12n
0713
(K12n
0713
)
A knot diagram
1
Linearized knot diagam
4 11 7 9 11 2 12 1 2 7 5 8
Solving Sequence
2,11 3,7
4 1 6 5 12 10 9 8
c
2
c
3
c
1
c
6
c
5
c
11
c
10
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h2.57826 × 10
217
u
63
3.05321 × 10
217
u
62
+ ··· + 2.05878 × 10
220
b 1.16715 × 10
221
,
1.17201 × 10
218
u
63
+ 2.06381 × 10
219
u
62
+ ··· + 8.44100 × 10
221
a + 2.64039 × 10
222
,
u
64
+ 38u
62
+ ··· 3396u + 328i
I
u
2
= h−363987470832210u
18
+ 225606528026540u
17
+ ··· + 4316043181765921b 66280635064865,
7.51222 × 10
15
u
18
5.60654 × 10
15
u
17
+ ··· + 3.88444 × 10
16
a + 1.80154 × 10
16
, u
19
u
18
+ ··· + 5u 9i
* 2 irreducible components of dim
C
= 0, with total 83 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h2.58 × 10
217
u
63
3.05 × 10
217
u
62
+ · · · + 2.06 × 10
220
b 1.17 ×
10
221
, 1.17 × 10
218
u
63
+ 2.06 × 10
219
u
62
+ · · · + 8.44 × 10
221
a + 2.64 ×
10
222
, u
64
+ 38u
62
+ · · · 3396u + 328i
(i) Arc colorings
a
2
=
1
0
a
11
=
0
u
a
3
=
1
u
2
a
7
=
0.000138847u
63
0.00244499u
62
+ ··· + 21.3318u 3.12805
0.00125233u
63
+ 0.00148302u
62
+ ··· 41.5747u + 5.66913
a
4
=
0.00791855u
63
+ 0.00212409u
62
+ ··· 118.662u + 14.1417
0.00457474u
63
0.000971202u
62
+ ··· 26.4167u + 2.01978
a
1
=
0.0135367u
63
0.00367954u
62
+ ··· 88.7259u + 10.0079
0.00159543u
63
0.00175310u
62
+ ··· + 22.4981u 3.38442
a
6
=
0.00139117u
63
0.000961969u
62
+ ··· 20.2429u + 2.54108
0.00125233u
63
+ 0.00148302u
62
+ ··· 41.5747u + 5.66913
a
5
=
0.00139117u
63
0.000961969u
62
+ ··· 20.2429u + 2.54108
0.00238057u
63
+ 0.000801163u
62
+ ··· 44.3852u + 5.98465
a
12
=
0.0251528u
63
+ 0.00622070u
62
+ ··· + 174.801u 20.8026
0.000927416u
63
+ 0.000804470u
62
+ ··· 5.52337u + 0.525490
a
10
=
0.0230195u
63
0.00337024u
62
+ ··· 204.054u + 24.8603
0.00135242u
63
0.00130024u
62
+ ··· + 10.8548u 1.49184
a
9
=
0.0243719u
63
0.00467049u
62
+ ··· 193.200u + 23.3684
0.00135242u
63
0.00130024u
62
+ ··· + 10.8548u 1.49184
a
8
=
0.0159602u
63
0.00446479u
62
+ ··· 111.349u + 13.1348
0.000210627u
63
+ 0.000910006u
62
+ ··· 23.7656u + 3.66319
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0161918u
63
0.00558987u
62
+ ··· + 220.422u 20.8374
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
7u
63
+ ··· 2062u + 473
c
2
u
64
+ 38u
62
+ ··· + 3396u + 328
c
3
u
64
3u
63
+ ··· 1741810u 196291
c
4
u
64
+ 3u
63
+ ··· 160u 64
c
5
, c
11
u
64
+ 13u
62
+ ··· 400u + 44
c
6
u
64
+ u
63
+ ··· + 6587u + 761
c
7
, c
8
, c
12
u
64
+ 2u
63
+ ··· 14u 1
c
9
u
64
u
63
+ ··· 132u 4
c
10
u
64
+ u
63
+ ··· 1769u + 1279
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
+ 25y
63
+ ··· + 9011076y + 223729
c
2
y
64
+ 76y
63
+ ··· + 188592y + 107584
c
3
y
64
+ 51y
63
+ ··· 510208710782y + 38530156681
c
4
y
64
11y
63
+ ··· 87040y + 4096
c
5
, c
11
y
64
+ 26y
63
+ ··· + 49616y + 1936
c
6
y
64
+ 69y
63
+ ··· + 3038519y + 579121
c
7
, c
8
, c
12
y
64
66y
63
+ ··· 16y + 1
c
9
y
64
+ 17y
63
+ ··· 3936y + 16
c
10
y
64
87y
63
+ ··· 27241069y + 1635841
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.335462 + 0.960170I
a = 0.595539 + 0.682559I
b = 0.963148 0.475228I
0.911770 1.032120I 10.14320 + 0.I
u = 0.335462 0.960170I
a = 0.595539 0.682559I
b = 0.963148 + 0.475228I
0.911770 + 1.032120I 10.14320 + 0.I
u = 0.947399 + 0.407862I
a = 0.338537 + 0.167075I
b = 0.248342 + 0.496214I
1.74827 1.26516I 0
u = 0.947399 0.407862I
a = 0.338537 0.167075I
b = 0.248342 0.496214I
1.74827 + 1.26516I 0
u = 0.083732 + 0.833478I
a = 1.045740 0.072964I
b = 0.415317 0.555202I
3.87313 + 2.36028I 5.21332 3.90932I
u = 0.083732 0.833478I
a = 1.045740 + 0.072964I
b = 0.415317 + 0.555202I
3.87313 2.36028I 5.21332 + 3.90932I
u = 0.274944 + 0.772279I
a = 0.790148 + 0.696555I
b = 0.900831 0.923664I
3.41888 + 3.02488I 6.95291 3.41925I
u = 0.274944 0.772279I
a = 0.790148 0.696555I
b = 0.900831 + 0.923664I
3.41888 3.02488I 6.95291 + 3.41925I
u = 0.075179 + 0.799821I
a = 0.467257 0.575187I
b = 1.259260 0.113697I
0.99222 4.14641I 3.23080 + 6.97746I
u = 0.075179 0.799821I
a = 0.467257 + 0.575187I
b = 1.259260 + 0.113697I
0.99222 + 4.14641I 3.23080 6.97746I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.413467 + 1.150880I
a = 0.144937 1.402750I
b = 0.04335 + 1.55505I
8.44712 3.02698I 0
u = 0.413467 1.150880I
a = 0.144937 + 1.402750I
b = 0.04335 1.55505I
8.44712 + 3.02698I 0
u = 0.040362 + 0.770178I
a = 0.243807 + 0.579784I
b = 1.365740 + 0.360315I
4.98892 + 8.36284I 6.61798 6.58755I
u = 0.040362 0.770178I
a = 0.243807 0.579784I
b = 1.365740 0.360315I
4.98892 8.36284I 6.61798 + 6.58755I
u = 0.642406 + 0.395793I
a = 0.539832 + 0.618893I
b = 0.406004 + 0.585662I
1.72328 1.35345I 2.84079 + 5.01791I
u = 0.642406 0.395793I
a = 0.539832 0.618893I
b = 0.406004 0.585662I
1.72328 + 1.35345I 2.84079 5.01791I
u = 1.24948
a = 0.543935
b = 0.299788
2.44452 0
u = 0.647244 + 0.349890I
a = 1.55678 + 1.74713I
b = 0.254178 0.482779I
3.51271 6.62719I 6.97914 + 1.82931I
u = 0.647244 0.349890I
a = 1.55678 1.74713I
b = 0.254178 + 0.482779I
3.51271 + 6.62719I 6.97914 1.82931I
u = 1.313910 + 0.215826I
a = 0.220902 + 0.147842I
b = 0.039760 0.791805I
1.70737 + 4.39848I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.313910 0.215826I
a = 0.220902 0.147842I
b = 0.039760 + 0.791805I
1.70737 4.39848I 0
u = 1.002620 + 0.901051I
a = 0.650289 0.114573I
b = 0.489302 0.434084I
2.48875 + 1.68278I 0
u = 1.002620 0.901051I
a = 0.650289 + 0.114573I
b = 0.489302 + 0.434084I
2.48875 1.68278I 0
u = 0.21372 + 1.41112I
a = 0.482160 + 1.217250I
b = 0.00954 1.79768I
6.23466 0.00352I 0
u = 0.21372 1.41112I
a = 0.482160 1.217250I
b = 0.00954 + 1.79768I
6.23466 + 0.00352I 0
u = 0.329023 + 0.401985I
a = 0.975551 + 0.406906I
b = 0.291314 + 0.190827I
1.055720 0.384090I 8.69250 + 1.65178I
u = 0.329023 0.401985I
a = 0.975551 0.406906I
b = 0.291314 0.190827I
1.055720 + 0.384090I 8.69250 1.65178I
u = 0.513200
a = 0.799271
b = 1.40728
1.44268 14.7350
u = 0.45260 + 1.42133I
a = 0.683739 1.056290I
b = 0.08781 + 1.76465I
11.76650 + 4.51689I 0
u = 0.45260 1.42133I
a = 0.683739 + 1.056290I
b = 0.08781 1.76465I
11.76650 4.51689I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.204121 + 0.364148I
a = 1.076330 0.192389I
b = 0.905084 + 0.351582I
1.66720 0.88112I 0.76201 1.29100I
u = 0.204121 0.364148I
a = 1.076330 + 0.192389I
b = 0.905084 0.351582I
1.66720 + 0.88112I 0.76201 + 1.29100I
u = 1.58492 + 0.27627I
a = 0.296423 0.332935I
b = 0.051364 + 0.836910I
4.76022 7.21958I 0
u = 1.58492 0.27627I
a = 0.296423 + 0.332935I
b = 0.051364 0.836910I
4.76022 + 7.21958I 0
u = 0.291913 + 0.225982I
a = 3.00732 2.80629I
b = 0.436516 + 0.467769I
2.93293 + 3.01950I 3.23967 1.03009I
u = 0.291913 0.225982I
a = 3.00732 + 2.80629I
b = 0.436516 0.467769I
2.93293 3.01950I 3.23967 + 1.03009I
u = 0.192418 + 0.305935I
a = 1.86300 1.16501I
b = 0.457918 0.710588I
7.58427 + 2.24555I 8.62267 0.85529I
u = 0.192418 0.305935I
a = 1.86300 + 1.16501I
b = 0.457918 + 0.710588I
7.58427 2.24555I 8.62267 + 0.85529I
u = 0.01286 + 1.66235I
a = 0.251779 1.041480I
b = 0.03327 + 1.75492I
7.78730 4.22834I 0
u = 0.01286 1.66235I
a = 0.251779 + 1.041480I
b = 0.03327 1.75492I
7.78730 + 4.22834I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.39994 + 1.64387I
a = 0.177619 0.870097I
b = 0.38697 + 1.58361I
2.98425 4.18476I 0
u = 0.39994 1.64387I
a = 0.177619 + 0.870097I
b = 0.38697 1.58361I
2.98425 + 4.18476I 0
u = 0.283207 + 0.080826I
a = 1.44066 3.30718I
b = 0.589344 0.669131I
1.97533 + 1.42210I 0.91620 6.10321I
u = 0.283207 0.080826I
a = 1.44066 + 3.30718I
b = 0.589344 + 0.669131I
1.97533 1.42210I 0.91620 + 6.10321I
u = 0.24314 + 1.68834I
a = 0.056309 + 1.169580I
b = 0.58798 1.65311I
5.49499 5.40830I 0
u = 0.24314 1.68834I
a = 0.056309 1.169580I
b = 0.58798 + 1.65311I
5.49499 + 5.40830I 0
u = 0.16084 + 1.73860I
a = 0.230933 + 0.972132I
b = 0.307850 1.361670I
4.47021 + 1.14177I 0
u = 0.16084 1.73860I
a = 0.230933 0.972132I
b = 0.307850 + 1.361670I
4.47021 1.14177I 0
u = 0.67469 + 1.61833I
a = 0.214372 + 1.071080I
b = 0.09629 1.53447I
5.14768 + 3.33362I 0
u = 0.67469 1.61833I
a = 0.214372 1.071080I
b = 0.09629 + 1.53447I
5.14768 3.33362I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.49546 + 1.71265I
a = 0.092150 + 0.806725I
b = 0.36691 1.75692I
8.17146 + 6.66450I 0
u = 0.49546 1.71265I
a = 0.092150 0.806725I
b = 0.36691 + 1.75692I
8.17146 6.66450I 0
u = 0.43824 + 1.74966I
a = 0.035433 1.125870I
b = 0.53312 + 1.71047I
5.15081 + 11.10080I 0
u = 0.43824 1.74966I
a = 0.035433 + 1.125870I
b = 0.53312 1.71047I
5.15081 11.10080I 0
u = 0.07921 + 1.82792I
a = 0.167616 1.054340I
b = 0.53046 + 1.46401I
13.45120 + 1.32917I 0
u = 0.07921 1.82792I
a = 0.167616 + 1.054340I
b = 0.53046 1.46401I
13.45120 1.32917I 0
u = 0.05911 + 1.89435I
a = 0.290232 + 0.899724I
b = 0.02290 1.79203I
14.7249 + 6.6669I 0
u = 0.05911 1.89435I
a = 0.290232 0.899724I
b = 0.02290 + 1.79203I
14.7249 6.6669I 0
u = 0.54843 + 1.85229I
a = 0.061480 + 1.071260I
b = 0.49609 1.73014I
11.8878 15.3498I 0
u = 0.54843 1.85229I
a = 0.061480 1.071260I
b = 0.49609 + 1.73014I
11.8878 + 15.3498I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.91204 + 1.79319I
a = 0.271605 1.004440I
b = 0.10036 + 1.51621I
10.63020 4.22345I 0
u = 0.91204 1.79319I
a = 0.271605 + 1.004440I
b = 0.10036 1.51621I
10.63020 + 4.22345I 0
u = 0.05374 + 2.23789I
a = 0.164957 1.018210I
b = 0.129617 + 1.231340I
12.37100 0.19756I 0
u = 0.05374 2.23789I
a = 0.164957 + 1.018210I
b = 0.129617 1.231340I
12.37100 + 0.19756I 0
11
II.
I
u
2
= h−3.64×10
14
u
18
+2.26×10
14
u
17
+· · ·+4.32×10
15
b6.63×10
13
, 7.51×
10
15
u
18
5.61×10
15
u
17
+· · ·+3.88×10
16
a+1.80×10
16
, u
19
u
18
+· · ·+5u9i
(i) Arc colorings
a
2
=
1
0
a
11
=
0
u
a
3
=
1
u
2
a
7
=
0.193393u
18
+ 0.144333u
17
+ ··· 2.35275u 0.463784
0.0843336u
18
0.0522716u
17
+ ··· + 0.789469u + 0.0153568
a
4
=
0.109059u
18
0.0920616u
17
+ ··· + 1.56328u + 2.44843
0.0485297u
18
+ 0.110929u
17
+ ··· 0.896544u + 0.847023
a
1
=
0.192472u
18
0.326504u
17
+ ··· + 2.51451u 1.68558
0.0459865u
18
0.101011u
17
+ ··· + 0.541386u 1.38026
a
6
=
0.109059u
18
+ 0.0920616u
17
+ ··· 1.56328u 0.448427
0.0843336u
18
0.0522716u
17
+ ··· + 0.789469u + 0.0153568
a
5
=
0.109059u
18
+ 0.0920616u
17
+ ··· 1.56328u 0.448427
0.0358039u
18
+ 0.0586574u
17
+ ··· 0.107076u 0.137620
a
12
=
0.00205396u
18
+ 0.179383u
17
+ ··· 2.72735u + 1.54621
0.187705u
18
+ 0.0524445u
17
+ ··· + 0.697793u + 2.93670
a
10
=
0.151338u
18
0.164905u
17
+ ··· + 2.78710u + 0.861192
0.0419331u
18
0.0288332u
17
+ ··· + 1.52675u 1.10364
a
9
=
0.109405u
18
0.193738u
17
+ ··· + 4.31384u 0.242445
0.0419331u
18
0.0288332u
17
+ ··· + 1.52675u 1.10364
a
8
=
0.112709u
18
+ 0.299193u
17
+ ··· 0.988091u + 2.55979
0.0604367u
18
+ 0.175102u
17
+ ··· + 0.648882u + 2.74600
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
4159791503582966
4316043181765921
u
18
+
2428875393014454
4316043181765921
u
17
+ ···
60944556846167549
4316043181765921
u
39429270153907668
4316043181765921
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
6u
18
+ ··· + 3u 1
c
2
u
19
u
18
+ ··· + 5u 9
c
3
u
19
+ 2u
18
+ ··· + 15u 9
c
4
u
19
+ u
17
+ ··· + u + 1
c
5
u
19
u
18
+ ··· 22u
2
4
c
6
u
19
+ 4u
18
+ ··· 2u + 1
c
7
, c
8
u
19
+ u
18
+ ··· + 3u + 1
c
9
u
19
u
17
+ ··· + 4u + 4
c
10
u
19
+ 2u
18
+ ··· + 4u + 1
c
11
u
19
+ u
18
+ ··· + 22u
2
+ 4
c
12
u
19
u
18
+ ··· + 3u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
+ 6y
18
+ ··· 7y 1
c
2
y
19
+ 13y
18
+ ··· + 439y 81
c
3
y
19
+ 20y
18
+ ··· 405y 81
c
4
y
19
+ 2y
18
+ ··· + y 1
c
5
, c
11
y
19
+ 15y
18
+ ··· 176y 16
c
6
y
19
+ 10y
18
+ ··· + 10y 1
c
7
, c
8
, c
12
y
19
21y
18
+ ··· 11y 1
c
9
y
19
2y
18
+ ··· + 96y 16
c
10
y
19
14y
18
+ ··· + 30y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.389083 + 0.971159I
a = 0.277741 + 0.595285I
b = 0.932245 0.473799I
0.46032 + 1.43826I 0.20028 4.42405I
u = 0.389083 0.971159I
a = 0.277741 0.595285I
b = 0.932245 + 0.473799I
0.46032 1.43826I 0.20028 + 4.42405I
u = 0.800104 + 0.507328I
a = 0.388644 0.220349I
b = 0.710720 0.420295I
2.27973 + 1.36896I 12.95881 5.08171I
u = 0.800104 0.507328I
a = 0.388644 + 0.220349I
b = 0.710720 + 0.420295I
2.27973 1.36896I 12.95881 + 5.08171I
u = 0.914926 + 0.042064I
a = 0.09423 + 1.49670I
b = 0.539979 0.327295I
2.77115 7.45545I 1.04337 + 6.84145I
u = 0.914926 0.042064I
a = 0.09423 1.49670I
b = 0.539979 + 0.327295I
2.77115 + 7.45545I 1.04337 6.84145I
u = 0.947057 + 0.591059I
a = 0.473404 + 0.014503I
b = 0.810839 + 0.917232I
2.33987 2.91659I 0.25529 + 5.05539I
u = 0.947057 0.591059I
a = 0.473404 0.014503I
b = 0.810839 0.917232I
2.33987 + 2.91659I 0.25529 5.05539I
u = 0.818159
a = 0.221354
b = 1.21245
1.07163 8.02200
u = 0.555367 + 0.570698I
a = 1.55276 0.46301I
b = 0.470414 0.688016I
1.79164 0.64199I 4.02276 3.01754I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.555367 0.570698I
a = 1.55276 + 0.46301I
b = 0.470414 + 0.688016I
1.79164 + 0.64199I 4.02276 + 3.01754I
u = 0.699603 + 0.245787I
a = 0.80766 + 1.51414I
b = 0.486775 + 0.028785I
3.49065 3.76561I 3.11008 + 7.06177I
u = 0.699603 0.245787I
a = 0.80766 1.51414I
b = 0.486775 0.028785I
3.49065 + 3.76561I 3.11008 7.06177I
u = 0.70448 + 1.41196I
a = 0.305323 0.963046I
b = 0.00641 + 1.66974I
9.00068 4.71241I 5.89823 + 4.68766I
u = 0.70448 1.41196I
a = 0.305323 + 0.963046I
b = 0.00641 1.66974I
9.00068 + 4.71241I 5.89823 4.68766I
u = 0.47470 + 1.61232I
a = 0.160463 + 1.124330I
b = 0.17424 1.56147I
5.05062 + 2.83722I 3.41245 + 2.37831I
u = 0.47470 1.61232I
a = 0.160463 1.124330I
b = 0.17424 + 1.56147I
5.05062 2.83722I 3.41245 2.37831I
u = 0.09579 + 2.08758I
a = 0.004309 1.065310I
b = 0.256494 + 1.250070I
12.07760 1.14448I 4.65867 + 5.51636I
u = 0.09579 2.08758I
a = 0.004309 + 1.065310I
b = 0.256494 1.250070I
12.07760 + 1.14448I 4.65867 5.51636I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
19
6u
18
+ ··· + 3u 1)(u
64
7u
63
+ ··· 2062u + 473)
c
2
(u
19
u
18
+ ··· + 5u 9)(u
64
+ 38u
62
+ ··· + 3396u + 328)
c
3
(u
19
+ 2u
18
+ ··· + 15u 9)(u
64
3u
63
+ ··· 1741810u 196291)
c
4
(u
19
+ u
17
+ ··· + u + 1)(u
64
+ 3u
63
+ ··· 160u 64)
c
5
(u
19
u
18
+ ··· 22u
2
4)(u
64
+ 13u
62
+ ··· 400u + 44)
c
6
(u
19
+ 4u
18
+ ··· 2u + 1)(u
64
+ u
63
+ ··· + 6587u + 761)
c
7
, c
8
(u
19
+ u
18
+ ··· + 3u + 1)(u
64
+ 2u
63
+ ··· 14u 1)
c
9
(u
19
u
17
+ ··· + 4u + 4)(u
64
u
63
+ ··· 132u 4)
c
10
(u
19
+ 2u
18
+ ··· + 4u + 1)(u
64
+ u
63
+ ··· 1769u + 1279)
c
11
(u
19
+ u
18
+ ··· + 22u
2
+ 4)(u
64
+ 13u
62
+ ··· 400u + 44)
c
12
(u
19
u
18
+ ··· + 3u 1)(u
64
+ 2u
63
+ ··· 14u 1)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
19
+ 6y
18
+ ··· 7y 1)(y
64
+ 25y
63
+ ··· + 9011076y + 223729)
c
2
(y
19
+ 13y
18
+ ··· + 439y 81)
· (y
64
+ 76y
63
+ ··· + 188592y + 107584)
c
3
(y
19
+ 20y
18
+ ··· 405y 81)
· (y
64
+ 51y
63
+ ··· 510208710782y + 38530156681)
c
4
(y
19
+ 2y
18
+ ··· + y 1)(y
64
11y
63
+ ··· 87040y + 4096)
c
5
, c
11
(y
19
+ 15y
18
+ ··· 176y 16)(y
64
+ 26y
63
+ ··· + 49616y + 1936)
c
6
(y
19
+ 10y
18
+ ··· + 10y 1)
· (y
64
+ 69y
63
+ ··· + 3038519y + 579121)
c
7
, c
8
, c
12
(y
19
21y
18
+ ··· 11y 1)(y
64
66y
63
+ ··· 16y + 1)
c
9
(y
19
2y
18
+ ··· + 96y 16)(y
64
+ 17y
63
+ ··· 3936y + 16)
c
10
(y
19
14y
18
+ ··· + 30y 1)
· (y
64
87y
63
+ ··· 27241069y + 1635841)
18