12n
0697
(K12n
0697
)
A knot diagram
1
Linearized knot diagam
4 5 9 2 10 9 11 3 12 5 7 6
Solving Sequence
5,10 2,6
4 1 12 9 7 3 8 11
c
5
c
4
c
1
c
12
c
9
c
6
c
3
c
8
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.62104 × 10
19
u
20
+ 1.26138 × 10
19
u
19
+ ··· + 4.08630 × 10
20
b + 4.01944 × 10
20
,
1.37856 × 10
21
u
20
8.38333 × 10
20
u
19
+ ··· + 5.72082 × 10
21
a 9.06403 × 10
21
, u
21
3u
19
+ ··· u + 1i
I
u
2
= hb + 1, u
3
u
2
+ 2a u + 1, u
4
+ u
2
u + 1i
I
u
3
= h−2u
11
+ u
10
5u
9
+ 10u
8
+ 5u
7
+ 22u
6
+ 17u
5
+ 16u
4
+ 13u
3
+ 9u
2
+ b + 6u + 2,
4u
12
+ 5u
11
12u
10
+ 28u
9
6u
8
+ 41u
7
+ 12u
5
5u
4
5u
3
9u
2
+ a 6u 5,
u
13
+ 3u
11
4u
10
3u
9
16u
8
16u
7
22u
6
18u
5
16u
4
11u
3
7u
2
3u 1i
I
u
4
= hb + 1, u
5
+ 2u
3
+ a + u + 1, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
I
u
5
= h−31240024u
11
108045960u
10
+ ··· + 16035124397b + 4787221942,
2479067476388u
11
7672762434312u
10
+ ··· + 189470000096321a 300611169358247,
u
12
+ 2u
11
u
10
+ 24u
8
+ 24u
7
42u
6
+ 142u
5
296u
4
+ 168u
3
248u
2
+ 192u 79i
* 5 irreducible components of dim
C
= 0, with total 56 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−3.62×10
19
u
20
+1.26×10
19
u
19
+· · ·+4.09×10
20
b+4.02×10
20
, 1.38×
10
21
u
20
8.38×10
20
u
19
+· · ·+5.72×10
21
a9.06×10
21
, u
21
3u
19
+· · ·u+1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
0.240973u
20
+ 0.146541u
19
+ ··· + 0.630949u + 1.58439
0.0886140u
20
0.0308685u
19
+ ··· + 0.687354u 0.983638
a
6
=
1
u
2
a
4
=
0.569574u
20
+ 0.221291u
19
+ ··· 0.866797u + 0.435171
0.376569u
20
0.348821u
19
+ ··· + 2.18805u + 0.671636
a
1
=
0.0422288u
20
0.00485208u
19
+ ··· 0.760876u + 0.127899
0.411664u
20
0.138444u
19
+ ··· + 3.07667u + 1.14698
a
12
=
0.367023u
20
+ 0.127899u
19
+ ··· 3.80016u 1.01423
0.367023u
20
0.127899u
19
+ ··· + 2.80016u + 1.01423
a
9
=
0.410427u
20
+ 0.0856689u
19
+ ··· 1.95365u 1.18436
0.368198u
20
0.0808168u
19
+ ··· + 2.71453u + 1.05646
a
7
=
1.01423u
20
0.367023u
19
+ ··· + 4.62375u + 3.81439
1.01423u
20
+ 0.367023u
19
+ ··· 4.62375u 2.81439
a
3
=
0.152359u
20
+ 0.177409u
19
+ ··· 0.0564046u + 2.56803
0.0886140u
20
0.0308685u
19
+ ··· + 0.687354u 0.983638
a
8
=
1.01423u
20
+ 0.367023u
19
+ ··· 4.62375u 3.81439
1.01423u
20
0.367023u
19
+ ··· + 4.62375u + 2.81439
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
41331710946122587570789
11441642780167527166456
u
20
13713223367732965094891
11441642780167527166456
u
19
+ ··· +
62252584059208509594863
2860410695041881791614
u +
24448772877532289945923
5720821390083763583228
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
u
21
5u
20
+ ··· 176u + 64
c
3
, c
8
u
21
+ u
20
+ ··· + 3328u + 1024
c
5
, c
7
, c
10
c
11
u
21
3u
19
+ ··· u + 1
c
6
, c
12
u
21
+ u
20
+ ··· + 26u
2
+ 1
c
9
u
21
+ 7u
20
+ ··· + 32u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
21
25y
20
+ ··· + 9472y 4096
c
3
, c
8
y
21
27y
20
+ ··· 1769472y 1048576
c
5
, c
7
, c
10
c
11
y
21
6y
20
+ ··· + 9y 1
c
6
, c
12
y
21
+ 13y
20
+ ··· 52y 1
c
9
y
21
5y
20
+ ··· + 440y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.749636 + 0.488902I
a = 0.469897 + 0.044424I
b = 0.341636 + 0.425477I
1.45186 + 0.85737I 6.38463 1.62097I
u = 0.749636 0.488902I
a = 0.469897 0.044424I
b = 0.341636 0.425477I
1.45186 0.85737I 6.38463 + 1.62097I
u = 0.139166 + 0.781262I
a = 0.73889 + 1.22004I
b = 1.375930 0.218020I
3.48621 + 5.01960I 12.50321 + 2.57874I
u = 0.139166 0.781262I
a = 0.73889 1.22004I
b = 1.375930 + 0.218020I
3.48621 5.01960I 12.50321 2.57874I
u = 0.099594 + 0.653522I
a = 0.28465 1.42599I
b = 0.166654 + 0.606297I
1.43705 + 2.05574I 1.84211 3.02644I
u = 0.099594 0.653522I
a = 0.28465 + 1.42599I
b = 0.166654 0.606297I
1.43705 2.05574I 1.84211 + 3.02644I
u = 0.713665 + 1.142840I
a = 0.257213 0.050637I
b = 0.917606 0.416133I
1.15190 6.95574I 3.07603 + 1.63596I
u = 0.713665 1.142840I
a = 0.257213 + 0.050637I
b = 0.917606 + 0.416133I
1.15190 + 6.95574I 3.07603 1.63596I
u = 0.118860 + 0.511212I
a = 0.21443 + 2.11251I
b = 1.120560 0.176119I
1.29818 0.86925I 5.22327 0.45664I
u = 0.118860 0.511212I
a = 0.21443 2.11251I
b = 1.120560 + 0.176119I
1.29818 + 0.86925I 5.22327 + 0.45664I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.396570 + 0.053595I
a = 0.127913 0.750550I
b = 0.872784 + 0.806219I
4.27603 3.00281I 0.00709 9.01951I
u = 0.396570 0.053595I
a = 0.127913 + 0.750550I
b = 0.872784 0.806219I
4.27603 + 3.00281I 0.00709 + 9.01951I
u = 0.322867
a = 1.20351
b = 0.565313
0.896054 11.8310
u = 1.14110 + 1.36056I
a = 0.796386 0.921717I
b = 1.89575 + 0.52604I
18.0940 7.3272I 7.63094 + 2.78873I
u = 1.14110 1.36056I
a = 0.796386 + 0.921717I
b = 1.89575 0.52604I
18.0940 + 7.3272I 7.63094 2.78873I
u = 1.83772 + 0.22825I
a = 0.768356 + 0.189539I
b = 1.69775 1.08714I
7.41133 + 0.52434I 8.70349 1.08333I
u = 1.83772 0.22825I
a = 0.768356 0.189539I
b = 1.69775 + 1.08714I
7.41133 0.52434I 8.70349 + 1.08333I
u = 1.86654 + 0.63952I
a = 0.678604 0.317967I
b = 1.55087 + 1.33931I
7.05646 + 5.93668I 8.04055 3.74874I
u = 1.86654 0.63952I
a = 0.678604 + 0.317967I
b = 1.55087 1.33931I
7.05646 5.93668I 8.04055 + 3.74874I
u = 1.19154 + 1.65776I
a = 0.683607 + 0.829952I
b = 1.91479 0.63403I
16.9669 + 14.7114I 6.79810 5.93574I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.19154 1.65776I
a = 0.683607 0.829952I
b = 1.91479 + 0.63403I
16.9669 14.7114I 6.79810 + 5.93574I
7
II. I
u
2
= hb + 1, u
3
u
2
+ 2a u + 1, u
4
+ u
2
u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
1
2
u
3
+
1
2
u
2
+
1
2
u
1
2
1
a
6
=
1
u
2
a
4
=
1
2
u
3
+
1
2
u
2
+
1
2
u +
1
2
1
a
1
=
1
0
a
12
=
u
2
1
u
2
u + 1
a
9
=
u
3
u
2
u
3
+ u
2
+ 1
a
7
=
u
3
u
3
+ 1
a
3
=
1
2
u
3
+
1
2
u
2
+
1
2
u +
1
2
1
a
8
=
u
3
u
2
u
3
+ u
2
+ 1
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19
4
u
3
+
13
2
u
2
5
2
u
37
4
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
4
c
3
, c
8
u
4
c
4
(u + 1)
4
c
5
, c
7
u
4
+ u
2
u + 1
c
6
u
4
+ 2u
3
+ 3u
2
+ u + 1
c
9
u
4
3u
3
+ 4u
2
3u + 2
c
10
, c
11
u
4
+ u
2
+ u + 1
c
12
u
4
2u
3
+ 3u
2
u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
8
y
4
c
5
, c
7
, c
10
c
11
y
4
+ 2y
3
+ 3y
2
+ y + 1
c
6
, c
12
y
4
+ 2y
3
+ 7y
2
+ 5y + 1
c
9
y
4
y
3
+ 2y
2
+ 7y + 4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.547424 + 0.585652I
a = 0.447562 + 0.776246I
b = 1.00000
2.62503 1.39709I 12.79646 + 4.25046I
u = 0.547424 0.585652I
a = 0.447562 0.776246I
b = 1.00000
2.62503 + 1.39709I 12.79646 4.25046I
u = 0.547424 + 1.120870I
a = 0.302438 0.253422I
b = 1.00000
0.98010 + 7.64338I 5.07854 12.68142I
u = 0.547424 1.120870I
a = 0.302438 + 0.253422I
b = 1.00000
0.98010 7.64338I 5.07854 + 12.68142I
11
III.
I
u
3
= h−2u
11
+u
10
+· · ·+b+2, 4u
12
+5u
11
+· · ·+a5, u
13
+3u
11
+· · ·−3u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
4u
12
5u
11
+ ··· + 6u + 5
2u
11
u
10
+ ··· 6u 2
a
6
=
1
u
2
a
4
=
3u
11
u
10
+ ··· 8u 3
u
12
2u
11
+ ··· + 12u + 4
a
1
=
u
11
+ 2u
9
4u
8
5u
7
12u
6
11u
5
10u
4
7u
3
6u
2
5u 1
u
12
u
11
+ ··· + 9u + 4
a
12
=
u
12
+ u
11
+ ··· 11u 4
u
12
u
11
+ ··· + 10u + 4
a
9
=
4u
12
3u
11
+ ··· + 24u + 7
4u
12
+ 2u
11
+ ··· 19u 6
a
7
=
4u
12
+ u
11
+ ··· + 11u + 2
4u
12
u
11
+ ··· 11u 3
a
3
=
4u
12
7u
11
+ ··· + 12u + 7
2u
11
u
10
+ ··· 6u 2
a
8
=
4u
12
+ u
11
+ ··· + 11u + 2
4u
12
u
11
+ ··· 11u 3
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
11
+ 12u
10
13u
9
+ 34u
8
65u
7
+ 2u
6
99u
5
27u
4
41u
3
6u
2
17u 7
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
13
+ 6u
12
+ ··· 3u + 1
c
3
u
13
+ 3u
12
+ ··· 3u + 1
c
4
u
13
6u
12
+ ··· 3u 1
c
5
, c
11
u
13
+ 3u
11
+ ··· 3u 1
c
6
, c
12
u
13
+ 3u
12
+ ··· 6u 1
c
7
, c
10
u
13
+ 3u
11
+ ··· 3u + 1
c
8
u
13
3u
12
+ ··· 3u 1
c
9
u
13
+ 5u
12
+ ··· + 7u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
y
13
16y
12
+ ··· y 1
c
3
, c
8
y
13
15y
12
+ ··· + 7y 1
c
5
, c
7
, c
10
c
11
y
13
+ 6y
12
+ ··· 5y 1
c
6
, c
12
y
13
15y
12
+ ··· + 2y 1
c
9
y
13
3y
12
+ ··· + 31y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.210034 + 0.823435I
a = 0.96478 + 1.20909I
b = 1.383880 0.179213I
3.30762 + 5.36054I 2.9630 14.9223I
u = 0.210034 0.823435I
a = 0.96478 1.20909I
b = 1.383880 + 0.179213I
3.30762 5.36054I 2.9630 + 14.9223I
u = 0.433075 + 0.722389I
a = 5.11247 + 2.19335I
b = 1.017580 + 0.097497I
0.24289 2.63834I 11.1688 + 22.2580I
u = 0.433075 0.722389I
a = 5.11247 2.19335I
b = 1.017580 0.097497I
0.24289 + 2.63834I 11.1688 22.2580I
u = 0.332363 + 0.723799I
a = 1.22666 1.54731I
b = 0.195461 + 0.299951I
1.73250 + 3.31191I 2.30285 9.65242I
u = 0.332363 0.723799I
a = 1.22666 + 1.54731I
b = 0.195461 0.299951I
1.73250 3.31191I 2.30285 + 9.65242I
u = 0.221139 + 1.245340I
a = 0.195961 + 0.001466I
b = 1.47371 + 0.23975I
1.70123 3.58519I 8.08868 + 2.57007I
u = 0.221139 1.245340I
a = 0.195961 0.001466I
b = 1.47371 0.23975I
1.70123 + 3.58519I 8.08868 2.57007I
u = 0.561559 + 0.310550I
a = 0.299162 + 0.039936I
b = 0.757557 0.861161I
4.16689 + 3.30359I 8.3931 13.8587I
u = 0.561559 0.310550I
a = 0.299162 0.039936I
b = 0.757557 + 0.861161I
4.16689 3.30359I 8.3931 + 13.8587I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.10456 + 1.52728I
a = 0.865689 + 0.511270I
b = 0.619685 0.390992I
5.01404 0.65957I 7.51619 + 8.70514I
u = 0.10456 1.52728I
a = 0.865689 0.511270I
b = 0.619685 + 0.390992I
5.01404 + 0.65957I 7.51619 8.70514I
u = 1.99317
a = 0.979535
b = 2.43517
15.5848 10.3460
16
IV. I
u
4
= hb + 1, u
5
+ 2u
3
+ a + u + 1, u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
u
5
2u
3
u 1
1
a
6
=
1
u
2
a
4
=
u
5
2u
3
u
1
a
1
=
1
0
a
12
=
u
2
1
u
4
a
9
=
u
5
2u
3
u
1
a
7
=
2u
5
3u
3
u
2
2u 1
u
5
+ u
3
+ u
2
+ u
a
3
=
u
5
2u
3
u
1
a
8
=
u
5
2u
3
u
1
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 4
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u 1)
6
c
3
, c
8
u
6
c
4
(u + 1)
6
c
5
, c
7
u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1
c
6
u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1
c
9
(u
3
+ u
2
1)
2
c
10
, c
11
u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1
c
12
u
6
3u
5
+ 4u
4
2u
3
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
6
c
3
, c
8
y
6
c
5
, c
7
, c
10
c
11
y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1
c
6
, c
12
y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1
c
9
(y
3
y
2
+ 2y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.498832 + 1.001300I
a = 0.039862 + 0.693124I
b = 1.00000
1.37919 2.82812I 7.50976 + 2.97945I
u = 0.498832 1.001300I
a = 0.039862 0.693124I
b = 1.00000
1.37919 + 2.82812I 7.50976 2.97945I
u = 0.284920 + 1.115140I
a = 0.877439 + 0.479689I
b = 1.00000
2.75839 6 0.980489 + 0.10I
u = 0.284920 1.115140I
a = 0.877439 0.479689I
b = 1.00000
2.75839 6 0.980489 + 0.10I
u = 0.713912 + 0.305839I
a = 0.08270 1.43799I
b = 1.00000
1.37919 2.82812I 7.50976 + 2.97945I
u = 0.713912 0.305839I
a = 0.08270 + 1.43799I
b = 1.00000
1.37919 + 2.82812I 7.50976 2.97945I
20
V. I
u
5
=
h−3.12×10
7
u
11
1.08×10
8
u
10
+· · ·+1.60×10
10
b+4.79×10
9
, 2.48×10
12
u
11
7.67 × 10
12
u
10
+ · · · + 1.89 × 10
14
a 3.01 × 10
14
, u
12
+ 2u
11
+ · · · + 192u 79i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
2
=
0.0130842u
11
+ 0.0404959u
10
+ ··· 3.54067u + 1.58659
0.00194822u
11
+ 0.00673808u
10
+ ··· 0.189616u 0.298546
a
6
=
1
u
2
a
4
=
0.00262893u
11
+ 0.00748102u
10
+ ··· 1.18530u + 1.48618
0.00389645u
11
0.0134762u
10
+ ··· + 0.379232u 0.402908
a
1
=
0.00720608u
11
+ 0.0217001u
10
+ ··· 2.56022u + 0.673821
0.00779290u
11
0.0269523u
10
+ ··· + 0.758463u 0.805816
a
12
=
0.0155775u
11
+ 0.0393443u
10
+ ··· 4.14869u + 2.05539
0.00417591u
11
0.0144212u
10
+ ··· + 1.24677u 0.734617
a
9
=
0.0130842u
11
0.0404959u
10
+ ··· + 3.54067u 0.586590
0.00194822u
11
0.00673808u
10
+ ··· + 0.189616u + 0.298546
a
7
=
0.0107154u
11
+ 0.0306105u
10
+ ··· 2.36500u 0.00933523
0.00613825u
11
0.0163914u
10
+ ··· + 0.990078u 0.803027
a
3
=
0.0111360u
11
+ 0.0337578u
10
+ ··· 3.35105u + 1.88514
0.00194822u
11
+ 0.00673808u
10
+ ··· 0.189616u 0.298546
a
8
=
0.00847360u
11
0.0276953u
10
+ ··· + 1.75415u + 0.409455
0.00389645u
11
+ 0.0134762u
10
+ ··· 0.379232u + 0.402908
a
11
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
78562652888
2398354431599
u
11
197375077140
2398354431599
u
10
+ ··· +
8974663966792
2398354431599
u
21399328621852
2398354431599
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
(u
2
2u 1)
6
c
3
, c
8
(u
2
4u + 2)
6
c
5
, c
7
, c
10
c
11
u
12
+ 2u
11
+ ··· + 192u 79
c
6
, c
12
u
12
+ 6u
11
+ ··· + 92u + 161
c
9
(u
3
u
2
+ 1)
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y
2
6y + 1)
6
c
3
, c
8
(y
2
12y + 4)
6
c
5
, c
7
, c
10
c
11
y
12
6y
11
+ ··· + 2320y + 6241
c
6
, c
12
y
12
+ 2y
11
+ ··· 31648y + 25921
c
9
(y
3
y
2
+ 2y 1)
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.374272 + 0.913197I
a = 2.14288 0.70393I
b = 0.414214
1.08821 + 2.82812I 7.50976 2.97945I
u = 0.374272 0.913197I
a = 2.14288 + 0.70393I
b = 0.414214
1.08821 2.82812I 7.50976 + 2.97945I
u = 1.30635
a = 1.43621
b = 2.41421
14.5134 0.980490
u = 0.463361 + 0.371761I
a = 0.09457 1.94281I
b = 0.414214
1.08821 2.82812I 7.50976 + 2.97945I
u = 0.463361 0.371761I
a = 0.09457 + 1.94281I
b = 0.414214
1.08821 + 2.82812I 7.50976 2.97945I
u = 0.11802 + 1.46261I
a = 1.031230 0.387086I
b = 0.414214
5.22579 6 0.980489 + 0.10I
u = 0.11802 1.46261I
a = 1.031230 + 0.387086I
b = 0.414214
5.22579 6 0.980489 + 0.10I
u = 1.49364 + 1.50456I
a = 0.633916 0.506378I
b = 2.41421
18.6510 2.8281I 7.50976 + 2.97945I
u = 1.49364 1.50456I
a = 0.633916 + 0.506378I
b = 2.41421
18.6510 + 2.8281I 7.50976 2.97945I
u = 2.01289 + 1.65116I
a = 0.617702 + 0.335790I
b = 2.41421
18.6510 2.8281I 7.50976 + 2.97945I
24
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 2.01289 1.65116I
a = 0.617702 0.335790I
b = 2.41421
18.6510 + 2.8281I 7.50976 2.97945I
u = 2.68206
a = 0.787537
b = 2.41421
14.5134 0.980490
25
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
((u 1)
10
)(u
2
2u 1)
6
(u
13
+ 6u
12
+ ··· 3u + 1)
· (u
21
5u
20
+ ··· 176u + 64)
c
3
u
10
(u
2
4u + 2)
6
(u
13
+ 3u
12
+ ··· 3u + 1)
· (u
21
+ u
20
+ ··· + 3328u + 1024)
c
4
((u + 1)
10
)(u
2
2u 1)
6
(u
13
6u
12
+ ··· 3u 1)
· (u
21
5u
20
+ ··· 176u + 64)
c
5
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
12
+ 2u
11
+ ··· + 192u 79)(u
13
+ 3u
11
+ ··· 3u 1)
· (u
21
3u
19
+ ··· u + 1)
c
6
(u
4
+ 2u
3
+ 3u
2
+ u + 1)(u
6
+ 3u
5
+ 4u
4
+ 2u
3
+ 1)
· (u
12
+ 6u
11
+ ··· + 92u + 161)(u
13
+ 3u
12
+ ··· 6u 1)
· (u
21
+ u
20
+ ··· + 26u
2
+ 1)
c
7
(u
4
+ u
2
u + 1)(u
6
+ u
5
+ 2u
4
+ 2u
3
+ 2u
2
+ 2u + 1)
· (u
12
+ 2u
11
+ ··· + 192u 79)(u
13
+ 3u
11
+ ··· 3u + 1)
· (u
21
3u
19
+ ··· u + 1)
c
8
u
10
(u
2
4u + 2)
6
(u
13
3u
12
+ ··· 3u 1)
· (u
21
+ u
20
+ ··· + 3328u + 1024)
c
9
(u
3
u
2
+ 1)
4
(u
3
+ u
2
1)
2
(u
4
3u
3
+ 4u
2
3u + 2)
· (u
13
+ 5u
12
+ ··· + 7u + 1)(u
21
+ 7u
20
+ ··· + 32u + 4)
c
10
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
12
+ 2u
11
+ ··· + 192u 79)(u
13
+ 3u
11
+ ··· 3u + 1)
· (u
21
3u
19
+ ··· u + 1)
c
11
(u
4
+ u
2
+ u + 1)(u
6
u
5
+ 2u
4
2u
3
+ 2u
2
2u + 1)
· (u
12
+ 2u
11
+ ··· + 192u 79)(u
13
+ 3u
11
+ ··· 3u 1)
· (u
21
3u
19
+ ··· u + 1)
c
12
(u
4
2u
3
+ 3u
2
u + 1)(u
6
3u
5
+ 4u
4
2u
3
+ 1)
· (u
12
+ 6u
11
+ ··· + 92u + 161)(u
13
+ 3u
12
+ ··· 6u 1)
· (u
21
+ u
20
+ ··· + 26u
2
+ 1)
26
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
((y 1)
10
)(y
2
6y + 1)
6
(y
13
16y
12
+ ··· y 1)
· (y
21
25y
20
+ ··· + 9472y 4096)
c
3
, c
8
y
10
(y
2
12y + 4)
6
(y
13
15y
12
+ ··· + 7y 1)
· (y
21
27y
20
+ ··· 1769472y 1048576)
c
5
, c
7
, c
10
c
11
(y
4
+ 2y
3
+ 3y
2
+ y + 1)(y
6
+ 3y
5
+ 4y
4
+ 2y
3
+ 1)
· (y
12
6y
11
+ ··· + 2320y + 6241)(y
13
+ 6y
12
+ ··· 5y 1)
· (y
21
6y
20
+ ··· + 9y 1)
c
6
, c
12
(y
4
+ 2y
3
+ 7y
2
+ 5y + 1)(y
6
y
5
+ 4y
4
2y
3
+ 8y
2
+ 1)
· (y
12
+ 2y
11
+ ··· 31648y + 25921)(y
13
15y
12
+ ··· + 2y 1)
· (y
21
+ 13y
20
+ ··· 52y 1)
c
9
((y
3
y
2
+ 2y 1)
6
)(y
4
y
3
+ 2y
2
+ 7y + 4)(y
13
3y
12
+ ··· + 31y 1)
· (y
21
5y
20
+ ··· + 440y 16)
27