= h75504u
12
+ 165674u
11
+ ··· + 485b + 93972, 42944u
12
93489u
11
+ ··· + 485a 52132,
u
13
+ 3u
12
3u
11
4u
10
+ u
9
5u
8
+ 12u
7
+ 23u
6
15u
5
13u
4
+ 12u
3
+ u
2
3u + 1i
I
v
1
= ha, 579074v
8
1101995v
7
+ ··· + 5353327b + 7952402,
v
9
+ v
8
8v
7
v
6
+ 33v
5
23v
4
14v
3
+ 2v
2
+ 3v + 7i
* 3 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−4.17 × 10
102
u
27
1.93 × 10
103
u
26
+ · · · + 3.85 × 10
106
b + 1.79 ×
10
107
, 1.16 × 10
103
u
27
5.29 × 10
103
u
26
+ · · · + 7.69 × 10
106
a + 4.42 ×
10
107
, u
28
+ 4u
27
+ · · · 75264u + 25088i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
11
=
0.000151306u
27
+ 0.000687032u
26
+ ··· + 8.22933u 5.75089
0.000108489u
27
+ 0.000502815u
26
+ ··· + 7.32645u 4.66105
a
12
=
0.000151306u
27
+ 0.000687032u
26
+ ··· + 8.22933u 5.75089
0.000150012u
27
+ 0.000689256u
26
+ ··· + 9.68762u 6.71343
a
8
=
u
u
a
7
=
0.0000766347u
27
0.000357137u
26
+ ··· 1.56565u + 3.20147
0.0000700433u
27
0.000319328u
26
+ ··· 3.53946u + 2.63866
a
10
=
0.000123162u
27
+ 0.000561945u
26
+ ··· + 8.07319u 4.92967
0.0000757763u
27
+ 0.000354447u
26
+ ··· + 5.43594u 3.01687
a
6
=
0.0000668361u
27
0.000317419u
26
+ ··· 3.53613u + 1.93449
0.0000195598u
27
+ 0.0000729436u
26
+ ··· + 2.44504u 1.73891
a
1
=
0.0000318531u
27
+ 0.000142983u
26
+ ··· + 1.78955u 0.554362
0.0000298229u
27
+ 0.000134348u
26
+ ··· + 1.61686u 1.48562
a
5
=
9.21121 × 10
6
u
27
0.0000407445u
26
+ ··· 0.545453u 0.540627
0.0000226419u
27
+ 0.000102238u
26
+ ··· + 1.24410u 1.09499
a
2
=
9.21121 × 10
6
u
27
+ 0.0000407445u
26
+ ··· + 0.545453u + 0.540627
0.0000242016u
27
+ 0.000109392u
26
+ ··· + 1.30651u 1.19282
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000152878u
27
0.000780946u
26
+ ··· 9.76931u 4.69330
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
28
16u
27
+ ··· + 419u 49
c
3
, c
8
u
28
+ 4u
27
+ ··· 75264u + 25088
c
5
, c
10
u
28
+ 2u
27
+ ··· 1173u 1219
c
6
, c
12
u
28
+ 3u
27
+ ··· + 300u + 59
c
7
u
28
u
27
+ ··· 246402u 218849
c
9
u
28
4u
27
+ ··· + 9u 9
c
11
u
28
u
27
+ ··· + 26513u + 36713
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
28
4y
27
+ ··· 168113y + 2401
c
3
, c
8
y
28
+ 78y
27
+ ··· + 603717632y + 629407744
c
5
, c
10
y
28
+ 42y
27
+ ··· + 5986831y + 1485961
c
6
, c
12
y
28
+ y
27
+ ··· 86696y + 3481
c
7
y
28
+ 53y
27
+ ··· + 367398468196y + 47894884801
c
9
y
28
+ 2y
27
+ ··· 657y + 81
c
11
y
28
+ 29y
27
+ ··· 4800844229y + 1347844369
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.661495 + 0.747398I
a = 1.193220 + 0.182648I
b = 2.37661 + 0.83239I
2.93456 1.71766I 11.35116 + 2.24777I
u = 0.661495 0.747398I
a = 1.193220 0.182648I
b = 2.37661 0.83239I
2.93456 + 1.71766I 11.35116 2.24777I
u = 0.893984 + 0.439919I
a = 0.046736 0.846720I
b = 0.140462 0.488416I
0.665833 0.463592I 8.88124 0.80143I
u = 0.893984 0.439919I
a = 0.046736 + 0.846720I
b = 0.140462 + 0.488416I
0.665833 + 0.463592I 8.88124 + 0.80143I
u = 0.060146 + 1.078200I
a = 0.366791 0.845658I
b = 0.469643 + 0.590527I
1.30627 + 3.65816I 0.62607 9.21590I
u = 0.060146 1.078200I
a = 0.366791 + 0.845658I
b = 0.469643 0.590527I
1.30627 3.65816I 0.62607 + 9.21590I
u = 1.083710 + 0.326182I
a = 0.715235 0.997232I
b = 0.204712 + 0.075027I
5.85717 + 6.56767I 13.7398 3.9298I
u = 1.083710 0.326182I
a = 0.715235 + 0.997232I
b = 0.204712 0.075027I
5.85717 6.56767I 13.7398 + 3.9298I
u = 0.775820 + 0.972482I
a = 0.469871 + 0.774727I
b = 0.205034 0.207127I
5.97045 + 2.54425I 12.99283 2.62358I
u = 0.775820 0.972482I
a = 0.469871 0.774727I
b = 0.205034 + 0.207127I
5.97045 2.54425I 12.99283 + 2.62358I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617923 + 0.406438I
a = 1.204910 0.100272I
b = 0.612974 0.582117I
2.45728 1.44782I 2.14877 + 4.95256I
u = 0.617923 0.406438I
a = 1.204910 + 0.100272I
b = 0.612974 + 0.582117I
2.45728 + 1.44782I 2.14877 4.95256I
u = 0.585624 + 0.073997I
a = 0.95222 + 1.58256I
b = 0.16008 + 1.49787I
2.72280 + 3.22335I 17.5168 5.4562I
u = 0.585624 0.073997I
a = 0.95222 1.58256I
b = 0.16008 1.49787I
2.72280 3.22335I 17.5168 + 5.4562I
u = 0.528658
a = 0.651300
b = 0.226944
0.770752 12.6200
u = 0.034927 + 0.413671I
a = 1.289190 0.171430I
b = 0.662191 + 0.707353I
0.83719 + 2.37006I 4.55412 1.61124I
u = 0.034927 0.413671I
a = 1.289190 + 0.171430I
b = 0.662191 0.707353I
0.83719 2.37006I 4.55412 + 1.61124I
u = 1.45117 + 2.14148I
a = 0.665316 0.045728I
b = 1.79657 + 0.17540I
13.0799 5.8001I 0
u = 1.45117 2.14148I
a = 0.665316 + 0.045728I
b = 1.79657 0.17540I
13.0799 + 5.8001I 0
u = 1.61598 + 2.05576I
a = 0.921601 0.257100I
b = 2.10745 0.14996I
12.8917 + 14.5389I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61598 2.05576I
a = 0.921601 + 0.257100I
b = 2.10745 + 0.14996I
12.8917 14.5389I 0
u = 0.68402 + 3.16013I
a = 0.685728 0.115457I
b = 2.03515 0.07059I
14.7956 5.0968I 0
u = 0.68402 3.16013I
a = 0.685728 + 0.115457I
b = 2.03515 + 0.07059I
14.7956 + 5.0968I 0
u = 3.30423
a = 1.48289
b = 2.19015
19.0273 0
u = 2.12239 + 3.48864I
a = 0.683688 + 0.783505I
b = 1.298960 + 0.127397I
4.30987 2.62944I 0
u = 2.12239 3.48864I
a = 0.683688 0.783505I
b = 1.298960 0.127397I
4.30987 + 2.62944I 0
u = 0.33576 + 4.88530I
a = 0.804068 0.346474I
b = 1.84810 + 0.02973I
16.2350 2.8419I 0
u = 0.33576 4.88530I
a = 0.804068 + 0.346474I
b = 1.84810 0.02973I
16.2350 + 2.8419I 0
7
II. I
u
2
= h75504u
12
+ 165674u
11
+ · · · + 485b + 93972, 42944u
12
93489u
11
+ · · · + 485a 52132, u
13
+ 3u
12
+ · · · 3u + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
11
=
88.5443u
12
+ 192.761u
11
+ ··· 461.643u + 107.489
155.678u
12
341.596u
11
+ ··· + 801.984u 193.757
a
12
=
88.5443u
12
+ 192.761u
11
+ ··· 461.643u + 107.489
96.5423u
12
212.656u
11
+ ··· + 494.823u 120.885
a
8
=
u
u
a
7
=
308.078u
12
+ 670.996u
11
+ ··· 1605.18u + 378.957
381.951u
12
+ 833.476u
11
+ ··· 1976.31u + 464.501
a
10
=
116.975u
12
255.738u
11
+ ··· + 606.153u 145.751
361.198u
12
790.095u
11
+ ··· + 1870.78u 446.996
a
6
=
552.301u
12
+ 1205.35u
11
+ ··· 2868.81u + 680.202
803.901u
12
+ 1754.95u
11
+ ··· 4169.61u + 986.002
a
1
=
120.435u
12
+ 262.188u
11
+ ··· 628.151u + 148.470
168.903u
12
+ 368.058u
11
+ ··· 879.431u + 207.606
a
5
=
31.8907u
12
+ 69.4268u
11
+ ··· 166.507u + 39.9814
88.5443u
12
192.761u
11
+ ··· + 461.643u 108.489
a
2
=
31.8907u
12
+ 69.4268u
11
+ ··· 166.507u + 39.9814
109.767u
12
+ 239.118u
11
+ ··· 572.270u + 134.734
(ii) Obstruction class = 1
(iii) Cusp Shapes =
296049
485
u
12
+
650349
485
u
11
+ ···
1491522
485
u +
340092
485
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
13
+ 6u
12
+ ··· 3u + 1
c
3
u
13
+ 3u
12
+ ··· 3u + 1
c
4
u
13
6u
12
+ ··· 3u 1
c
5
u
13
+ 3u
11
+ ··· 3u 1
c
6
u
13
3u
12
+ ··· + 3u
2
+ 1
c
7
u
13
3u
12
+ ··· 6u + 1
c
8
u
13
3u
12
+ ··· 3u 1
c
9
u
13
+ 6u
12
+ ··· 3u 1
c
10
u
13
+ 3u
11
+ ··· 3u + 1
c
11
u
13
+ 7u
12
+ ··· + 5u + 1
c
12
u
13
+ 3u
12
+ ··· 3u
2
1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
13
16y
12
+ ··· y 1
c
3
, c
8
y
13
15y
12
+ ··· + 7y 1
c
5
, c
10
y
13
+ 6y
12
+ ··· 5y 1
c
6
, c
12
y
13
+ 5y
12
+ ··· 6y 1
c
7
y
13
15y
12
+ ··· + 2y 1
c
9
y
13
2y
12
+ ··· + 15y 1
c
11
y
13
31y
12
+ ··· + 3y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.816041 + 0.000203I
a = 1.61968 + 0.39099I
b = 1.80223 0.68201I
1.72418 + 0.65957I 8.99705 + 2.64502I
u = 0.816041 0.000203I
a = 1.61968 0.39099I
b = 1.80223 + 0.68201I
1.72418 0.65957I 8.99705 2.64502I
u = 1.128350 + 0.374297I
a = 0.383878 0.179213I
b = 0.067884 0.564804I
6.59749 + 5.36054I 16.7957 3.3098I
u = 1.128350 0.374297I
a = 0.383878 + 0.179213I
b = 0.067884 + 0.564804I
6.59749 5.36054I 16.7957 + 3.3098I
u = 0.556612 + 0.262804I
a = 1.195460 0.299951I
b = 0.22686 1.50683I
1.55737 3.31191I 8.81382 + 5.67289I
u = 0.556612 0.262804I
a = 1.195460 + 0.299951I
b = 0.22686 + 1.50683I
1.55737 + 3.31191I 8.81382 5.67289I
u = 1.312050 + 0.498669I
a = 0.473709 + 0.239750I
b = 0.594861 0.162148I
4.99110 3.58519I 10.54784 + 4.86342I
u = 1.312050 0.498669I
a = 0.473709 0.239750I
b = 0.594861 + 0.162148I
4.99110 + 3.58519I 10.54784 4.86342I
u = 0.00605 + 1.41713I
a = 0.242443 + 0.861161I
b = 0.561264 0.496045I
0.87702 3.30359I 11.32603 0.21831I
u = 0.00605 1.41713I
a = 0.242443 0.861161I
b = 0.561264 + 0.496045I
0.87702 + 3.30359I 11.32603 + 0.21831I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.314233 + 0.325307I
a = 2.01758 + 0.09750I
b = 3.15000 + 2.21154I
3.04698 2.63834I 10.8062 + 21.0195I
u = 0.314233 0.325307I
a = 2.01758 0.09750I
b = 3.15000 2.21154I
3.04698 + 2.63834I 10.8062 21.0195I
u = 3.46490
a = 1.43517
b = 2.15521
18.8747 13.5730
12
III. I
v
1
= ha, 5.79 × 10
5
v
8
1.10 × 10
6
v
7
+ · · · + 5.35 × 10
6
b + 7.95 ×
10
6
, v
9
+ v
8
+ · · · + 3v + 7i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
4
=
1
0
a
11
=
0
0.108171v
8
+ 0.205852v
7
+ ··· 0.000774472v 1.48551
a
12
=
0.102023v
8
0.224509v
7
+ ··· + 1.05024v + 0.683770
0.108171v
8
+ 0.205852v
7
+ ··· 0.000774472v 1.48551
a
8
=
v
0
a
7
=
v
0.109964v
8
+ 0.217820v
7
+ ··· 1.73167v 1.00939
a
10
=
0.159020v
8
+ 0.294157v
7
+ ··· 0.0933167v 0.754991
0.0798487v
8
0.139548v
7
+ ··· + 0.391226v 0.126428
a
6
=
0.0944713v
8
+ 0.166302v
7
+ ··· + 0.644723v 0.337094
0.0798487v
8
+ 0.139548v
7
+ ··· 0.391226v + 0.126428
a
1
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v + 1.49020
1
a
5
=
0.163153v
8
+ 0.314762v
7
+ ··· 0.866612v 1.49020
1
a
2
=
0.163153v
8
0.314762v
7
+ ··· + 0.866612v + 2.49020
1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
37039389
37473289
v
8
67980124
37473289
v
7
+
235056117
37473289
v
6
+
227362865
37473289
v
5
992262694
37473289
v
4
+
36681292
37473289
v
3
+
60669880
5353327
v
2
+
304560980
37473289
v
262488239
37473289
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
9
c
3
, c
8
u
9
c
4
(u + 1)
9
c
5
u
9
+ u
8
+ 2u
7
+ u
6
+ 3u
5
+ u
4
+ 2u
3
+ u 1
c
6
u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1
c
7
u
9
+ u
8
2u
7
3u
6
+ u
5
+ 3u
4
+ 2u
3
u 1
c
9
u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1
c
10
u
9
u
8
+ 2u
7
u
6
+ 3u
5
u
4
+ 2u
3
+ u + 1
c
11
u
9
u
8
2u
7
+ 3u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
12
u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
9
c
3
, c
8
y
9
c
5
, c
10
y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1
c
6
, c
12
y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1
c
7
, c
11
y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1
c
9
y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.094310 + 0.114265I
a = 0
b = 0.650520 + 0.534295I
0.13850 + 2.09337I 5.49232 4.08340I
v = 1.094310 0.114265I
a = 0
b = 0.650520 0.534295I
0.13850 2.09337I 5.49232 + 4.08340I
v = 0.703774
a = 0
b = 1.17358
2.84338 14.1380
v = 0.187998 + 0.564097I
a = 0
b = 1.104930 + 0.619057I
2.26187 + 2.45442I 12.87375 1.42824I
v = 0.187998 0.564097I
a = 0
b = 1.104930 0.619057I
2.26187 2.45442I 12.87375 + 1.42824I
v = 1.51733 + 0.93950I
a = 0
b = 0.443756 0.532821I
6.01628 + 1.33617I 13.72452 + 1.86826I
v = 1.51733 0.93950I
a = 0
b = 0.443756 + 0.532821I
6.01628 1.33617I 13.72452 1.86826I
v = 2.57175 + 0.82630I
a = 0
b = 0.469909 0.043588I
5.24306 + 7.08493I 7.53426 10.08360I
v = 2.57175 0.82630I
a = 0
b = 0.469909 + 0.043588I
5.24306 7.08493I 7.53426 + 10.08360I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
9
)(u
13
+ 6u
12
+ ··· 3u + 1)(u
28
16u
27
+ ··· + 419u 49)
c
3
u
9
(u
13
+ 3u
12
+ ··· 3u + 1)(u
28
+ 4u
27
+ ··· 75264u + 25088)
c
4
((u + 1)
9
)(u
13
6u
12
+ ··· 3u 1)(u
28
16u
27
+ ··· + 419u 49)
c
5
(u
9
+ u
8
+ ··· + u 1)(u
13
+ 3u
11
+ ··· 3u 1)
· (u
28
+ 2u
27
+ ··· 1173u 1219)
c
6
(u
9
+ 3u
8
+ 8u
7
+ 13u
6
+ 17u
5
+ 17u
4
+ 12u
3
+ 6u
2
+ u 1)
· (u
13
3u
12
+ ··· + 3u
2
+ 1)(u
28
+ 3u
27
+ ··· + 300u + 59)
c
7
(u
9
+ u
8
+ ··· u 1)(u
13
3u
12
+ ··· 6u + 1)
· (u
28
u
27
+ ··· 246402u 218849)
c
8
u
9
(u
13
3u
12
+ ··· 3u 1)(u
28
+ 4u
27
+ ··· 75264u + 25088)
c
9
(u
9
+ 5u
8
+ 12u
7
+ 15u
6
+ 9u
5
u
4
4u
3
2u
2
+ u + 1)
· (u
13
+ 6u
12
+ ··· 3u 1)(u
28
4u
27
+ ··· + 9u 9)
c
10
(u
9
u
8
+ ··· + u + 1)(u
13
+ 3u
11
+ ··· 3u + 1)
· (u
28
+ 2u
27
+ ··· 1173u 1219)
c
11
(u
9
u
8
+ ··· u + 1)(u
13
+ 7u
12
+ ··· + 5u + 1)
· (u
28
u
27
+ ··· + 26513u + 36713)
c
12
(u
9
3u
8
+ 8u
7
13u
6
+ 17u
5
17u
4
+ 12u
3
6u
2
+ u + 1)
· (u
13
+ 3u
12
+ ··· 3u
2
1)(u
28
+ 3u
27
+ ··· + 300u + 59)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
9
)(y
13
16y
12
+ ··· y 1)
· (y
28
4y
27
+ ··· 168113y + 2401)
c
3
, c
8
y
9
(y
13
15y
12
+ ··· + 7y 1)
· (y
28
+ 78y
27
+ ··· + 603717632y + 629407744)
c
5
, c
10
(y
9
+ 3y
8
+ 8y
7
+ 13y
6
+ 17y
5
+ 17y
4
+ 12y
3
+ 6y
2
+ y 1)
· (y
13
+ 6y
12
+ ··· 5y 1)(y
28
+ 42y
27
+ ··· + 5986831y + 1485961)
c
6
, c
12
(y
9
+ 7y
8
+ 20y
7
+ 25y
6
+ 5y
5
15y
4
+ 22y
2
+ 13y 1)
· (y
13
+ 5y
12
+ ··· 6y 1)(y
28
+ y
27
+ ··· 86696y + 3481)
c
7
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
13
15y
12
+ ··· + 2y 1)
· (y
28
+ 53y
27
+ ··· + 367398468196y + 47894884801)
c
9
(y
9
y
8
+ 12y
7
7y
6
+ 37y
5
+ y
4
10y
2
+ 5y 1)
· (y
13
2y
12
+ ··· + 15y 1)(y
28
+ 2y
27
+ ··· 657y + 81)
c
11
(y
9
5y
8
+ 12y
7
15y
6
+ 9y
5
+ y
4
4y
3
+ 2y
2
+ y 1)
· (y
13
31y
12
+ ··· + 3y 1)
· (y
28
+ 29y
27
+ ··· 4800844229y + 1347844369)
18