12n
0700
(K12n
0700
)
A knot diagram
1
Linearized knot diagam
4 5 9 12 10 11 3 12 7 6 2 9
Solving Sequence
6,10
11
2,7
12 5 3 4 1 9 8
c
10
c
6
c
11
c
5
c
2
c
4
c
1
c
9
c
8
c
3
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h12u
31
42u
30
+ ··· + b + 13, 13u
31
+ 41u
30
+ ··· + 2a 20, u
32
5u
31
+ ··· 8u 2i
I
u
2
= h−3u
15
2u
14
+ ··· + b 3, 3u
15
22u
13
+ ··· + 2a + 5, u
16
+ 2u
15
+ ··· 3u + 2i
I
u
3
= h−u
14
u
13
+ 5u
12
+ 4u
11
10u
10
5u
9
+ 9u
8
2u
6
+ 4u
5
2u
4
2u
3
au + b u + 1,
u
14
a 5u
14
+ ··· + 3a + 12,
u
15
+ u
14
6u
13
5u
12
+ 14u
11
+ 8u
10
14u
9
u
8
+ 2u
7
8u
6
+ 6u
5
+ 4u
4
2u
3
+ 2u
2
2u 1i
* 3 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h12u
31
42u
30
+ · · · + b + 13, 13u
31
+ 41u
30
+ · · · + 2a 20, u
32
5u
31
+ · · · 8u 2i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
2
=
13
2
u
31
41
2
u
30
+ ··· +
69
2
u + 10
12u
31
+ 42u
30
+ ··· 62u 13
a
7
=
u
u
3
+ u
a
12
=
17
2
u
31
61
2
u
30
+ ··· +
103
2
u + 12
12u
31
+ 42u
30
+ ··· 79u 17
a
5
=
u
u
a
3
=
1
2
u
31
+
15
2
u
30
+ ···
49
2
u 2
5u
31
+ 14u
30
+ ··· 3u 1
a
4
=
7
2
u
31
15
2
u
30
+ ··· +
15
2
u + 5
5u
31
+ 14u
30
+ ··· 3u 1
a
1
=
9
2
u
31
+
31
2
u
30
+ ···
39
2
u 5
12u
31
42u
30
+ ··· + 79u + 17
a
9
=
u
4
+ u
2
+ 1
u
6
2u
4
+ u
2
a
8
=
27
2
u
31
+
99
2
u
30
+ ···
199
2
u 21
19u
31
71u
30
+ ··· + 139u + 29
(ii) Obstruction class = 1
(iii) Cusp Shapes = 19u
31
65u
30
138u
29
+ 623u
28
+ 427u
27
2612u
26
1023u
25
+
6228u
24
+ 3091u
23
8672u
22
8566u
21
+ 4803u
20
+ 15237u
19
+ 6582u
18
14312u
17
16767u
16
+ 1566u
15
+ 14326u
14
+ 11332u
13
1711u
12
10557u
11
6164u
10
+ 1148u
9
+
3788u
8
+ 3056u
7
+ 240u
6
1226u
5
540u
4
312u
3
+ 110u
2
+ 80u + 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
17u
31
+ ··· 308u + 178
c
2
, c
11
u
32
+ 2u
31
+ ··· 11u + 1
c
3
, c
8
, c
12
u
32
+ 23u
30
+ ··· + u 1
c
4
u
32
+ 29u
31
+ ··· + 393216u + 32768
c
5
, c
6
, c
10
u
32
5u
31
+ ··· 8u 2
c
7
u
32
+ u
31
+ ··· + 221u 97
c
9
u
32
+ 15u
31
+ ··· + 964u + 86
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
33y
31
+ ··· 1623172y + 31684
c
2
, c
11
y
32
+ 14y
31
+ ··· 73y + 1
c
3
, c
8
, c
12
y
32
+ 46y
31
+ ··· + 13y + 1
c
4
y
32
9y
31
+ ··· 5368709120y + 1073741824
c
5
, c
6
, c
10
y
32
29y
31
+ ··· 60y + 4
c
7
y
32
+ 25y
31
+ ··· 27307y + 9409
c
9
y
32
+ 7y
31
+ ··· 138956y + 7396
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.856862 + 0.544335I
a = 0.529669 + 0.145017I
b = 0.374915 + 0.412577I
7.76454 4.88822I 4.38586 + 5.79440I
u = 0.856862 0.544335I
a = 0.529669 0.145017I
b = 0.374915 0.412577I
7.76454 + 4.88822I 4.38586 5.79440I
u = 0.300083 + 0.868605I
a = 0.628210 + 0.007038I
b = 0.194628 0.543554I
9.54364 0.04641I 0.192477 0.463915I
u = 0.300083 0.868605I
a = 0.628210 0.007038I
b = 0.194628 + 0.543554I
9.54364 + 0.04641I 0.192477 + 0.463915I
u = 0.982425 + 0.459735I
a = 0.063117 0.663220I
b = 0.242898 0.680581I
8.42524 + 6.40056I 6.06353 2.39705I
u = 0.982425 0.459735I
a = 0.063117 + 0.663220I
b = 0.242898 + 0.680581I
8.42524 6.40056I 6.06353 + 2.39705I
u = 0.211672 + 0.838103I
a = 0.712628 1.047410I
b = 1.028680 + 0.375549I
10.8094 11.0307I 3.82556 + 6.27574I
u = 0.211672 0.838103I
a = 0.712628 + 1.047410I
b = 1.028680 0.375549I
10.8094 + 11.0307I 3.82556 6.27574I
u = 1.229180 + 0.220961I
a = 0.111894 + 0.489674I
b = 0.245737 + 0.577172I
1.77560 + 0.48261I 9.87124 + 2.81544I
u = 1.229180 0.220961I
a = 0.111894 0.489674I
b = 0.245737 0.577172I
1.77560 0.48261I 9.87124 2.81544I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.262910 + 0.254948I
a = 0.070086 0.361128I
b = 0.003556 0.473942I
1.17420 4.36507I 10.02842 + 6.42012I
u = 1.262910 0.254948I
a = 0.070086 + 0.361128I
b = 0.003556 + 0.473942I
1.17420 + 4.36507I 10.02842 6.42012I
u = 1.287670 + 0.253472I
a = 1.52393 + 0.12920I
b = 1.99507 + 0.21991I
1.37746 + 2.34487I 8.41481 0.55216I
u = 1.287670 0.253472I
a = 1.52393 0.12920I
b = 1.99507 0.21991I
1.37746 2.34487I 8.41481 + 0.55216I
u = 0.098169 + 0.677929I
a = 0.71726 + 1.41090I
b = 1.026900 0.347744I
1.60725 3.69611I 3.29803 + 2.27748I
u = 0.098169 0.677929I
a = 0.71726 1.41090I
b = 1.026900 + 0.347744I
1.60725 + 3.69611I 3.29803 2.27748I
u = 0.015798 + 0.674807I
a = 0.638339 0.789035I
b = 0.542531 + 0.418291I
2.66882 + 1.00290I 3.62847 3.27774I
u = 0.015798 0.674807I
a = 0.638339 + 0.789035I
b = 0.542531 0.418291I
2.66882 1.00290I 3.62847 + 3.27774I
u = 1.342160 + 0.077096I
a = 1.55439 1.39862I
b = 2.19406 + 1.75733I
5.49774 0.90354I 12.53276 + 1.80769I
u = 1.342160 0.077096I
a = 1.55439 + 1.39862I
b = 2.19406 1.75733I
5.49774 + 0.90354I 12.53276 1.80769I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.330040 + 0.281861I
a = 2.47693 0.37891I
b = 3.40120 0.19418I
2.89499 + 7.19326I 8.98916 5.05295I
u = 1.330040 0.281861I
a = 2.47693 + 0.37891I
b = 3.40120 + 0.19418I
2.89499 7.19326I 8.98916 + 5.05295I
u = 1.39497 + 0.35222I
a = 2.21296 + 0.14720I
b = 3.13885 + 0.57412I
5.7214 + 15.3218I 8.04302 7.62554I
u = 1.39497 0.35222I
a = 2.21296 0.14720I
b = 3.13885 0.57412I
5.7214 15.3218I 8.04302 + 7.62554I
u = 1.45144 + 0.37096I
a = 0.664841 + 0.529951I
b = 0.768383 1.015820I
3.96493 + 4.54692I 0
u = 1.45144 0.37096I
a = 0.664841 0.529951I
b = 0.768383 + 1.015820I
3.96493 4.54692I 0
u = 1.49869 + 0.06046I
a = 1.30572 0.89485I
b = 1.90276 + 1.42005I
0.09897 + 6.38740I 10.66369 5.63916I
u = 1.49869 0.06046I
a = 1.30572 + 0.89485I
b = 1.90276 1.42005I
0.09897 6.38740I 10.66369 + 5.63916I
u = 0.475802
a = 0.529412
b = 0.251895
0.724697 12.9880
u = 1.57937
a = 0.0469240
b = 0.0741106
7.86571 16.8850
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.296068 + 0.129818I
a = 0.37776 + 2.13705I
b = 0.389271 + 0.583672I
0.49245 + 1.79175I 2.45715 5.83736I
u = 0.296068 0.129818I
a = 0.37776 2.13705I
b = 0.389271 0.583672I
0.49245 1.79175I 2.45715 + 5.83736I
8
II. I
u
2
=
h−3u
15
2u
14
+· · ·+b3, 3u
15
22u
13
+· · ·+2a+5, u
16
+2u
15
+· · ·3u+2i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
2
=
3
2
u
15
+ 11u
13
+ ··· + 4u
5
2
3u
15
+ 2u
14
+ ··· 7u + 3
a
7
=
u
u
3
+ u
a
12
=
1
2
u
15
3u
13
+ ··· + 2u +
1
2
u
15
+ 7u
13
+ ··· + u 1
a
5
=
u
u
a
3
=
1
2
u
15
+ 2u
14
+ ··· 2u
1
2
u
15
7u
13
+ ··· u + 1
a
4
=
1
2
u
15
+ u
14
+ ··· + u
3
2
u
15
7u
13
+ ··· u + 1
a
1
=
3
2
u
15
+ u
14
+ ··· u +
3
2
u
15
+ 7u
13
+ ··· + u 1
a
9
=
u
4
+ u
2
+ 1
u
6
2u
4
+ u
2
a
8
=
7
2
u
15
3u
14
+ ··· + 13u
11
2
4u
15
+ 3u
14
+ ··· 16u + 7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4u
15
+4u
14
25u
13
14u
12
+63u
11
69u
9
+59u
8
+8u
7
72u
6
+47u
5
18u
3
+25u
2
16u+16
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
14u
15
+ ··· 41u + 4
c
2
, c
11
u
16
+ 2u
15
+ ··· + 2u + 1
c
3
, c
8
u
16
+ 6u
14
+ ··· + 4u + 1
c
4
u
16
+ 2u
15
+ ··· + 2u + 1
c
5
, c
6
u
16
2u
15
+ ··· + 3u + 2
c
7
u
16
u
15
+ ··· + u
2
+ 1
c
9
u
16
6u
15
+ ··· 7u + 2
c
10
u
16
+ 2u
15
+ ··· 3u + 2
c
12
u
16
+ 6u
14
+ ··· 4u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
16y
15
+ ··· 97y + 16
c
2
, c
11
y
16
4y
15
+ ··· 8y + 1
c
3
, c
8
, c
12
y
16
+ 12y
15
+ ··· 10y + 1
c
4
y
16
8y
15
+ ··· 4y + 1
c
5
, c
6
, c
10
y
16
16y
15
+ ··· y + 4
c
7
y
16
+ 15y
15
+ ··· + 2y + 1
c
9
y
16
6y
14
+ ··· + 7y + 4
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.137400 + 0.146818I
a = 0.149955 + 0.449115I
b = 0.236497 + 0.488807I
1.79945 1.49089I 10.63523 + 4.79741I
u = 1.137400 0.146818I
a = 0.149955 0.449115I
b = 0.236497 0.488807I
1.79945 + 1.49089I 10.63523 4.79741I
u = 0.199163 + 0.721319I
a = 0.606622 + 1.036950I
b = 0.868785 0.231047I
0.63802 + 4.76461I 9.16165 6.96874I
u = 0.199163 0.721319I
a = 0.606622 1.036950I
b = 0.868785 + 0.231047I
0.63802 4.76461I 9.16165 + 6.96874I
u = 1.242630 + 0.215465I
a = 2.27494 + 1.85843I
b = 3.22733 1.81917I
4.26568 2.08418I 10.49854 + 3.93307I
u = 1.242630 0.215465I
a = 2.27494 1.85843I
b = 3.22733 + 1.81917I
4.26568 + 2.08418I 10.49854 3.93307I
u = 0.571020 + 0.339582I
a = 0.039795 + 0.842875I
b = 0.263501 + 0.494812I
1.12725 1.33975I 12.02351 + 1.24817I
u = 0.571020 0.339582I
a = 0.039795 0.842875I
b = 0.263501 0.494812I
1.12725 + 1.33975I 12.02351 1.24817I
u = 0.141358 + 0.640937I
a = 0.679498 1.144790I
b = 0.829793 0.273689I
7.63694 0.91148I 3.93951 + 0.55564I
u = 0.141358 0.640937I
a = 0.679498 + 1.144790I
b = 0.829793 + 0.273689I
7.63694 + 0.91148I 3.93951 0.55564I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.369690 + 0.297062I
a = 0.132211 0.195026I
b = 0.239022 0.227851I
2.78866 + 4.38420I 9.70308 2.57288I
u = 1.369690 0.297062I
a = 0.132211 + 0.195026I
b = 0.239022 + 0.227851I
2.78866 4.38420I 9.70308 + 2.57288I
u = 1.376870 + 0.303108I
a = 1.97992 0.37746I
b = 2.84050 0.08041I
4.35415 8.50155I 13.9603 + 7.3316I
u = 1.376870 0.303108I
a = 1.97992 + 0.37746I
b = 2.84050 + 0.08041I
4.35415 + 8.50155I 13.9603 7.3316I
u = 1.51641 + 0.01833I
a = 0.780954 0.139106I
b = 1.186800 + 0.196628I
8.04846 + 0.00268I 26.0782 3.0287I
u = 1.51641 0.01833I
a = 0.780954 + 0.139106I
b = 1.186800 0.196628I
8.04846 0.00268I 26.0782 + 3.0287I
13
III.
I
u
3
= h−u
14
u
13
+· · ·+b+1, u
14
a5u
14
+· · ·+3a+12, u
15
+u
14
+· · ·−2u1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
2
=
a
u
14
+ u
13
+ ··· + u 1
a
7
=
u
u
3
+ u
a
12
=
u
13
a + u
14
+ ··· + a 1
u
13
a u
12
a + ··· a 1
a
5
=
u
u
a
3
=
u
14
+ u
13
+ ··· + a + u
u
12
u
11
+ ··· + au 1
a
4
=
u
13
a + u
14
+ ··· + a 1
u
13
a u
12
a + ··· a 1
a
1
=
2u
13
a u
14
+ ··· a + 2
2u
13
a + u
13
+ ··· + 2a + 1
a
9
=
u
4
+ u
2
+ 1
u
6
2u
4
+ u
2
a
8
=
3u
14
+ u
13
+ ··· + a + 6
2u
14
2u
13
+ ··· au 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
12
20u
10
+ 4u
9
+ 36u
8
16u
7
20u
6
+ 20u
5
12u
4
4u
3
+ 12u
2
4u + 6
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
15
+ 13u
14
+ ··· + 8u 1)
2
c
2
, c
11
u
30
+ 13u
29
+ ··· 198u 23
c
3
, c
8
, c
12
u
30
u
29
+ ··· + 356u + 599
c
4
(u 1)
30
c
5
, c
6
, c
10
(u
15
+ u
14
+ ··· 2u 1)
2
c
7
u
30
+ u
29
+ ··· + 48394u 9199
c
9
(u
15
3u
14
+ ··· + 4u
2
1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
15
29y
14
+ ··· + 8y 1)
2
c
2
, c
11
y
30
5y
29
+ ··· + 7808y + 529
c
3
, c
8
, c
12
y
30
+ 39y
29
+ ··· + 402780y + 358801
c
4
(y 1)
30
c
5
, c
6
, c
10
(y
15
13y
14
+ ··· + 8y 1)
2
c
7
y
30
+ 27y
29
+ ··· 796940y + 84621601
c
9
(y
15
+ 7y
14
+ ··· + 8y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.897290 + 0.288232I
a = 0.503485 0.559425I
b = 0.416988 0.227974I
0.184105 0.159076I 5.79403 0.85194I
u = 0.897290 + 0.288232I
a = 0.347272 + 0.365622I
b = 0.290527 + 0.647087I
0.184105 0.159076I 5.79403 0.85194I
u = 0.897290 0.288232I
a = 0.503485 + 0.559425I
b = 0.416988 + 0.227974I
0.184105 + 0.159076I 5.79403 + 0.85194I
u = 0.897290 0.288232I
a = 0.347272 0.365622I
b = 0.290527 0.647087I
0.184105 + 0.159076I 5.79403 + 0.85194I
u = 0.200931 + 0.760138I
a = 0.347773 0.900603I
b = 0.695074 + 0.555297I
2.05700 + 4.11725I 2.59688 3.71929I
u = 0.200931 + 0.760138I
a = 0.908735 + 0.674195I
b = 0.754461 0.083397I
2.05700 + 4.11725I 2.59688 3.71929I
u = 0.200931 0.760138I
a = 0.347773 + 0.900603I
b = 0.695074 0.555297I
2.05700 4.11725I 2.59688 + 3.71929I
u = 0.200931 0.760138I
a = 0.908735 0.674195I
b = 0.754461 + 0.083397I
2.05700 4.11725I 2.59688 + 3.71929I
u = 1.224710 + 0.250895I
a = 2.08574 + 1.21971I
b = 3.86630 0.92593I
5.28079 1.64925I 1.60633 + 0.16522I
u = 1.224710 + 0.250895I
a = 2.88112 1.34627I
b = 2.86043 + 0.97048I
5.28079 1.64925I 1.60633 + 0.16522I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.224710 0.250895I
a = 2.08574 1.21971I
b = 3.86630 + 0.92593I
5.28079 + 1.64925I 1.60633 0.16522I
u = 1.224710 0.250895I
a = 2.88112 + 1.34627I
b = 2.86043 0.97048I
5.28079 + 1.64925I 1.60633 0.16522I
u = 0.074720 + 0.708028I
a = 0.611710 + 0.650680I
b = 1.60975 0.81488I
8.75399 1.81248I 1.85619 + 4.33913I
u = 0.074720 + 0.708028I
a = 0.90095 2.36865I
b = 0.506407 0.384488I
8.75399 1.81248I 1.85619 + 4.33913I
u = 0.074720 0.708028I
a = 0.611710 0.650680I
b = 1.60975 + 0.81488I
8.75399 + 1.81248I 1.85619 4.33913I
u = 0.074720 0.708028I
a = 0.90095 + 2.36865I
b = 0.506407 + 0.384488I
8.75399 + 1.81248I 1.85619 4.33913I
u = 1.30332
a = 1.64310 + 0.40643I
b = 2.14148 + 0.52971I
1.05425 9.03940
u = 1.30332
a = 1.64310 0.40643I
b = 2.14148 0.52971I
1.05425 9.03940
u = 1.314200 + 0.295245I
a = 0.346248 + 1.242720I
b = 1.35266 2.62536I
4.39644 + 5.45324I 3.99532 6.35130I
u = 1.314200 + 0.295245I
a = 0.55258 + 2.12183I
b = 0.82195 1.53095I
4.39644 + 5.45324I 3.99532 6.35130I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.314200 0.295245I
a = 0.346248 1.242720I
b = 1.35266 + 2.62536I
4.39644 5.45324I 3.99532 + 6.35130I
u = 1.314200 0.295245I
a = 0.55258 2.12183I
b = 0.82195 + 1.53095I
4.39644 5.45324I 3.99532 + 6.35130I
u = 1.378140 + 0.316043I
a = 1.70922 0.18417I
b = 2.62416 0.47024I
2.93922 8.01682I 7.04132 + 4.89679I
u = 1.378140 + 0.316043I
a = 1.88334 + 0.09068I
b = 2.41375 + 0.28637I
2.93922 8.01682I 7.04132 + 4.89679I
u = 1.378140 0.316043I
a = 1.70922 + 0.18417I
b = 2.62416 + 0.47024I
2.93922 + 8.01682I 7.04132 4.89679I
u = 1.378140 0.316043I
a = 1.88334 0.09068I
b = 2.41375 0.28637I
2.93922 + 8.01682I 7.04132 4.89679I
u = 1.43385
a = 1.16104
b = 1.90536
7.22226 9.97710
u = 1.43385
a = 1.32884
b = 1.66477
7.22226 9.97710
u = 0.339181
a = 2.02164 + 3.01582I
b = 0.685704 1.022910I
5.98181 8.62820
u = 0.339181
a = 2.02164 3.01582I
b = 0.685704 + 1.022910I
5.98181 8.62820
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
15
+ 13u
14
+ ··· + 8u 1)
2
)(u
16
14u
15
+ ··· 41u + 4)
· (u
32
17u
31
+ ··· 308u + 178)
c
2
, c
11
(u
16
+ 2u
15
+ ··· + 2u + 1)(u
30
+ 13u
29
+ ··· 198u 23)
· (u
32
+ 2u
31
+ ··· 11u + 1)
c
3
, c
8
(u
16
+ 6u
14
+ ··· + 4u + 1)(u
30
u
29
+ ··· + 356u + 599)
· (u
32
+ 23u
30
+ ··· + u 1)
c
4
((u 1)
30
)(u
16
+ 2u
15
+ ··· + 2u + 1)
· (u
32
+ 29u
31
+ ··· + 393216u + 32768)
c
5
, c
6
((u
15
+ u
14
+ ··· 2u 1)
2
)(u
16
2u
15
+ ··· + 3u + 2)
· (u
32
5u
31
+ ··· 8u 2)
c
7
(u
16
u
15
+ ··· + u
2
+ 1)(u
30
+ u
29
+ ··· + 48394u 9199)
· (u
32
+ u
31
+ ··· + 221u 97)
c
9
((u
15
3u
14
+ ··· + 4u
2
1)
2
)(u
16
6u
15
+ ··· 7u + 2)
· (u
32
+ 15u
31
+ ··· + 964u + 86)
c
10
((u
15
+ u
14
+ ··· 2u 1)
2
)(u
16
+ 2u
15
+ ··· 3u + 2)
· (u
32
5u
31
+ ··· 8u 2)
c
12
(u
16
+ 6u
14
+ ··· 4u + 1)(u
30
u
29
+ ··· + 356u + 599)
· (u
32
+ 23u
30
+ ··· + u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
15
29y
14
+ ··· + 8y 1)
2
)(y
16
16y
15
+ ··· 97y + 16)
· (y
32
33y
31
+ ··· 1623172y + 31684)
c
2
, c
11
(y
16
4y
15
+ ··· 8y + 1)(y
30
5y
29
+ ··· + 7808y + 529)
· (y
32
+ 14y
31
+ ··· 73y + 1)
c
3
, c
8
, c
12
(y
16
+ 12y
15
+ ··· 10y + 1)(y
30
+ 39y
29
+ ··· + 402780y + 358801)
· (y
32
+ 46y
31
+ ··· + 13y + 1)
c
4
((y 1)
30
)(y
16
8y
15
+ ··· 4y + 1)
· (y
32
9y
31
+ ··· 5368709120y + 1073741824)
c
5
, c
6
, c
10
((y
15
13y
14
+ ··· + 8y 1)
2
)(y
16
16y
15
+ ··· y + 4)
· (y
32
29y
31
+ ··· 60y + 4)
c
7
(y
16
+ 15y
15
+ ··· + 2y + 1)
· (y
30
+ 27y
29
+ ··· 796940y + 84621601)
· (y
32
+ 25y
31
+ ··· 27307y + 9409)
c
9
((y
15
+ 7y
14
+ ··· + 8y 1)
2
)(y
16
6y
14
+ ··· + 7y + 4)
· (y
32
+ 7y
31
+ ··· 138956y + 7396)
21