12n
0707
(K12n
0707
)
A knot diagram
1
Linearized knot diagam
4 11 12 10 11 3 4 12 1 5 7 9
Solving Sequence
9,12
1
4,10
5 3 8 7 6 11 2
c
12
c
9
c
4
c
3
c
8
c
7
c
6
c
11
c
2
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−114u
14
108u
13
+ ··· + 299b 79, 310u
14
+ 215u
13
+ ··· + 299a 593,
u
15
8u
13
+ 25u
11
33u
9
+ 2u
7
u
6
+ 37u
5
+ 2u
4
27u
3
u
2
+ u + 1i
I
u
2
= h1.65560 × 10
32
u
39
+ 3.59685 × 10
32
u
38
+ ··· + 2.03419 × 10
33
b + 3.23849 × 10
33
,
2.30658 × 10
33
u
39
2.80492 × 10
33
u
38
+ ··· + 1.42393 × 10
34
a 3.27516 × 10
34
, u
40
u
39
+ ··· + 2u 7i
I
u
3
= hu
3
+ b 2u, u
4
u
3
2u
2
+ a + u, u
5
3u
3
+ 2u 1i
I
u
4
= hu
7
4u
5
u
4
+ 3u
3
+ 3u
2
+ b + u 1, 3u
7
+ 14u
5
+ 2u
4
17u
3
7u
2
+ a + 4u + 6,
u
8
5u
6
u
5
+ 7u
4
+ 4u
3
2u
2
4u 1i
* 4 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−114u
14
108u
13
+ · · · + 299b 79, 310u
14
+ 215u
13
+ · · · + 299a
593, u
15
8u
13
+ · · · + u + 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
1.03679u
14
0.719064u
13
+ ··· 0.645485u + 1.98328
0.381271u
14
+ 0.361204u
13
+ ··· 2.40134u + 0.264214
a
10
=
u
u
3
+ u
a
5
=
1.03679u
14
0.719064u
13
+ ··· 0.645485u + 1.98328
0.381271u
14
+ 0.361204u
13
+ ··· 2.40134u + 0.264214
a
3
=
0.655518u
14
0.357860u
13
+ ··· 3.04682u + 2.24749
0.381271u
14
+ 0.361204u
13
+ ··· 2.40134u + 0.264214
a
8
=
u
u
a
7
=
0.277592u
14
+ 0.210702u
13
+ ··· 4.23411u 0.762542
0.571906u
14
0.541806u
13
+ ··· + 0.602007u + 0.103679
a
6
=
0.381271u
14
0.361204u
13
+ ··· + 2.40134u 1.26421
0.224080u
14
+ 0.107023u
13
+ ··· + 1.65886u 0.625418
a
11
=
0.719064u
14
1.41806u
13
+ ··· + 4.02007u + 1.03679
0.361204u
14
+ 0.605351u
13
+ ··· + 0.882943u 0.381271
a
2
=
0.625418u
14
0.224080u
13
+ ··· 2.97324u + 1.71572
0.518395u
14
+ 0.859532u
13
+ ··· 3.17726u 0.491639
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1039
299
u
14
465
299
u
13
+ ··· +
3706
299
u +
1512
299
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
12u
14
+ ··· + 352u 16
c
2
, c
7
u
15
u
14
+ ··· 9u + 1
c
3
, c
6
u
15
6u
13
+ ··· 2u + 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
u
15
8u
13
+ 25u
11
33u
9
+ 2u
7
u
6
+ 37u
5
+ 2u
4
27u
3
u
2
+ u + 1
c
11
u
15
+ 8u
14
+ ··· + 2u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
2y
14
+ ··· + 81824y 256
c
2
, c
7
y
15
+ 15y
14
+ ··· + 13y 1
c
3
, c
6
y
15
12y
14
+ ··· + 38y 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
15
16y
14
+ ··· + 3y 1
c
11
y
15
2y
14
+ ··· + 332y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.012566 + 0.990836I
a = 0.211019 + 0.142592I
b = 1.41460 + 0.28782I
8.15802 + 4.15828I 1.85862 2.84983I
u = 0.012566 0.990836I
a = 0.211019 0.142592I
b = 1.41460 0.28782I
8.15802 4.15828I 1.85862 + 2.84983I
u = 1.169430 + 0.063677I
a = 0.64821 + 2.11508I
b = 0.920632 0.865411I
3.87319 2.68365I 10.95805 + 3.07423I
u = 1.169430 0.063677I
a = 0.64821 2.11508I
b = 0.920632 + 0.865411I
3.87319 + 2.68365I 10.95805 3.07423I
u = 1.246380 + 0.258821I
a = 0.538407 0.957075I
b = 0.644440 + 0.812972I
6.72141 1.91087I 13.27233 + 1.33121I
u = 1.246380 0.258821I
a = 0.538407 + 0.957075I
b = 0.644440 0.812972I
6.72141 + 1.91087I 13.27233 1.33121I
u = 1.43453
a = 0.152509
b = 1.16134
8.30719 10.1930
u = 1.45450 + 0.38452I
a = 0.85460 1.15788I
b = 1.122180 + 0.164567I
1.22162 5.77031I 7.48274 + 3.55671I
u = 1.45450 0.38452I
a = 0.85460 + 1.15788I
b = 1.122180 0.164567I
1.22162 + 5.77031I 7.48274 3.55671I
u = 1.45202 + 0.46014I
a = 0.49137 + 1.50243I
b = 1.44823 0.69051I
1.2931 + 14.7754I 9.28197 7.69335I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45202 0.46014I
a = 0.49137 1.50243I
b = 1.44823 + 0.69051I
1.2931 14.7754I 9.28197 + 7.69335I
u = 1.54559
a = 0.962536
b = 0.336815
14.2541 21.6380
u = 0.391264
a = 0.943881
b = 0.200615
0.640876 15.5990
u = 0.184294 + 0.258098I
a = 1.80344 0.62550I
b = 0.921833 0.474362I
1.74796 + 1.39281I 0.06858 4.56854I
u = 0.184294 0.258098I
a = 1.80344 + 0.62550I
b = 0.921833 + 0.474362I
1.74796 1.39281I 0.06858 + 4.56854I
6
II.
I
u
2
= h1.66×10
32
u
39
+3.60×10
32
u
38
+· · ·+2.03×10
33
b+3.24×10
33
, 2.31×
10
33
u
39
2.80×10
33
u
38
+· · ·+1.42×10
34
a3.28×10
34
, u
40
u
39
+· · ·+2u7i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
0.161987u
39
+ 0.196985u
38
+ ··· 3.44398u + 2.30009
0.0813887u
39
0.176820u
38
+ ··· 0.179851u 1.59203
a
10
=
u
u
3
+ u
a
5
=
0.163111u
39
+ 0.121091u
38
+ ··· 2.45449u 0.157285
0.0118001u
39
0.161041u
38
+ ··· + 2.28334u 1.24246
a
3
=
0.0805980u
39
+ 0.0201647u
38
+ ··· 3.62383u + 0.708055
0.0813887u
39
0.176820u
38
+ ··· 0.179851u 1.59203
a
8
=
u
u
a
7
=
0.686240u
39
+ 0.165773u
38
+ ··· 8.36308u 2.07268
0.124536u
39
0.0137535u
38
+ ··· + 3.30823u 1.30076
a
6
=
0.264297u
39
+ 0.208180u
38
+ ··· 8.40248u + 1.25906
0.0917954u
39
0.149519u
38
+ ··· + 1.01878u 1.41043
a
11
=
0.362372u
39
0.240314u
38
+ ··· + 6.14938u 0.500854
0.0561169u
39
+ 0.187756u
38
+ ··· 1.78765u + 1.85008
a
2
=
0.606180u
39
+ 0.0186776u
38
+ ··· + 5.88374u + 4.45545
0.100110u
39
0.0338163u
38
+ ··· 1.25499u 0.588358
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.718225u
39
+ 0.557029u
38
+ ··· 30.2068u + 28.6614
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
20
+ 7u
19
+ ··· 3u 1)
2
c
2
, c
7
u
40
2u
39
+ ··· 26u 61
c
3
, c
6
u
40
+ 2u
39
+ ··· 228u 23
c
4
, c
5
, c
8
c
9
, c
10
, c
12
u
40
u
39
+ ··· + 2u 7
c
11
(u
20
3u
19
+ ··· + 3u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 3y
19
+ ··· + 13y + 1)
2
c
2
, c
7
y
40
+ 30y
39
+ ··· + 71304y + 3721
c
3
, c
6
y
40
28y
39
+ ··· 27282y + 529
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
40
31y
39
+ ··· 144y + 49
c
11
(y
20
y
19
+ ··· + 5y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.172284 + 0.930618I
a = 0.563522 0.356753I
b = 0.782168 + 0.436510I
2.10225 1.91320I 12.94560 + 2.54574I
u = 0.172284 0.930618I
a = 0.563522 + 0.356753I
b = 0.782168 0.436510I
2.10225 + 1.91320I 12.94560 2.54574I
u = 0.244911 + 1.046600I
a = 0.233171 + 0.381855I
b = 1.38627 0.42735I
4.04482 9.38865I 5.79523 + 6.34367I
u = 0.244911 1.046600I
a = 0.233171 0.381855I
b = 1.38627 + 0.42735I
4.04482 + 9.38865I 5.79523 6.34367I
u = 1.066340 + 0.174534I
a = 0.33370 1.70053I
b = 0.655937 + 0.084213I
2.98449 + 4.45164I 7.31119 2.95218I
u = 1.066340 0.174534I
a = 0.33370 + 1.70053I
b = 0.655937 0.084213I
2.98449 4.45164I 7.31119 + 2.95218I
u = 0.233487 + 0.859274I
a = 0.065996 0.829336I
b = 1.398940 0.116446I
4.18215 + 1.22248I 3.92149 1.39446I
u = 0.233487 0.859274I
a = 0.065996 + 0.829336I
b = 1.398940 + 0.116446I
4.18215 1.22248I 3.92149 + 1.39446I
u = 1.14094
a = 0.265310
b = 1.65585
9.37112 7.59830
u = 1.104630 + 0.381776I
a = 0.560979 + 1.119390I
b = 1.63716 0.52448I
1.57771 + 3.26749I 7.04002 3.73668I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.104630 0.381776I
a = 0.560979 1.119390I
b = 1.63716 + 0.52448I
1.57771 3.26749I 7.04002 + 3.73668I
u = 1.156520 + 0.322107I
a = 0.14951 + 1.66461I
b = 1.029110 0.644604I
1.13469 4.44881I 7.43323 + 7.56778I
u = 1.156520 0.322107I
a = 0.14951 1.66461I
b = 1.029110 + 0.644604I
1.13469 + 4.44881I 7.43323 7.56778I
u = 1.207880 + 0.090529I
a = 0.50967 1.69237I
b = 0.68428 + 1.42821I
2.10225 + 1.91320I 12.94560 2.54574I
u = 1.207880 0.090529I
a = 0.50967 + 1.69237I
b = 0.68428 1.42821I
2.10225 1.91320I 12.94560 + 2.54574I
u = 1.223790 + 0.228666I
a = 0.77947 1.20408I
b = 1.28524 + 0.61663I
1.41622 + 1.68884I 7.49070 + 2.96681I
u = 1.223790 0.228666I
a = 0.77947 + 1.20408I
b = 1.28524 0.61663I
1.41622 1.68884I 7.49070 2.96681I
u = 0.441449 + 0.571825I
a = 1.29994 0.84693I
b = 0.259428 0.080723I
1.41622 1.68884I 7.49070 2.96681I
u = 0.441449 0.571825I
a = 1.29994 + 0.84693I
b = 0.259428 + 0.080723I
1.41622 + 1.68884I 7.49070 + 2.96681I
u = 1.068460 + 0.761321I
a = 0.426555 0.520491I
b = 1.176790 0.196349I
1.57771 + 3.26749I 7.04002 3.73668I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.068460 0.761321I
a = 0.426555 + 0.520491I
b = 1.176790 + 0.196349I
1.57771 3.26749I 7.04002 + 3.73668I
u = 1.313800 + 0.233184I
a = 0.19963 + 1.86651I
b = 0.01842 1.57786I
5.71544 7.22344I 12.4528 + 8.0152I
u = 1.313800 0.233184I
a = 0.19963 1.86651I
b = 0.01842 + 1.57786I
5.71544 + 7.22344I 12.4528 8.0152I
u = 0.615450 + 0.236917I
a = 0.579816 + 1.206680I
b = 0.497229 + 0.198466I
2.02990 1.39321I 1.85435 + 4.74860I
u = 0.615450 0.236917I
a = 0.579816 1.206680I
b = 0.497229 0.198466I
2.02990 + 1.39321I 1.85435 4.74860I
u = 1.310930 + 0.483541I
a = 0.52543 1.34527I
b = 1.53654 + 0.62806I
4.04482 9.38865I 6.00000 + 6.34367I
u = 1.310930 0.483541I
a = 0.52543 + 1.34527I
b = 1.53654 0.62806I
4.04482 + 9.38865I 6.00000 6.34367I
u = 1.303490 + 0.504837I
a = 0.10836 1.48082I
b = 0.964074 + 0.616530I
5.71544 + 7.22344I 12.4528 8.0152I
u = 1.303490 0.504837I
a = 0.10836 + 1.48082I
b = 0.964074 0.616530I
5.71544 7.22344I 12.4528 + 8.0152I
u = 0.094199 + 0.593079I
a = 0.485794 + 0.531586I
b = 1.262160 0.290729I
2.02990 + 1.39321I 1.85435 4.74860I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.094199 0.593079I
a = 0.485794 0.531586I
b = 1.262160 + 0.290729I
2.02990 1.39321I 1.85435 + 4.74860I
u = 1.300120 + 0.527949I
a = 0.636468 + 0.928959I
b = 1.152670 0.013361I
4.18215 + 1.22248I 6.00000 + 0.I
u = 1.300120 0.527949I
a = 0.636468 0.928959I
b = 1.152670 + 0.013361I
4.18215 1.22248I 6.00000 + 0.I
u = 1.40763 + 0.26008I
a = 0.90351 + 1.65797I
b = 1.28489 0.83804I
2.98449 4.45164I 0
u = 1.40763 0.26008I
a = 0.90351 1.65797I
b = 1.28489 + 0.83804I
2.98449 + 4.45164I 0
u = 0.166400 + 0.503509I
a = 0.865523 + 0.582383I
b = 0.297685 1.021220I
1.13469 + 4.44881I 7.43323 7.56778I
u = 0.166400 0.503509I
a = 0.865523 0.582383I
b = 0.297685 + 1.021220I
1.13469 4.44881I 7.43323 + 7.56778I
u = 0.461471
a = 3.17311
b = 0.944216
7.33107 23.9120
u = 1.58819
a = 0.0220772
b = 0.324173
7.33107 0
u = 1.79789
a = 0.675888
b = 0.874248
9.37112 0
13
III. I
u
3
= hu
3
+ b 2u, u
4
u
3
2u
2
+ a + u, u
5
3u
3
+ 2u 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
4
+ u
3
+ 2u
2
u
u
3
+ 2u
a
10
=
u
u
3
+ u
a
5
=
u
4
+ u
3
+ 3u
2
u
u
4
u
3
+ u
2
+ 2u
a
3
=
u
4
+ 2u
2
+ u
u
3
+ 2u
a
8
=
u
u
a
7
=
u
2
u
4
2u
2
+ 1
a
6
=
u
4
u
3
+ 2u
2
+ 2u 1
u + 1
a
11
=
u
4
+ u
2
u + 1
u
4
+ u
3
2u
2
u + 1
a
2
=
u
4
+ 2u
3
+ u
2
u + 1
2u
3
+ 3u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
4u
2
9u + 13
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
5
7u
4
+ 23u
3
41u
2
+ 36u 13
c
2
, c
7
u
5
+ u
4
+ 3u
3
+ 3u
2
+ 2u + 1
c
3
, c
6
u
5
u
3
+ u
2
+ u 1
c
4
, c
5
, c
8
c
9
u
5
3u
3
+ 2u + 1
c
10
, c
12
u
5
3u
3
+ 2u 1
c
11
u
5
3u
4
+ 3u
3
3u
2
+ 2u 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
5
3y
4
+ 27y
3
207y
2
+ 230y 169
c
2
, c
7
y
5
+ 5y
4
+ 7y
3
+ y
2
2y 1
c
3
, c
6
y
5
2y
4
+ 3y
3
3y
2
+ 3y 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
5
6y
4
+ 13y
3
12y
2
+ 4y 1
c
11
y
5
3y
4
5y
3
3y
2
2y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.297630 + 0.272489I
a = 0.53019 + 1.94593I
b = 0.699311 0.811268I
4.27168 5.69445I 10.65653 + 5.80129I
u = 1.297630 0.272489I
a = 0.53019 1.94593I
b = 0.699311 + 0.811268I
4.27168 + 5.69445I 10.65653 5.80129I
u = 0.516079 + 0.312340I
a = 0.116662 + 0.442697I
b = 1.045750 + 0.405588I
1.28936 0.85728I 7.62581 3.22423I
u = 0.516079 0.312340I
a = 0.116662 0.442697I
b = 1.045750 0.405588I
1.28936 + 0.85728I 7.62581 + 3.22423I
u = 1.56310
a = 1.17294
b = 0.692872
13.7746 4.43530
17
IV. I
u
4
= hu
7
4u
5
u
4
+ 3u
3
+ 3u
2
+ b + u 1, 3u
7
+ 14u
5
+ · · · + a +
6, u
8
5u
6
u
5
+ 7u
4
+ 4u
3
2u
2
4u 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
3u
7
14u
5
2u
4
+ 17u
3
+ 7u
2
4u 6
u
7
+ 4u
5
+ u
4
3u
3
3u
2
u + 1
a
10
=
u
u
3
+ u
a
5
=
2u
7
10u
5
u
4
+ 13u
3
+ 4u
2
3u 5
u
7
+ 5u
5
+ u
4
6u
3
3u
2
+ u + 2
a
3
=
2u
7
10u
5
u
4
+ 14u
3
+ 4u
2
5u 5
u
7
+ 4u
5
+ u
4
3u
3
3u
2
u + 1
a
8
=
u
u
a
7
=
2u
7
+ u
6
+ 9u
5
3u
4
11u
3
u
2
+ 3u + 6
u
7
4u
5
u
4
+ 4u
3
+ 3u
2
u 2
a
6
=
3u
7
+ u
6
+ 15u
5
2u
4
22u
3
5u
2
+ 9u + 10
u
7
u
6
4u
5
+ 3u
4
+ 5u
3
3u 3
a
11
=
3u
7
u
6
14u
5
+ u
4
+ 18u
3
+ 7u
2
6u 9
u
7
+ 5u
5
+ u
4
7u
3
3u
2
+ 2u + 3
a
2
=
2u
7
+ u
6
9u
5
5u
4
+ 10u
3
+ 7u
2
2u 3
u
7
u
6
+ 4u
5
+ 4u
4
2u
3
4u
2
3u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
7
32u
5
8u
4
+ 32u
3
+ 24u
2
8u 8
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
u
3
+ u
2
+ u 1)
2
c
2
, c
7
u
8
u
7
+ 5u
5
4u
4
u
3
+ 4u
2
4u 1
c
3
, c
6
u
8
3u
7
+ u
6
+ 6u
5
5u
4
5u
3
+ 3u
2
+ 2u 1
c
4
, c
5
, c
8
c
9
u
8
5u
6
+ u
5
+ 7u
4
4u
3
2u
2
+ 4u 1
c
10
, c
12
u
8
5u
6
u
5
+ 7u
4
+ 4u
3
2u
2
4u 1
c
11
(u
4
+ u
3
u
2
u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ y
3
+ y
2
3y + 1)
2
c
2
, c
7
y
8
y
7
+ 2y
6
19y
5
+ 16y
4
+ 7y
3
+ 16y
2
24y + 1
c
3
, c
6
y
8
7y
7
+ 27y
6
70y
5
+ 101y
4
81y
3
+ 39y
2
10y + 1
c
4
, c
5
, c
8
c
9
, c
10
, c
12
y
8
10y
7
+ 39y
6
75y
5
+ 75y
4
42y
3
+ 22y
2
12y + 1
c
11
(y
4
3y
3
+ y
2
+ y + 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.220530 + 0.143929I
a = 0.91993 1.73081I
b = 1.36577 + 1.02316I
1.21622 + 2.52742I 5.33661 5.36615I
u = 1.220530 0.143929I
a = 0.91993 + 1.73081I
b = 1.36577 1.02316I
1.21622 2.52742I 5.33661 + 5.36615I
u = 0.475131 + 0.605600I
a = 1.42534 + 0.16678I
b = 0.698689 0.352393I
1.21622 + 2.52742I 5.33661 5.36615I
u = 0.475131 0.605600I
a = 1.42534 0.16678I
b = 0.698689 + 0.352393I
1.21622 2.52742I 5.33661 + 5.36615I
u = 1.26429
a = 0.514662
b = 1.67103
10.2678 17.4300
u = 1.63636
a = 0.469455
b = 0.596060
7.03897 4.10300
u = 0.313425
a = 4.55992
b = 1.10894
7.03897 4.10300
u = 1.72328
a = 0.114719
b = 0.507696
10.2678 17.4300
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
u
3
+ u
2
+ u 1)
2
(u
5
7u
4
+ 23u
3
41u
2
+ 36u 13)
· (u
15
12u
14
+ ··· + 352u 16)(u
20
+ 7u
19
+ ··· 3u 1)
2
c
2
, c
7
(u
5
+ u
4
+ 3u
3
+ 3u
2
+ 2u + 1)(u
8
u
7
+ ··· 4u 1)
· (u
15
u
14
+ ··· 9u + 1)(u
40
2u
39
+ ··· 26u 61)
c
3
, c
6
(u
5
u
3
+ u
2
+ u 1)(u
8
3u
7
+ ··· + 2u 1)
· (u
15
6u
13
+ ··· 2u + 1)(u
40
+ 2u
39
+ ··· 228u 23)
c
4
, c
5
, c
8
c
9
(u
5
3u
3
+ 2u + 1)(u
8
5u
6
+ u
5
+ 7u
4
4u
3
2u
2
+ 4u 1)
· (u
15
8u
13
+ 25u
11
33u
9
+ 2u
7
u
6
+ 37u
5
+ 2u
4
27u
3
u
2
+ u + 1)
· (u
40
u
39
+ ··· + 2u 7)
c
10
, c
12
(u
5
3u
3
+ 2u 1)(u
8
5u
6
u
5
+ 7u
4
+ 4u
3
2u
2
4u 1)
· (u
15
8u
13
+ 25u
11
33u
9
+ 2u
7
u
6
+ 37u
5
+ 2u
4
27u
3
u
2
+ u + 1)
· (u
40
u
39
+ ··· + 2u 7)
c
11
(u
4
+ u
3
u
2
u 1)
2
(u
5
3u
4
+ 3u
3
3u
2
+ 2u 1)
· (u
15
+ 8u
14
+ ··· + 2u 4)(u
20
3u
19
+ ··· + 3u 1)
2
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ y
3
+ y
2
3y + 1)
2
(y
5
3y
4
+ 27y
3
207y
2
+ 230y 169)
· (y
15
2y
14
+ ··· + 81824y 256)(y
20
+ 3y
19
+ ··· + 13y + 1)
2
c
2
, c
7
(y
5
+ 5y
4
+ 7y
3
+ y
2
2y 1)
· (y
8
y
7
+ 2y
6
19y
5
+ 16y
4
+ 7y
3
+ 16y
2
24y + 1)
· (y
15
+ 15y
14
+ ··· + 13y 1)(y
40
+ 30y
39
+ ··· + 71304y + 3721)
c
3
, c
6
(y
5
2y
4
+ 3y
3
3y
2
+ 3y 1)
· (y
8
7y
7
+ 27y
6
70y
5
+ 101y
4
81y
3
+ 39y
2
10y + 1)
· (y
15
12y
14
+ ··· + 38y 1)(y
40
28y
39
+ ··· 27282y + 529)
c
4
, c
5
, c
8
c
9
, c
10
, c
12
(y
5
6y
4
+ 13y
3
12y
2
+ 4y 1)
· (y
8
10y
7
+ 39y
6
75y
5
+ 75y
4
42y
3
+ 22y
2
12y + 1)
· (y
15
16y
14
+ ··· + 3y 1)(y
40
31y
39
+ ··· 144y + 49)
c
11
(y
4
3y
3
+ y
2
+ y + 1)
2
(y
5
3y
4
5y
3
3y
2
2y 1)
· (y
15
2y
14
+ ··· + 332y 16)(y
20
y
19
+ ··· + 5y + 1)
2
23