11a
29
(K11a
29
)
A knot diagram
1
Linearized knot diagam
5 1 10 2 9 3 11 4 6 8 7
Solving Sequence
1,5
2
3,9
6 7 10 4 8 11
c
1
c
2
c
5
c
6
c
9
c
4
c
8
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h4.99106 × 10
56
u
60
5.54013 × 10
56
u
59
+ ··· + 3.76009 × 10
57
b 3.71146 × 10
57
,
3.10364 × 10
57
u
60
+ 5.28988 × 10
57
u
59
+ ··· + 1.12803 × 10
58
a 3.91838 × 10
58
, u
61
3u
60
+ ··· 5u + 9i
I
u
2
= h3b + 2u 2, a + 1, u
2
+ u + 1i
I
u
3
= h3b 2u 1, a + u, u
2
+ u + 1i
* 3 irreducible components of dim
C
= 0, with total 65 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h4.99×10
56
u
60
5.54×10
56
u
59
+· · ·+3.76×10
57
b3.71×10
57
, 3.10×
10
57
u
60
+5.29×10
57
u
59
+· · ·+1.13×10
58
a3.92×10
58
, u
61
3u
60
+· · ·5u+9i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u
2
a
3
=
u
2
+ 1
u
2
a
9
=
0.275139u
60
0.468950u
59
+ ··· + 4.47285u + 3.47366
0.132738u
60
+ 0.147340u
59
+ ··· 4.15830u + 0.987068
a
6
=
1.11106u
60
2.61700u
59
+ ··· + 5.79571u 5.77693
0.595122u
60
+ 2.16473u
59
+ ··· + 2.14031u + 12.7347
a
7
=
0.302897u
60
0.758393u
59
+ ··· + 2.22294u 1.51536
0.161015u
60
+ 0.635343u
59
+ ··· + 2.73852u + 5.59822
a
10
=
0.327154u
60
0.474281u
59
+ ··· + 10.9343u + 2.92153
0.507182u
60
+ 1.24714u
59
+ ··· 4.55730u + 2.94439
a
4
=
u
u
3
+ u
a
8
=
0.849189u
60
1.82096u
59
+ ··· + 7.07757u + 2.72833
0.575418u
60
+ 1.58164u
59
+ ··· 3.44728u + 5.06368
a
11
=
0.289728u
60
+ 0.616900u
59
+ ··· + 6.66475u + 2.26231
0.0110587u
60
0.250053u
59
+ ··· 0.805308u 1.89157
a
11
=
0.289728u
60
+ 0.616900u
59
+ ··· + 6.66475u + 2.26231
0.0110587u
60
0.250053u
59
+ ··· 0.805308u 1.89157
(ii) Obstruction class = 1
(iii) Cusp Shapes = 1.51281u
60
3.43786u
59
+ ··· + 30.9340u 2.78257
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
61
+ 3u
60
+ ··· 5u 9
c
2
u
61
+ 21u
60
+ ··· 1505u 81
c
3
u
61
3u
60
+ ··· 1872u + 432
c
5
, c
9
u
61
3u
60
+ ··· + 3u 1
c
6
9(9u
61
30u
60
+ ··· + 293350u 68375)
c
7
, c
10
, c
11
u
61
3u
60
+ ··· + 3u 1
c
8
9(9u
61
+ 57u
60
+ ··· 10059u 2801)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
61
+ 21y
60
+ ··· 1505y 81
c
2
y
61
+ 41y
60
+ ··· + 37363y 6561
c
3
y
61
25y
60
+ ··· + 1897344y 186624
c
5
, c
9
y
61
39y
60
+ ··· 13y 1
c
6
81(81y
61
+ 3546y
60
+ ··· 9.00135 × 10
10
y 4.67514 × 10
9
)
c
7
, c
10
, c
11
y
61
+ 61y
60
+ ··· 13y 1
c
8
81(81y
61
2259y
60
+ ··· + 1.36190 × 10
8
y 7845601)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.627295 + 0.781178I
a = 0.779915 + 0.938460I
b = 0.133545 0.868985I
0.680796 0.488788I 8.37952 + 2.33314I
u = 0.627295 0.781178I
a = 0.779915 0.938460I
b = 0.133545 + 0.868985I
0.680796 + 0.488788I 8.37952 2.33314I
u = 0.909616 + 0.468593I
a = 1.059460 0.502224I
b = 1.43290 0.75784I
4.73566 1.67644I 12.36420 + 3.79278I
u = 0.909616 0.468593I
a = 1.059460 + 0.502224I
b = 1.43290 + 0.75784I
4.73566 + 1.67644I 12.36420 3.79278I
u = 0.823832 + 0.641756I
a = 0.493457 0.867597I
b = 0.171205 + 0.613586I
8.40390 4.08328I 6.32782 + 2.17005I
u = 0.823832 0.641756I
a = 0.493457 + 0.867597I
b = 0.171205 0.613586I
8.40390 + 4.08328I 6.32782 2.17005I
u = 0.084826 + 0.951096I
a = 0.768701 0.355562I
b = 0.926574 0.590119I
3.04092 0.55487I 5.63926 + 1.54785I
u = 0.084826 0.951096I
a = 0.768701 + 0.355562I
b = 0.926574 + 0.590119I
3.04092 + 0.55487I 5.63926 1.54785I
u = 0.745313 + 0.734834I
a = 0.69455 + 1.28009I
b = 1.59810 + 0.54771I
5.33189 0.62357I 6.90078 + 0.I
u = 0.745313 0.734834I
a = 0.69455 1.28009I
b = 1.59810 0.54771I
5.33189 + 0.62357I 6.90078 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.592571 + 0.868966I
a = 0.643580 + 0.821069I
b = 3.23298 + 1.50658I
2.11702 2.33942I 10.06681 7.06956I
u = 0.592571 0.868966I
a = 0.643580 0.821069I
b = 3.23298 1.50658I
2.11702 + 2.33942I 10.06681 + 7.06956I
u = 0.869096 + 0.612382I
a = 0.840207 1.089160I
b = 1.66751 0.62148I
5.98865 5.78069I 6.25624 + 4.52312I
u = 0.869096 0.612382I
a = 0.840207 + 1.089160I
b = 1.66751 + 0.62148I
5.98865 + 5.78069I 6.25624 4.52312I
u = 0.510457 + 0.948104I
a = 0.221723 0.095163I
b = 0.197711 0.400616I
0.17638 2.59422I 0
u = 0.510457 0.948104I
a = 0.221723 + 0.095163I
b = 0.197711 + 0.400616I
0.17638 + 2.59422I 0
u = 0.642563 + 0.936820I
a = 0.882906 0.630814I
b = 0.433541 + 0.916219I
0.17275 + 5.47510I 0
u = 0.642563 0.936820I
a = 0.882906 + 0.630814I
b = 0.433541 0.916219I
0.17275 5.47510I 0
u = 0.318467 + 0.797607I
a = 1.256550 + 0.401471I
b = 1.24853 + 0.72368I
0.53178 + 3.55128I 1.97116 + 0.53822I
u = 0.318467 0.797607I
a = 1.256550 0.401471I
b = 1.24853 0.72368I
0.53178 3.55128I 1.97116 0.53822I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.541792 + 0.666328I
a = 0.443464 0.720747I
b = 1.80634 + 0.47653I
6.77383 1.39600I 1.94563 + 3.09396I
u = 0.541792 0.666328I
a = 0.443464 + 0.720747I
b = 1.80634 0.47653I
6.77383 + 1.39600I 1.94563 3.09396I
u = 0.105247 + 1.136650I
a = 0.528868 + 0.217428I
b = 0.733637 + 0.607458I
1.89473 3.39241I 0
u = 0.105247 1.136650I
a = 0.528868 0.217428I
b = 0.733637 0.607458I
1.89473 + 3.39241I 0
u = 0.430215 + 0.742658I
a = 0.120777 + 0.430167I
b = 0.656197 0.151023I
0.53014 1.40693I 5.62347 + 5.20497I
u = 0.430215 0.742658I
a = 0.120777 0.430167I
b = 0.656197 + 0.151023I
0.53014 + 1.40693I 5.62347 5.20497I
u = 0.769003 + 0.845851I
a = 1.196660 0.497619I
b = 2.31477 0.56610I
11.92950 + 1.96301I 0
u = 0.769003 0.845851I
a = 1.196660 + 0.497619I
b = 2.31477 + 0.56610I
11.92950 1.96301I 0
u = 0.035967 + 0.854814I
a = 0.563353 + 0.959661I
b = 0.057385 0.568156I
0.13425 1.52358I 1.52672 + 2.12846I
u = 0.035967 0.854814I
a = 0.563353 0.959661I
b = 0.057385 + 0.568156I
0.13425 + 1.52358I 1.52672 2.12846I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.757313 + 0.895285I
a = 0.456980 1.227760I
b = 1.41876 0.53071I
11.77860 + 3.79247I 0
u = 0.757313 0.895285I
a = 0.456980 + 1.227760I
b = 1.41876 + 0.53071I
11.77860 3.79247I 0
u = 1.008640 + 0.609371I
a = 0.801725 + 0.933371I
b = 1.70920 + 0.69780I
13.1909 9.2873I 0
u = 1.008640 0.609371I
a = 0.801725 0.933371I
b = 1.70920 0.69780I
13.1909 + 9.2873I 0
u = 0.699249 + 0.967906I
a = 1.098020 + 0.664109I
b = 2.41658 + 0.73364I
4.62247 + 6.13062I 0
u = 0.699249 0.967906I
a = 1.098020 0.664109I
b = 2.41658 0.73364I
4.62247 6.13062I 0
u = 0.312667 + 0.736573I
a = 0.52054 1.36729I
b = 0.76632 2.47025I
6.16730 1.44795I 6.66665 + 4.19132I
u = 0.312667 0.736573I
a = 0.52054 + 1.36729I
b = 0.76632 + 2.47025I
6.16730 + 1.44795I 6.66665 4.19132I
u = 0.141017 + 1.196910I
a = 0.409903 0.838432I
b = 0.617600 + 0.023876I
1.00556 4.64477I 0
u = 0.141017 1.196910I
a = 0.409903 + 0.838432I
b = 0.617600 0.023876I
1.00556 + 4.64477I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.657124 + 1.017530I
a = 0.322773 + 0.051413I
b = 0.113526 + 0.695926I
5.54533 3.61915I 0
u = 0.657124 1.017530I
a = 0.322773 0.051413I
b = 0.113526 0.695926I
5.54533 + 3.61915I 0
u = 0.711728 + 1.036980I
a = 0.745027 + 0.504667I
b = 0.521745 0.778989I
7.21133 + 9.84159I 0
u = 0.711728 1.036980I
a = 0.745027 0.504667I
b = 0.521745 + 0.778989I
7.21133 9.84159I 0
u = 0.602854 + 0.415244I
a = 0.754289 0.133208I
b = 0.631853 + 0.712874I
6.86257 1.40524I 4.78353 + 3.77219I
u = 0.602854 0.415244I
a = 0.754289 + 0.133208I
b = 0.631853 0.712874I
6.86257 + 1.40524I 4.78353 3.77219I
u = 0.717435 + 1.062890I
a = 0.966509 0.663460I
b = 2.53101 0.75950I
4.62032 + 11.67140I 0
u = 0.717435 1.062890I
a = 0.966509 + 0.663460I
b = 2.53101 + 0.75950I
4.62032 11.67140I 0
u = 0.736476 + 1.080940I
a = 0.590572 0.661323I
b = 2.05889 0.64346I
2.98645 4.33485I 0
u = 0.736476 1.080940I
a = 0.590572 + 0.661323I
b = 2.05889 + 0.64346I
2.98645 + 4.33485I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.762794 + 1.122440I
a = 0.897935 + 0.616455I
b = 2.61369 + 0.74270I
11.5735 + 15.7181I 0
u = 0.762794 1.122440I
a = 0.897935 0.616455I
b = 2.61369 0.74270I
11.5735 15.7181I 0
u = 1.265180 + 0.491129I
a = 0.862536 + 0.296472I
b = 1.81507 + 0.52494I
11.53690 2.05353I 0
u = 1.265180 0.491129I
a = 0.862536 0.296472I
b = 1.81507 0.52494I
11.53690 + 2.05353I 0
u = 0.23194 + 1.39578I
a = 0.368146 + 0.755457I
b = 0.844858 + 0.405684I
4.72211 7.08106I 0
u = 0.23194 1.39578I
a = 0.368146 0.755457I
b = 0.844858 0.405684I
4.72211 + 7.08106I 0
u = 0.91950 + 1.21328I
a = 0.561522 + 0.564425I
b = 1.88530 + 0.80608I
9.38339 5.57107I 0
u = 0.91950 1.21328I
a = 0.561522 0.564425I
b = 1.88530 0.80608I
9.38339 + 5.57107I 0
u = 0.408049
a = 2.87652
b = 0.0942688
2.58372 0.156380
u = 0.159087 + 0.350060I
a = 0.83224 + 1.41611I
b = 0.161959 0.489660I
0.145306 1.198500I 1.41714 + 6.05642I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.159087 0.350060I
a = 0.83224 1.41611I
b = 0.161959 + 0.489660I
0.145306 + 1.198500I 1.41714 6.05642I
11
II. I
u
2
= h3b + 2u 2, a + 1, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
9
=
1
2
3
u +
2
3
a
6
=
u
1
3
u
2
3
a
7
=
4
3
u
1
3
u 1
a
10
=
u 2
u + 1
a
4
=
u
u + 1
a
8
=
2
3
u
2
3
u
a
11
=
1
3
u
2
3
u
a
11
=
1
3
u
2
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u +
28
3
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
, c
11
u
2
+ u + 1
c
3
u
2
c
4
, c
7
, c
9
u
2
u + 1
c
6
, c
8
3(3u
2
+ 3u + 1)
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
9
c
10
, c
11
y
2
+ y + 1
c
3
y
2
c
6
, c
8
9(9y
2
3y + 1)
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 1.000000 0.577350I
4.05977I 5.33333 + 6.92820I
u = 0.500000 0.866025I
a = 1.00000
b = 1.000000 + 0.577350I
4.05977I 5.33333 6.92820I
15
III. I
u
3
= h3b 2u 1, a + u, u
2
+ u + 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
2
=
1
u + 1
a
3
=
u
u + 1
a
9
=
u
2
3
u +
1
3
a
6
=
1
4
3
u
1
3
a
7
=
1
3
u +
1
3
u
a
10
=
2u 1
u + 2
a
4
=
u
u + 1
a
8
=
5
3
u
1
3
u + 1
a
11
=
2
3
u +
2
3
u + 1
a
11
=
2
3
u +
2
3
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
3
u +
5
3
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
10
, c
11
u
2
+ u + 1
c
3
u
2
c
4
, c
7
, c
9
u
2
u + 1
c
6
3(3u
2
+ 1)
c
8
3(3u
2
3u + 1)
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
9
c
10
, c
11
y
2
+ y + 1
c
3
y
2
c
6
9(3y + 1)
2
c
8
9(9y
2
3y + 1)
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 0.866025I
b = 0.577350I
0 0.33333 + 2.30940I
u = 0.500000 0.866025I
a = 0.500000 + 0.866025I
b = 0.577350I
0 0.33333 2.30940I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u + 1)
2
)(u
61
+ 3u
60
+ ··· 5u 9)
c
2
((u
2
+ u + 1)
2
)(u
61
+ 21u
60
+ ··· 1505u 81)
c
3
u
4
(u
61
3u
60
+ ··· 1872u + 432)
c
4
((u
2
u + 1)
2
)(u
61
+ 3u
60
+ ··· 5u 9)
c
5
((u
2
+ u + 1)
2
)(u
61
3u
60
+ ··· + 3u 1)
c
6
81(3u
2
+ 1)(3u
2
+ 3u + 1)(9u
61
30u
60
+ ··· + 293350u 68375)
c
7
((u
2
u + 1)
2
)(u
61
3u
60
+ ··· + 3u 1)
c
8
81(3u
2
3u + 1)(3u
2
+ 3u + 1)(9u
61
+ 57u
60
+ ··· 10059u 2801)
c
9
((u
2
u + 1)
2
)(u
61
3u
60
+ ··· + 3u 1)
c
10
, c
11
((u
2
+ u + 1)
2
)(u
61
3u
60
+ ··· + 3u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
2
+ y + 1)
2
)(y
61
+ 21y
60
+ ··· 1505y 81)
c
2
((y
2
+ y + 1)
2
)(y
61
+ 41y
60
+ ··· + 37363y 6561)
c
3
y
4
(y
61
25y
60
+ ··· + 1897344y 186624)
c
5
, c
9
((y
2
+ y + 1)
2
)(y
61
39y
60
+ ··· 13y 1)
c
6
6561(3y + 1)
2
(9y
2
3y + 1)
· (81y
61
+ 3546y
60
+ ··· 90013453750y 4675140625)
c
7
, c
10
, c
11
((y
2
+ y + 1)
2
)(y
61
+ 61y
60
+ ··· 13y 1)
c
8
6561(9y
2
3y + 1)
2
· (81y
61
2259y
60
+ ··· + 136190379y 7845601)
21