12n
0703
(K12n
0703
)
A knot diagram
1
Linearized knot diagam
4 6 7 8 9 10 4 12 2 3 9 7
Solving Sequence
4,8 5,12
9 6 7 1 2 3 11 10
c
4
c
8
c
5
c
7
c
12
c
1
c
3
c
11
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.60229 × 10
96
u
54
+ 2.91450 × 10
96
u
53
+ ··· + 1.26296 × 10
98
b 3.52131 × 10
97
,
1.21366 × 10
98
u
54
+ 2.79487 × 10
98
u
53
+ ··· + 1.32611 × 10
99
a + 1.28362 × 10
100
, u
55
+ 2u
54
+ ··· + 10u 21i
I
u
2
= h−u
14
2u
13
+ 8u
12
+ 16u
11
24u
10
45u
9
+ 38u
8
+ 56u
7
34u
6
29u
5
+ 9u
4
+ 4u
3
+ 9u
2
+ b + u + 1,
2u
14
2u
13
+ ··· + a + 5,
u
15
+ 3u
14
6u
13
24u
12
+ 8u
11
+ 69u
10
+ 7u
9
94u
8
22u
7
+ 63u
6
+ 20u
5
13u
4
14u
3
10u
2
1i
I
u
3
= hb
2
+ b a, a
2
+ a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 74 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.60×10
96
u
54
+2.91×10
96
u
53
+· · ·+1.26×10
98
b3.52×10
97
, 1.21×10
98
u
54
+
2.79 × 10
98
u
53
+ · · · + 1.33 × 10
99
a + 1.28 × 10
100
, u
55
+ 2u
54
+ · · · + 10u 21i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
12
=
0.0915205u
54
0.210758u
53
+ ··· 20.1374u 9.67965
0.0126868u
54
0.0230768u
53
+ ··· + 4.47039u + 0.278815
a
9
=
0.0149847u
54
+ 0.0198107u
53
+ ··· + 7.10770u + 2.36249
0.0166454u
54
+ 0.0346016u
53
+ ··· + 4.03014u + 0.137160
a
6
=
0.110827u
54
0.258163u
53
+ ··· 29.3739u 6.63387
0.0161463u
54
+ 0.0324579u
53
+ ··· + 0.912590u 0.403284
a
7
=
u
u
a
1
=
0.100369u
54
0.231157u
53
+ ··· 21.4928u 10.3099
0.0215354u
54
0.0434760u
53
+ ··· + 3.11502u 0.351471
a
2
=
0.0788337u
54
0.187681u
53
+ ··· 24.6078u 9.95846
0.0215354u
54
0.0434760u
53
+ ··· + 3.11502u 0.351471
a
3
=
u
2
+ 1
u
2
a
11
=
0.112884u
54
+ 0.258117u
53
+ ··· + 33.6265u + 7.39414
0.00613650u
54
0.00991033u
53
+ ··· + 2.47671u + 1.02640
a
10
=
0.115245u
54
+ 0.257703u
53
+ ··· + 28.9349u + 5.85332
0.00189354u
54
0.00106986u
53
+ ··· + 2.46134u + 1.14169
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0893522u
54
+ 0.122027u
53
+ ··· 35.4397u 10.8689
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
55
+ 7u
54
+ ··· 107283u + 5687
c
2
u
55
2u
54
+ ··· + 11u + 1
c
3
, c
4
, c
7
u
55
+ 2u
54
+ ··· + 10u 21
c
5
u
55
+ u
54
+ ··· 11533u 4223
c
6
u
55
+ 2u
54
+ ··· 28u + 47
c
8
, c
11
u
55
+ 3u
54
+ ··· 23u 7
c
9
u
55
5u
53
+ ··· + 136u 48
c
10
u
55
+ 17u
53
+ ··· + 586u 227
c
12
u
55
+ u
54
+ ··· 5060u 2767
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
55
99y
54
+ ··· + 1442878657y 32341969
c
2
y
55
+ 2y
54
+ ··· + 75y 1
c
3
, c
4
, c
7
y
55
76y
54
+ ··· + 6862y 441
c
5
y
55
+ 29y
54
+ ··· 23722333y 17833729
c
6
y
55
12y
54
+ ··· + 71378y 2209
c
8
, c
11
y
55
+ 5y
54
+ ··· + 2125y 49
c
9
y
55
10y
54
+ ··· + 63808y 2304
c
10
y
55
+ 34y
54
+ ··· 605918y 51529
c
12
y
55
107y
54
+ ··· 5436606y 7656289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.843879 + 0.544766I
a = 1.298890 0.127602I
b = 1.156400 + 0.474581I
3.16540 + 3.11054I 14.1931 9.0876I
u = 0.843879 0.544766I
a = 1.298890 + 0.127602I
b = 1.156400 0.474581I
3.16540 3.11054I 14.1931 + 9.0876I
u = 0.948829 + 0.204011I
a = 0.942145 0.845434I
b = 0.842082 0.113281I
2.44958 4.10717I 10.9496 + 9.7884I
u = 0.948829 0.204011I
a = 0.942145 + 0.845434I
b = 0.842082 + 0.113281I
2.44958 + 4.10717I 10.9496 9.7884I
u = 0.037941 + 1.123190I
a = 0.309131 0.625328I
b = 0.250371 0.018761I
1.10227 + 4.51894I 0
u = 0.037941 1.123190I
a = 0.309131 + 0.625328I
b = 0.250371 + 0.018761I
1.10227 4.51894I 0
u = 1.090260 + 0.307766I
a = 0.153294 0.936767I
b = 0.727540 + 0.848969I
2.42178 2.55675I 0
u = 1.090260 0.307766I
a = 0.153294 + 0.936767I
b = 0.727540 0.848969I
2.42178 + 2.55675I 0
u = 0.792699 + 0.232053I
a = 1.39064 0.28620I
b = 1.170460 + 0.185340I
4.12045 1.98383I 18.7598 + 3.0273I
u = 0.792699 0.232053I
a = 1.39064 + 0.28620I
b = 1.170460 0.185340I
4.12045 + 1.98383I 18.7598 3.0273I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.150340 + 0.254911I
a = 0.425744 + 0.326070I
b = 1.380530 0.225219I
1.61488 + 0.87614I 0
u = 1.150340 0.254911I
a = 0.425744 0.326070I
b = 1.380530 + 0.225219I
1.61488 0.87614I 0
u = 1.124160 + 0.427568I
a = 0.599114 + 0.157148I
b = 0.573870 + 0.680404I
2.81458 + 0.86949I 0
u = 1.124160 0.427568I
a = 0.599114 0.157148I
b = 0.573870 0.680404I
2.81458 0.86949I 0
u = 1.213070 + 0.090501I
a = 0.454982 0.314837I
b = 0.627652 + 1.153370I
3.98050 5.51374I 0
u = 1.213070 0.090501I
a = 0.454982 + 0.314837I
b = 0.627652 1.153370I
3.98050 + 5.51374I 0
u = 0.742164 + 0.235850I
a = 0.299105 + 1.265320I
b = 0.453999 + 1.033190I
2.30362 + 3.30557I 2.87153 3.56943I
u = 0.742164 0.235850I
a = 0.299105 1.265320I
b = 0.453999 1.033190I
2.30362 3.30557I 2.87153 + 3.56943I
u = 1.301400 + 0.156837I
a = 0.251488 + 1.049080I
b = 0.057943 + 0.886147I
1.28653 3.07187I 0
u = 1.301400 0.156837I
a = 0.251488 1.049080I
b = 0.057943 0.886147I
1.28653 + 3.07187I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.078130 + 0.779868I
a = 0.937931 + 0.091074I
b = 1.219160 + 0.105261I
4.41965 10.75660I 0
u = 1.078130 0.779868I
a = 0.937931 0.091074I
b = 1.219160 0.105261I
4.41965 + 10.75660I 0
u = 1.062820 + 0.800842I
a = 0.700193 0.073534I
b = 0.941274 + 0.263175I
4.22067 + 1.89516I 0
u = 1.062820 0.800842I
a = 0.700193 + 0.073534I
b = 0.941274 0.263175I
4.22067 1.89516I 0
u = 0.181860 + 0.623471I
a = 1.072740 0.311332I
b = 0.846917 + 0.444278I
1.18559 + 2.23449I 0.71696 3.13365I
u = 0.181860 0.623471I
a = 1.072740 + 0.311332I
b = 0.846917 0.444278I
1.18559 2.23449I 0.71696 + 3.13365I
u = 1.344180 + 0.263000I
a = 0.033573 0.599843I
b = 0.307839 + 0.697502I
3.77877 5.48694I 0
u = 1.344180 0.263000I
a = 0.033573 + 0.599843I
b = 0.307839 0.697502I
3.77877 + 5.48694I 0
u = 0.554000
a = 0.302766
b = 0.620774
1.07952 9.55000
u = 0.003980 + 0.413867I
a = 1.88223 + 0.89459I
b = 0.131386 + 0.662442I
0.54485 + 2.00796I 2.63887 4.05218I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.003980 0.413867I
a = 1.88223 0.89459I
b = 0.131386 0.662442I
0.54485 2.00796I 2.63887 + 4.05218I
u = 0.183724 + 0.367833I
a = 0.58192 + 1.74816I
b = 0.299016 + 0.515843I
1.46466 + 0.28580I 10.27103 1.57830I
u = 0.183724 0.367833I
a = 0.58192 1.74816I
b = 0.299016 0.515843I
1.46466 0.28580I 10.27103 + 1.57830I
u = 1.65391
a = 0.249685
b = 1.86192
9.07692 0
u = 1.66786 + 0.09211I
a = 0.751228 0.535995I
b = 2.66084 0.38730I
12.75570 + 3.35483I 0
u = 1.66786 0.09211I
a = 0.751228 + 0.535995I
b = 2.66084 + 0.38730I
12.75570 3.35483I 0
u = 1.72061 + 0.05114I
a = 0.679921 0.682618I
b = 2.27477 0.94586I
12.03510 + 5.10367I 0
u = 1.72061 0.05114I
a = 0.679921 + 0.682618I
b = 2.27477 + 0.94586I
12.03510 5.10367I 0
u = 0.145583 + 0.234667I
a = 2.42652 + 0.00455I
b = 0.11826 + 1.67678I
0.55411 + 4.57385I 7.8171 13.5503I
u = 0.145583 0.234667I
a = 2.42652 0.00455I
b = 0.11826 1.67678I
0.55411 4.57385I 7.8171 + 13.5503I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.266031 + 0.033873I
a = 0.13429 + 5.34542I
b = 0.444871 0.069784I
3.84010 + 3.87958I 14.7891 1.0481I
u = 0.266031 0.033873I
a = 0.13429 5.34542I
b = 0.444871 + 0.069784I
3.84010 3.87958I 14.7891 + 1.0481I
u = 1.73181 + 0.18076I
a = 0.720894 0.731345I
b = 2.16250 0.49231I
12.24970 6.15405I 0
u = 1.73181 0.18076I
a = 0.720894 + 0.731345I
b = 2.16250 + 0.49231I
12.24970 + 6.15405I 0
u = 1.77155 + 0.23587I
a = 0.696419 + 0.603643I
b = 2.34613 + 0.51535I
14.1664 + 14.9969I 0
u = 1.77155 0.23587I
a = 0.696419 0.603643I
b = 2.34613 0.51535I
14.1664 14.9969I 0
u = 1.78772 + 0.04019I
a = 0.733763 0.585348I
b = 2.15718 0.56893I
15.0134 + 6.2911I 0
u = 1.78772 0.04019I
a = 0.733763 + 0.585348I
b = 2.15718 + 0.56893I
15.0134 6.2911I 0
u = 1.77789 + 0.25574I
a = 0.657004 + 0.451249I
b = 2.28450 + 0.38651I
13.8622 6.3433I 0
u = 1.77789 0.25574I
a = 0.657004 0.451249I
b = 2.28450 0.38651I
13.8622 + 6.3433I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.79768 + 0.03453I
a = 0.527842 0.629408I
b = 1.97284 0.48816I
13.39870 + 1.16047I 0
u = 1.79768 0.03453I
a = 0.527842 + 0.629408I
b = 1.97284 + 0.48816I
13.39870 1.16047I 0
u = 1.82600 + 0.05971I
a = 0.823032 0.428595I
b = 2.11304 0.47973I
14.0479 3.0438I 0
u = 1.82600 0.05971I
a = 0.823032 + 0.428595I
b = 2.11304 + 0.47973I
14.0479 + 3.0438I 0
u = 2.00544
a = 0.242799
b = 1.02879
7.47069 0
10
II. I
u
2
=
h−u
14
2u
13
+· · ·+b+1, 2u
14
2u
13
+· · ·+a+5, u
15
+3u
14
+· · ·10u
2
1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
12
=
2u
14
+ 2u
13
+ ··· u 5
u
14
+ 2u
13
+ ··· u 1
a
9
=
4u
14
+ 9u
13
+ ··· 16u 3
10u
14
+ 17u
13
+ ··· + 5u 7
a
6
=
5u
14
+ 7u
13
+ ··· + 11u + 1
11u
14
+ 17u
13
+ ··· + 7u 8
a
7
=
u
u
a
1
=
8u
14
+ 10u
13
+ ··· 44u
2
8
7u
14
+ 10u
13
+ ··· 43u
2
4
a
2
=
u
14
9u
12
+ ··· u
2
4
7u
14
+ 10u
13
+ ··· 43u
2
4
a
3
=
u
2
+ 1
u
2
a
11
=
u
14
u
13
+ ··· 3u + 4
11u
14
16u
13
+ ··· 3u + 7
a
10
=
13u
14
+ 22u
13
+ ··· + 2u 6
15u
14
+ 25u
13
+ ··· + 9u 11
(ii) Obstruction class = 1
(iii) Cusp Shapes = 26u
14
+ 43u
13
216u
12
339u
11
+ 679u
10
+ 927u
9
1096u
8
1104u
7
+ 928u
6
+ 563u
5
215u
4
149u
3
204u
2
+ 32u 15
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
8u
14
+ ··· + 175u 43
c
2
u
15
3u
14
+ ··· + 2u
2
1
c
3
, c
4
u
15
+ 3u
14
+ ··· 10u
2
1
c
5
u
15
u
14
+ ··· u
2
1
c
6
u
15
+ u
13
+ ··· + u + 1
c
7
u
15
3u
14
+ ··· + 10u
2
+ 1
c
8
u
15
4u
14
+ ··· + u + 1
c
9
u
15
u
14
+ ··· + 27u 13
c
10
u
15
+ u
14
+ ··· 7u
2
1
c
11
u
15
+ 4u
14
+ ··· + u 1
c
12
u
15
2u
14
+ ··· + u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 2y
14
+ ··· 15815y 1849
c
2
y
15
3y
14
+ ··· + 4y 1
c
3
, c
4
, c
7
y
15
21y
14
+ ··· 20y 1
c
5
y
15
+ 3y
14
+ ··· 2y 1
c
6
y
15
+ 2y
14
+ ··· 3y 1
c
8
, c
11
y
15
+ 10y
14
+ ··· 3y 1
c
9
y
15
+ 5y
14
+ ··· + 131y 169
c
10
y
15
+ 15y
14
+ ··· 14y 1
c
12
y
15
+ 4y
14
+ ··· 37y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.860177 + 0.509187I
a = 1.021030 + 0.032473I
b = 0.879433 + 0.229899I
2.90182 2.03075I 10.03062 + 3.32590I
u = 0.860177 0.509187I
a = 1.021030 0.032473I
b = 0.879433 0.229899I
2.90182 + 2.03075I 10.03062 3.32590I
u = 1.320510 + 0.166851I
a = 0.090859 + 0.980403I
b = 0.175878 + 0.242981I
0.02472 + 2.27007I 5.66786 3.21825I
u = 1.320510 0.166851I
a = 0.090859 0.980403I
b = 0.175878 0.242981I
0.02472 2.27007I 5.66786 + 3.21825I
u = 1.347170 + 0.162955I
a = 0.160946 + 0.533747I
b = 0.22492 1.70994I
3.25137 + 6.18801I 3.54918 9.67050I
u = 1.347170 0.162955I
a = 0.160946 0.533747I
b = 0.22492 + 1.70994I
3.25137 6.18801I 3.54918 + 9.67050I
u = 1.42579 + 0.12850I
a = 0.070901 0.902606I
b = 0.289612 1.144560I
0.93716 + 5.50758I 6.26875 6.01276I
u = 1.42579 0.12850I
a = 0.070901 + 0.902606I
b = 0.289612 + 1.144560I
0.93716 5.50758I 6.26875 + 6.01276I
u = 0.206520 + 0.508428I
a = 0.860914 0.633967I
b = 0.115881 1.290910I
0.74360 3.97923I 4.72626 + 2.68613I
u = 0.206520 0.508428I
a = 0.860914 + 0.633967I
b = 0.115881 + 1.290910I
0.74360 + 3.97923I 4.72626 2.68613I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.071627 + 0.286359I
a = 4.47522 0.75940I
b = 0.277531 0.478076I
4.21917 3.97249I 6.01465 + 6.05055I
u = 0.071627 0.286359I
a = 4.47522 + 0.75940I
b = 0.277531 + 0.478076I
4.21917 + 3.97249I 6.01465 6.05055I
u = 1.72665 + 0.09660I
a = 0.721441 0.590290I
b = 2.34637 0.60996I
12.29270 + 4.25654I 10.89997 2.52513I
u = 1.72665 0.09660I
a = 0.721441 + 0.590290I
b = 2.34637 + 0.60996I
12.29270 4.25654I 10.89997 + 2.52513I
u = 1.90762
a = 0.189589
b = 1.07533
7.29848 9.25600
15
III. I
u
3
= hb
2
+ b a, a
2
+ a + 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
12
=
a
b
a
9
=
a + 1
ba + 1
a
6
=
b
ba + a
a
7
=
1
1
a
1
=
b + 2a
a
a
2
=
b + a
a
a
3
=
0
1
a
11
=
a + 1
ba a
a
10
=
a + 1
ba + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3ba a 9
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
2
u + 1)
2
c
2
u
4
2u
3
+ 2u
2
u + 1
c
3
, c
4
(u 1)
4
c
5
, c
6
u
4
u
3
u
2
+ u + 1
c
7
(u + 1)
4
c
9
u
4
c
10
, c
11
(u
2
+ u + 1)
2
c
12
u
4
+ 2u
2
+ 3u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
c
11
(y
2
+ y + 1)
2
c
2
y
4
+ 2y
2
+ 3y + 1
c
3
, c
4
, c
7
(y 1)
4
c
5
, c
6
y
4
3y
3
+ 5y
2
3y + 1
c
9
y
4
c
12
y
4
+ 4y
3
+ 6y
2
5y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 0.866025I
b = 0.070696 + 0.758745I
1.64493 + 2.02988I 10.57732 1.82047I
u = 1.00000
a = 0.500000 + 0.866025I
b = 1.070700 0.758745I
1.64493 + 2.02988I 4.92268 2.50966I
u = 1.00000
a = 0.500000 0.866025I
b = 0.070696 0.758745I
1.64493 2.02988I 10.57732 + 1.82047I
u = 1.00000
a = 0.500000 0.866025I
b = 1.070700 + 0.758745I
1.64493 2.02988I 4.92268 + 2.50966I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
2
)(u
15
8u
14
+ ··· + 175u 43)
· (u
55
+ 7u
54
+ ··· 107283u + 5687)
c
2
(u
4
2u
3
+ 2u
2
u + 1)(u
15
3u
14
+ ··· + 2u
2
1)
· (u
55
2u
54
+ ··· + 11u + 1)
c
3
, c
4
((u 1)
4
)(u
15
+ 3u
14
+ ··· 10u
2
1)(u
55
+ 2u
54
+ ··· + 10u 21)
c
5
(u
4
u
3
u
2
+ u + 1)(u
15
u
14
+ ··· u
2
1)
· (u
55
+ u
54
+ ··· 11533u 4223)
c
6
(u
4
u
3
u
2
+ u + 1)(u
15
+ u
13
+ ··· + u + 1)
· (u
55
+ 2u
54
+ ··· 28u + 47)
c
7
((u + 1)
4
)(u
15
3u
14
+ ··· + 10u
2
+ 1)(u
55
+ 2u
54
+ ··· + 10u 21)
c
8
((u
2
u + 1)
2
)(u
15
4u
14
+ ··· + u + 1)(u
55
+ 3u
54
+ ··· 23u 7)
c
9
u
4
(u
15
u
14
+ ··· + 27u 13)(u
55
5u
53
+ ··· + 136u 48)
c
10
((u
2
+ u + 1)
2
)(u
15
+ u
14
+ ··· 7u
2
1)
· (u
55
+ 17u
53
+ ··· + 586u 227)
c
11
((u
2
+ u + 1)
2
)(u
15
+ 4u
14
+ ··· + u 1)(u
55
+ 3u
54
+ ··· 23u 7)
c
12
(u
4
+ 2u
2
+ 3u + 1)(u
15
2u
14
+ ··· + u + 1)
· (u
55
+ u
54
+ ··· 5060u 2767)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
2
)(y
15
+ 2y
14
+ ··· 15815y 1849)
· (y
55
99y
54
+ ··· + 1442878657y 32341969)
c
2
(y
4
+ 2y
2
+ 3y + 1)(y
15
3y
14
+ ··· + 4y 1)
· (y
55
+ 2y
54
+ ··· + 75y 1)
c
3
, c
4
, c
7
((y 1)
4
)(y
15
21y
14
+ ··· 20y 1)
· (y
55
76y
54
+ ··· + 6862y 441)
c
5
(y
4
3y
3
+ 5y
2
3y + 1)(y
15
+ 3y
14
+ ··· 2y 1)
· (y
55
+ 29y
54
+ ··· 23722333y 17833729)
c
6
(y
4
3y
3
+ 5y
2
3y + 1)(y
15
+ 2y
14
+ ··· 3y 1)
· (y
55
12y
54
+ ··· + 71378y 2209)
c
8
, c
11
((y
2
+ y + 1)
2
)(y
15
+ 10y
14
+ ··· 3y 1)
· (y
55
+ 5y
54
+ ··· + 2125y 49)
c
9
y
4
(y
15
+ 5y
14
+ ··· + 131y 169)(y
55
10y
54
+ ··· + 63808y 2304)
c
10
((y
2
+ y + 1)
2
)(y
15
+ 15y
14
+ ··· 14y 1)
· (y
55
+ 34y
54
+ ··· 605918y 51529)
c
12
(y
4
+ 4y
3
+ 6y
2
5y + 1)(y
15
+ 4y
14
+ ··· 37y 1)
· (y
55
107y
54
+ ··· 5436606y 7656289)
21