12n
0704
(K12n
0704
)
A knot diagram
1
Linearized knot diagam
4 10 11 9 1 3 4 1 12 7 6 9
Solving Sequence
4,9 5,12
10 1 2 6 8 7 11 3
c
4
c
9
c
12
c
1
c
5
c
8
c
7
c
11
c
3
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.19445 × 10
198
u
45
6.74601 × 10
197
u
44
+ ··· + 4.55141 × 10
201
b 1.33536 × 10
201
,
1.06146 × 10
200
u
45
+ 1.69938 × 10
199
u
44
+ ··· + 1.77505 × 10
203
a 2.99606 × 10
203
,
u
46
+ 56u
44
+ ··· 1378u + 507i
I
u
2
= h788638025662u
15
78518326905455u
14
+ ··· + 919477490510109b 419677061820201,
73623372272275u
15
47637302039197u
14
+ ··· + 919477490510109a + 2632097779359569,
u
16
+ u
15
+ ··· + 15u + 9i
* 2 irreducible components of dim
C
= 0, with total 62 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.19 × 10
198
u
45
6.75 × 10
197
u
44
+ · · · + 4.55 × 10
201
b 1.34 ×
10
201
, 1.06 × 10
200
u
45
+ 1.70 × 10
199
u
44
+ · · · + 1.78 × 10
203
a 3.00 ×
10
203
, u
46
+ 56u
44
+ · · · 1378u + 507i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
0.000597989u
45
0.0000957369u
44
+ ··· 1.97693u + 1.68787
0.000262435u
45
+ 0.000148218u
44
+ ··· + 0.754607u + 0.293395
a
10
=
0.000625366u
45
0.000355332u
44
+ ··· 0.368332u + 1.08941
0.0000695995u
45
+ 0.000148080u
44
+ ··· + 1.20417u + 0.198918
a
1
=
0.000597989u
45
0.0000957369u
44
+ ··· 1.97693u + 1.68787
0.000174434u
45
+ 0.000154808u
44
+ ··· + 0.583352u + 0.244856
a
2
=
0.000423555u
45
0.000250544u
44
+ ··· 2.56028u + 1.44302
0.000174434u
45
+ 0.000154808u
44
+ ··· + 0.583352u + 0.244856
a
6
=
0.000392342u
45
+ 0.0000695995u
44
+ ··· + 0.902157u + 1.74482
0.000138440u
45
+ 0.0000385594u
44
+ ··· + 0.267201u + 0.0758209
a
8
=
0.000625366u
45
+ 0.000355332u
44
+ ··· + 0.368332u 1.08941
0.0000243237u
45
0.000122334u
44
+ ··· + 0.623241u 0.0187641
a
7
=
0.000649690u
45
+ 0.000477667u
44
+ ··· 0.254909u 1.07065
0.0000243237u
45
0.000122334u
44
+ ··· + 0.623241u 0.0187641
a
11
=
0.000621843u
45
0.0000319284u
44
+ ··· + 1.04140u + 2.54422
0.000195680u
45
+ 0.0000193035u
44
+ ··· + 1.10047u + 0.158773
a
3
=
0.000304275u
45
0.000150311u
44
+ ··· 2.53168u + 0.571523
0.000414380u
45
0.0000218287u
44
+ ··· 0.337787u + 0.0757931
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00268732u
45
+ 0.000514392u
44
+ ··· 6.90355u + 4.66863
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
46
+ 9u
45
+ ··· 598194u + 53041
c
2
u
46
+ 14u
44
+ ··· 11u + 1
c
3
u
46
3u
45
+ ··· 23u + 3
c
4
u
46
+ 56u
44
+ ··· 1378u + 507
c
5
u
46
2u
45
+ ··· 250u + 1279
c
6
u
46
+ 5u
45
+ ··· 9u + 1
c
7
u
46
+ 15u
44
+ ··· 3108u + 149
c
8
, c
9
, c
12
u
46
+ 33u
44
+ ··· 141u + 19
c
10
u
46
5u
45
+ ··· 51u + 31
c
11
u
46
u
45
+ ··· + 65u + 49
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
46
93y
45
+ ··· 17713407268y + 2813347681
c
2
y
46
+ 28y
45
+ ··· + 261y + 1
c
3
y
46
+ 3y
45
+ ··· + 5y + 9
c
4
y
46
+ 112y
45
+ ··· + 2295020y + 257049
c
5
y
46
108y
45
+ ··· 67250928y + 1635841
c
6
y
46
+ 3y
45
+ ··· + 9y + 1
c
7
y
46
+ 30y
45
+ ··· 4374634y + 22201
c
8
, c
9
, c
12
y
46
+ 66y
45
+ ··· + 8809y + 361
c
10
y
46
+ 13y
45
+ ··· + 21765y + 961
c
11
y
46
+ 19y
45
+ ··· + 55653y + 2401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.722623 + 0.663783I
a = 0.189781 + 1.081440I
b = 0.761905 + 0.077110I
4.43282 + 1.52715I 7.37334 5.22015I
u = 0.722623 0.663783I
a = 0.189781 1.081440I
b = 0.761905 0.077110I
4.43282 1.52715I 7.37334 + 5.22015I
u = 1.042020 + 0.291189I
a = 0.311194 + 0.202668I
b = 0.527721 + 0.608546I
1.89860 + 0.93839I 4.03451 + 1.19726I
u = 1.042020 0.291189I
a = 0.311194 0.202668I
b = 0.527721 0.608546I
1.89860 0.93839I 4.03451 1.19726I
u = 0.594177 + 0.677482I
a = 0.97182 1.32120I
b = 0.344145 0.034677I
4.23209 + 3.88598I 4.75603 4.49965I
u = 0.594177 0.677482I
a = 0.97182 + 1.32120I
b = 0.344145 + 0.034677I
4.23209 3.88598I 4.75603 + 4.49965I
u = 0.181031 + 0.824245I
a = 0.373014 + 0.986862I
b = 0.386192 0.053287I
0.75821 + 4.93973I 1.37497 6.10201I
u = 0.181031 0.824245I
a = 0.373014 0.986862I
b = 0.386192 + 0.053287I
0.75821 4.93973I 1.37497 + 6.10201I
u = 0.168414 + 0.786367I
a = 1.019670 + 0.047056I
b = 0.890177 + 0.606122I
4.06154 0.13020I 4.76095 0.53915I
u = 0.168414 0.786367I
a = 1.019670 0.047056I
b = 0.890177 0.606122I
4.06154 + 0.13020I 4.76095 + 0.53915I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.685524 + 0.242386I
a = 0.634928 + 0.396219I
b = 0.266521 + 0.975007I
1.64805 + 1.08045I 3.15096 7.04605I
u = 0.685524 0.242386I
a = 0.634928 0.396219I
b = 0.266521 0.975007I
1.64805 1.08045I 3.15096 + 7.04605I
u = 0.606976 + 0.353597I
a = 1.06341 1.70650I
b = 0.169419 1.237650I
4.39199 + 5.06705I 1.75956 6.04792I
u = 0.606976 0.353597I
a = 1.06341 + 1.70650I
b = 0.169419 + 1.237650I
4.39199 5.06705I 1.75956 + 6.04792I
u = 0.082102 + 0.677726I
a = 0.469990 0.277050I
b = 0.29228 1.51820I
3.41907 4.27710I 1.86663 0.85536I
u = 0.082102 0.677726I
a = 0.469990 + 0.277050I
b = 0.29228 + 1.51820I
3.41907 + 4.27710I 1.86663 + 0.85536I
u = 0.099218 + 0.655160I
a = 1.85892 + 0.20385I
b = 1.099660 + 0.530114I
2.02807 + 0.89669I 0.59333 2.63444I
u = 0.099218 0.655160I
a = 1.85892 0.20385I
b = 1.099660 0.530114I
2.02807 0.89669I 0.59333 + 2.63444I
u = 0.213548 + 0.536576I
a = 1.94510 0.08651I
b = 0.391610 + 0.666555I
1.18834 + 2.94575I 2.79513 7.62929I
u = 0.213548 0.536576I
a = 1.94510 + 0.08651I
b = 0.391610 0.666555I
1.18834 2.94575I 2.79513 + 7.62929I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.225474 + 0.520584I
a = 0.860068 + 0.132577I
b = 0.575467 + 0.297341I
1.20487 + 1.08188I 2.86879 1.93861I
u = 0.225474 0.520584I
a = 0.860068 0.132577I
b = 0.575467 0.297341I
1.20487 1.08188I 2.86879 + 1.93861I
u = 0.529336 + 0.126590I
a = 0.73767 + 1.92374I
b = 0.833828 + 0.084948I
3.13560 2.98726I 2.43600 + 6.69169I
u = 0.529336 0.126590I
a = 0.73767 1.92374I
b = 0.833828 0.084948I
3.13560 + 2.98726I 2.43600 6.69169I
u = 0.362920 + 0.366463I
a = 0.70009 + 2.45399I
b = 0.875473 0.158897I
3.13163 10.16720I 0.48934 + 7.57078I
u = 0.362920 0.366463I
a = 0.70009 2.45399I
b = 0.875473 + 0.158897I
3.13163 + 10.16720I 0.48934 7.57078I
u = 1.47983 + 0.30015I
a = 0.113526 + 0.386179I
b = 0.466727 + 0.213716I
2.38652 5.13357I 0
u = 1.47983 0.30015I
a = 0.113526 0.386179I
b = 0.466727 0.213716I
2.38652 + 5.13357I 0
u = 0.206753 + 0.194399I
a = 2.05172 0.92917I
b = 0.347573 + 0.385865I
1.35869 + 0.69751I 4.29607 0.54875I
u = 0.206753 0.194399I
a = 2.05172 + 0.92917I
b = 0.347573 0.385865I
1.35869 0.69751I 4.29607 + 0.54875I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.82791 + 0.18540I
a = 0.095317 0.729148I
b = 0.550395 1.005790I
1.73016 + 2.21015I 0
u = 1.82791 0.18540I
a = 0.095317 + 0.729148I
b = 0.550395 + 1.005790I
1.73016 2.21015I 0
u = 0.19250 + 2.63308I
a = 0.671878 0.103363I
b = 2.71999 + 0.09262I
11.36540 + 5.64381I 0
u = 0.19250 2.63308I
a = 0.671878 + 0.103363I
b = 2.71999 0.09262I
11.36540 5.64381I 0
u = 0.30985 + 2.75631I
a = 0.666351 + 0.066193I
b = 2.79148 + 0.01630I
17.1201 + 5.1887I 0
u = 0.30985 2.75631I
a = 0.666351 0.066193I
b = 2.79148 0.01630I
17.1201 5.1887I 0
u = 0.49972 + 2.82464I
a = 0.642407 + 0.112172I
b = 2.42127 + 0.01216I
14.4376 + 0.6038I 0
u = 0.49972 2.82464I
a = 0.642407 0.112172I
b = 2.42127 0.01216I
14.4376 0.6038I 0
u = 0.11803 + 2.94113I
a = 0.598923 + 0.099596I
b = 2.73153 + 0.31584I
13.8680 + 5.1464I 0
u = 0.11803 2.94113I
a = 0.598923 0.099596I
b = 2.73153 0.31584I
13.8680 5.1464I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.00605 + 3.10643I
a = 0.580378 + 0.060548I
b = 2.92917 0.02937I
13.5048 13.8523I 0
u = 0.00605 3.10643I
a = 0.580378 0.060548I
b = 2.92917 + 0.02937I
13.5048 + 13.8523I 0
u = 0.37723 + 3.19003I
a = 0.548210 + 0.055625I
b = 2.97114 + 0.61922I
13.65630 3.67082I 0
u = 0.37723 3.19003I
a = 0.548210 0.055625I
b = 2.97114 0.61922I
13.65630 + 3.67082I 0
u = 0.70791 + 3.28454I
a = 0.491311 0.131780I
b = 3.23332 0.44420I
13.12530 1.26369I 0
u = 0.70791 3.28454I
a = 0.491311 + 0.131780I
b = 3.23332 + 0.44420I
13.12530 + 1.26369I 0
9
II.
I
u
2
= h7.89 × 10
11
u
15
7.85 × 10
13
u
14
+ · · · + 9.19 × 10
14
b 4.20 × 10
14
, 7.36 ×
10
13
u
15
4.76×10
13
u
14
+· · ·+9.19×10
14
a+2.63×10
15
, u
16
+u
15
+· · ·+15u+9i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
5
=
1
u
2
a
12
=
0.0800709u
15
+ 0.0518091u
14
+ ··· 1.62186u 2.86260
0.000857702u
15
+ 0.0853945u
14
+ ··· + 1.39867u + 0.456430
a
10
=
0.422782u
15
+ 0.157685u
14
+ ··· + 9.37781u + 2.87737
0.0444333u
15
+ 0.0205806u
14
+ ··· + 1.43880u + 1.35558
a
1
=
0.0800709u
15
+ 0.0518091u
14
+ ··· 1.62186u 2.86260
0.270758u
15
0.0289705u
14
+ ··· + 2.65623u + 1.64335
a
2
=
0.350829u
15
+ 0.0807796u
14
+ ··· 4.27809u 4.50595
0.270758u
15
0.0289705u
14
+ ··· + 2.65623u + 1.64335
a
6
=
0.150620u
15
0.106187u
14
+ ··· 4.01725u 0.820503
0.0851810u
15
0.0130518u
14
+ ··· 0.872683u 0.785729
a
8
=
0.422782u
15
0.157685u
14
+ ··· 9.37781u 2.87737
0.198744u
15
0.0486526u
14
+ ··· + 0.732607u + 1.03028
a
7
=
0.621526u
15
0.109033u
14
+ ··· 10.1104u 3.90765
0.198744u
15
0.0486526u
14
+ ··· + 0.732607u + 1.03028
a
11
=
0.0797236u
15
+ 0.0501001u
14
+ ··· 2.52386u 1.58118
0.0894444u
15
0.0458413u
14
+ ··· + 2.06356u + 0.413661
a
3
=
0.194771u
15
+ 0.236670u
14
+ ··· + 4.93424u 0.393951
0.175039u
15
0.121465u
14
+ ··· + 1.06866u + 1.69379
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
541123579097900
306492496836703
u
15
+
279674211722222
306492496836703
u
14
+ ···
2560838929027227
306492496836703
u
1228461990620122
306492496836703
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
10u
15
+ ··· 11u + 1
c
2
u
16
u
15
+ ··· + 6u + 1
c
3
u
16
+ 3u
14
+ ··· + 2u + 1
c
4
u
16
+ u
15
+ ··· + 15u + 9
c
5
u
16
u
15
+ ··· + 91u + 17
c
6
u
16
2u
15
+ ··· + 2u + 1
c
7
u
16
+ u
15
+ ··· 11u + 5
c
8
, c
9
u
16
+ u
15
+ ··· 2u + 1
c
10
u
16
+ 2u
15
+ ··· + 2u + 1
c
11
u
16
+ 7u
14
+ ··· + 8u + 5
c
12
u
16
u
15
+ ··· + 2u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
10y
15
+ ··· + 5y + 1
c
2
y
16
+ 15y
15
+ ··· 34y + 1
c
3
y
16
+ 6y
15
+ ··· + 18y + 1
c
4
y
16
+ 3y
15
+ ··· + 513y + 81
c
5
y
16
5y
15
+ ··· 427y + 289
c
6
y
16
+ 2y
15
+ ··· + 10y + 1
c
7
y
16
+ 5y
15
+ ··· 161y + 25
c
8
, c
9
, c
12
y
16
+ 21y
15
+ ··· 14y + 1
c
10
y
16
+ 4y
15
+ ··· + 6y + 1
c
11
y
16
+ 14y
15
+ ··· + 226y + 25
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.893310 + 0.263570I
a = 0.589954 + 0.134532I
b = 0.554370 + 0.638444I
2.21646 1.01376I 22.0835 + 5.4010I
u = 0.893310 0.263570I
a = 0.589954 0.134532I
b = 0.554370 0.638444I
2.21646 + 1.01376I 22.0835 5.4010I
u = 0.681825 + 0.479862I
a = 0.346166 + 0.209492I
b = 0.001679 + 1.263930I
3.85961 + 4.70319I 8.55831 7.51978I
u = 0.681825 0.479862I
a = 0.346166 0.209492I
b = 0.001679 1.263930I
3.85961 4.70319I 8.55831 + 7.51978I
u = 1.238650 + 0.203176I
a = 0.363333 1.017220I
b = 0.591621 0.222631I
0.58691 + 2.51670I 3.45399 4.44673I
u = 1.238650 0.203176I
a = 0.363333 + 1.017220I
b = 0.591621 + 0.222631I
0.58691 2.51670I 3.45399 + 4.44673I
u = 0.274389 + 0.600424I
a = 0.936590 1.009320I
b = 0.923402 + 0.053522I
3.63004 1.23018I 1.45254 + 3.84800I
u = 0.274389 0.600424I
a = 0.936590 + 1.009320I
b = 0.923402 0.053522I
3.63004 + 1.23018I 1.45254 3.84800I
u = 1.396590 + 0.109133I
a = 0.006693 0.834622I
b = 0.65590 1.38874I
0.315524 + 0.953488I 0.808208 0.633683I
u = 1.396590 0.109133I
a = 0.006693 + 0.834622I
b = 0.65590 + 1.38874I
0.315524 0.953488I 0.808208 + 0.633683I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.077983 + 0.460813I
a = 3.11541 + 0.03348I
b = 0.337699 + 0.657908I
3.44078 3.74719I 4.59997 + 2.83303I
u = 0.077983 0.460813I
a = 3.11541 0.03348I
b = 0.337699 0.657908I
3.44078 + 3.74719I 4.59997 2.83303I
u = 2.21181 + 0.23952I
a = 0.007267 + 0.633167I
b = 0.07038 + 1.95938I
1.01719 6.39683I 0.14163 + 5.33600I
u = 2.21181 0.23952I
a = 0.007267 0.633167I
b = 0.07038 1.95938I
1.01719 + 6.39683I 0.14163 5.33600I
u = 0.06149 + 3.20027I
a = 0.555836 0.009838I
b = 2.95629 + 0.20169I
13.53500 2.98379I 1.59812 0.80751I
u = 0.06149 3.20027I
a = 0.555836 + 0.009838I
b = 2.95629 0.20169I
13.53500 + 2.98379I 1.59812 + 0.80751I
14
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
16
10u
15
+ ··· 11u + 1)(u
46
+ 9u
45
+ ··· 598194u + 53041)
c
2
(u
16
u
15
+ ··· + 6u + 1)(u
46
+ 14u
44
+ ··· 11u + 1)
c
3
(u
16
+ 3u
14
+ ··· + 2u + 1)(u
46
3u
45
+ ··· 23u + 3)
c
4
(u
16
+ u
15
+ ··· + 15u + 9)(u
46
+ 56u
44
+ ··· 1378u + 507)
c
5
(u
16
u
15
+ ··· + 91u + 17)(u
46
2u
45
+ ··· 250u + 1279)
c
6
(u
16
2u
15
+ ··· + 2u + 1)(u
46
+ 5u
45
+ ··· 9u + 1)
c
7
(u
16
+ u
15
+ ··· 11u + 5)(u
46
+ 15u
44
+ ··· 3108u + 149)
c
8
, c
9
(u
16
+ u
15
+ ··· 2u + 1)(u
46
+ 33u
44
+ ··· 141u + 19)
c
10
(u
16
+ 2u
15
+ ··· + 2u + 1)(u
46
5u
45
+ ··· 51u + 31)
c
11
(u
16
+ 7u
14
+ ··· + 8u + 5)(u
46
u
45
+ ··· + 65u + 49)
c
12
(u
16
u
15
+ ··· + 2u + 1)(u
46
+ 33u
44
+ ··· 141u + 19)
15
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
16
10y
15
+ ··· + 5y + 1)
· (y
46
93y
45
+ ··· 17713407268y + 2813347681)
c
2
(y
16
+ 15y
15
+ ··· 34y + 1)(y
46
+ 28y
45
+ ··· + 261y + 1)
c
3
(y
16
+ 6y
15
+ ··· + 18y + 1)(y
46
+ 3y
45
+ ··· + 5y + 9)
c
4
(y
16
+ 3y
15
+ ··· + 513y + 81)
· (y
46
+ 112y
45
+ ··· + 2295020y + 257049)
c
5
(y
16
5y
15
+ ··· 427y + 289)
· (y
46
108y
45
+ ··· 67250928y + 1635841)
c
6
(y
16
+ 2y
15
+ ··· + 10y + 1)(y
46
+ 3y
45
+ ··· + 9y + 1)
c
7
(y
16
+ 5y
15
+ ··· 161y + 25)
· (y
46
+ 30y
45
+ ··· 4374634y + 22201)
c
8
, c
9
, c
12
(y
16
+ 21y
15
+ ··· 14y + 1)(y
46
+ 66y
45
+ ··· + 8809y + 361)
c
10
(y
16
+ 4y
15
+ ··· + 6y + 1)(y
46
+ 13y
45
+ ··· + 21765y + 961)
c
11
(y
16
+ 14y
15
+ ··· + 226y + 25)(y
46
+ 19y
45
+ ··· + 55653y + 2401)
16