12n
0719
(K12n
0719
)
A knot diagram
1
Linearized knot diagam
4 6 7 8 12 9 11 2 3 7 6 8
Solving Sequence
8,12 1,6
5 4 2 9 11 7 3 10
c
12
c
5
c
4
c
1
c
8
c
11
c
7
c
3
c
9
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−9.27341 × 10
166
u
43
4.43348 × 10
165
u
42
+ ··· + 8.47031 × 10
167
b + 9.37901 × 10
167
,
2.43777 × 10
167
u
43
6.35520 × 10
166
u
42
+ ··· + 8.47031 × 10
167
a 2.63451 × 10
168
,
u
44
+ 39u
42
+ ··· 4u 1i
I
u
2
= h479931u
10
2120739u
9
+ ··· + 70976b 1189615,
238887u
10
+ 992743u
9
+ ··· + 35488a + 973491,
u
11
4u
10
+ 6u
9
24u
8
+ 41u
7
+ 18u
6
+ 16u
5
28u
4
73u
3
45u
2
11u 1i
I
u
3
= h−7u
5
33u
4
82u
3
73u
2
+ 23b 11u 13, 51u
5
+ 247u
4
+ 673u
3
+ 798u
2
+ 23a + 504u + 236,
u
6
+ 5u
5
+ 14u
4
+ 18u
3
+ 13u
2
+ 7u + 1i
* 3 irreducible components of dim
C
= 0, with total 61 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9.27 × 10
166
u
43
4.43 × 10
165
u
42
+ · · · + 8.47 × 10
167
b + 9.38 ×
10
167
, 2.44 × 10
167
u
43
6.36 × 10
166
u
42
+ · · · + 8.47 × 10
167
a 2.63 ×
10
168
, u
44
+ 39u
42
+ · · · 4u 1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
6
=
0.287802u
43
+ 0.0750292u
42
+ ··· 75.3078u + 3.11029
0.109481u
43
+ 0.00523414u
42
+ ··· 7.77140u 1.10728
a
5
=
0.397283u
43
+ 0.0802633u
42
+ ··· 83.0792u + 2.00301
0.109481u
43
+ 0.00523414u
42
+ ··· 7.77140u 1.10728
a
4
=
0.397283u
43
+ 0.0802633u
42
+ ··· 83.0792u + 2.00301
0.0983593u
43
+ 0.00483973u
42
+ ··· 7.05306u 1.02702
a
2
=
0.470002u
43
0.00424396u
42
+ ··· + 29.0832u 7.19779
0.112085u
43
+ 0.000633314u
42
+ ··· + 12.6945u + 0.279509
a
9
=
0.102867u
43
+ 0.129659u
42
+ ··· 63.4031u 16.1083
0.199965u
43
+ 0.0128457u
42
+ ··· + 5.55859u 0.338500
a
11
=
0.333819u
43
+ 0.00512371u
42
+ ··· 15.9017u + 9.48154
0.136183u
43
0.000879747u
42
+ ··· 13.1815u 0.283753
a
7
=
0.476846u
43
0.199627u
42
+ ··· + 108.229u + 16.5533
0.192885u
43
0.0142872u
42
+ ··· 0.0996084u + 0.694413
a
3
=
1.09702u
43
0.168014u
42
+ ··· + 172.835u 5.26974
0.161947u
43
0.00324765u
42
+ ··· + 21.6795u + 2.19727
a
10
=
1.65580u
43
0.222262u
42
+ ··· + 263.566u 14.2425
0.361239u
43
0.00429338u
42
+ ··· + 33.9954u + 3.61276
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.617620u
43
0.0398235u
42
+ ··· + 49.7144u 0.605176
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
11
u
44
u
43
+ ··· 22u 1
c
2
u
44
2u
43
+ ··· + 544u + 64
c
3
u
44
+ 2u
43
+ ··· + 68u 52
c
4
u
44
32u
42
+ ··· + 6459u + 461
c
6
u
44
5u
42
+ ··· 11u + 1
c
7
, c
10
u
44
+ u
43
+ ··· 108u 11
c
8
u
44
+ u
43
+ ··· 288u + 32
c
9
u
44
u
43
+ ··· 46u + 43
c
12
u
44
+ 39u
42
+ ··· + 4u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
y
44
+ 59y
43
+ ··· + 50y + 1
c
2
y
44
26y
43
+ ··· 246784y + 4096
c
3
y
44
+ 46y
43
+ ··· 55168y + 2704
c
4
y
44
64y
43
+ ··· 67584469y + 212521
c
6
y
44
10y
43
+ ··· 41y + 1
c
7
, c
10
y
44
+ 7y
43
+ ··· + 1822y + 121
c
8
y
44
3y
43
+ ··· 139264y + 1024
c
9
y
44
39y
43
+ ··· 62660y + 1849
c
12
y
44
+ 78y
43
+ ··· + 108y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.653028 + 0.479211I
a = 0.78323 + 1.75591I
b = 0.0581394 0.0762256I
0.33032 + 4.70980I 11.3107 11.5969I
u = 0.653028 0.479211I
a = 0.78323 1.75591I
b = 0.0581394 + 0.0762256I
0.33032 4.70980I 11.3107 + 11.5969I
u = 0.027724 + 0.750161I
a = 0.567924 + 0.078651I
b = 0.974182 + 0.157306I
3.27845 3.12920I 2.75319 + 2.59759I
u = 0.027724 0.750161I
a = 0.567924 0.078651I
b = 0.974182 0.157306I
3.27845 + 3.12920I 2.75319 2.59759I
u = 0.670831 + 0.205742I
a = 0.836569 + 0.484990I
b = 0.185017 + 0.160225I
1.208230 0.322851I 9.94677 + 2.27028I
u = 0.670831 0.205742I
a = 0.836569 0.484990I
b = 0.185017 0.160225I
1.208230 + 0.322851I 9.94677 2.27028I
u = 1.31394
a = 0.393355
b = 0.433533
2.58215 0
u = 1.31681
a = 0.520583
b = 0.478115
6.41728 0
u = 0.021517 + 0.557538I
a = 1.282020 + 0.262721I
b = 0.233628 + 0.802395I
0.05460 2.35319I 7.41013 + 4.71617I
u = 0.021517 0.557538I
a = 1.282020 0.262721I
b = 0.233628 0.802395I
0.05460 + 2.35319I 7.41013 4.71617I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.489487 + 0.154722I
a = 1.56149 0.49207I
b = 0.215149 + 0.758157I
1.25902 2.03144I 0.14682 + 4.37003I
u = 0.489487 0.154722I
a = 1.56149 + 0.49207I
b = 0.215149 0.758157I
1.25902 + 2.03144I 0.14682 4.37003I
u = 0.473973
a = 2.83673
b = 0.506626
2.36937 1.94390
u = 0.460603
a = 1.26886
b = 0.519451
1.16126 8.98030
u = 0.135939 + 0.415909I
a = 2.10897 1.43331I
b = 0.300845 + 1.228730I
2.36079 2.76760I 10.42789 + 3.67232I
u = 0.135939 0.415909I
a = 2.10897 + 1.43331I
b = 0.300845 1.228730I
2.36079 + 2.76760I 10.42789 3.67232I
u = 0.93702 + 1.28948I
a = 0.002221 0.962499I
b = 0.328930 + 1.368230I
3.52831 3.02493I 0
u = 0.93702 1.28948I
a = 0.002221 + 0.962499I
b = 0.328930 1.368230I
3.52831 + 3.02493I 0
u = 1.59462 + 0.32915I
a = 0.203262 + 0.245637I
b = 0.113423 1.192920I
4.53063 + 4.34162I 0
u = 1.59462 0.32915I
a = 0.203262 0.245637I
b = 0.113423 + 1.192920I
4.53063 4.34162I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.221192 + 0.259639I
a = 1.096330 0.751243I
b = 0.691688 + 0.860912I
0.63985 2.51667I 0.25112 + 12.13395I
u = 0.221192 0.259639I
a = 1.096330 + 0.751243I
b = 0.691688 0.860912I
0.63985 + 2.51667I 0.25112 12.13395I
u = 1.79427 + 0.24600I
a = 0.388449 + 0.834790I
b = 0.170782 1.110490I
3.71457 3.73003I 0
u = 1.79427 0.24600I
a = 0.388449 0.834790I
b = 0.170782 + 1.110490I
3.71457 + 3.73003I 0
u = 0.132537 + 0.054215I
a = 7.14008 + 4.56284I
b = 0.667537 0.943356I
6.59035 2.00605I 1.41219 + 2.45712I
u = 0.132537 0.054215I
a = 7.14008 4.56284I
b = 0.667537 + 0.943356I
6.59035 + 2.00605I 1.41219 2.45712I
u = 0.0147871 + 0.1034350I
a = 3.52739 9.95970I
b = 0.846924 0.960944I
5.56957 9.21803I 3.16193 + 6.85768I
u = 0.0147871 0.1034350I
a = 3.52739 + 9.95970I
b = 0.846924 + 0.960944I
5.56957 + 9.21803I 3.16193 6.85768I
u = 1.12598 + 1.82301I
a = 0.258801 0.517356I
b = 0.280939 + 1.357240I
2.17978 + 2.84039I 0
u = 1.12598 1.82301I
a = 0.258801 + 0.517356I
b = 0.280939 1.357240I
2.17978 2.84039I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02621 + 2.20554I
a = 0.367494 + 0.963515I
b = 0.01860 1.79839I
14.6659 2.9427I 0
u = 0.02621 2.20554I
a = 0.367494 0.963515I
b = 0.01860 + 1.79839I
14.6659 + 2.9427I 0
u = 0.19526 + 2.30945I
a = 0.025151 0.822816I
b = 0.15012 + 1.78556I
9.15531 5.87106I 0
u = 0.19526 2.30945I
a = 0.025151 + 0.822816I
b = 0.15012 1.78556I
9.15531 + 5.87106I 0
u = 0.07782 + 2.32588I
a = 0.276416 0.894062I
b = 0.00497 + 1.82063I
16.0678 3.9170I 0
u = 0.07782 2.32588I
a = 0.276416 + 0.894062I
b = 0.00497 1.82063I
16.0678 + 3.9170I 0
u = 0.38957 + 2.32401I
a = 0.028999 + 0.969270I
b = 0.02619 1.71994I
8.96812 + 2.93237I 0
u = 0.38957 2.32401I
a = 0.028999 0.969270I
b = 0.02619 + 1.71994I
8.96812 2.93237I 0
u = 0.12922 + 2.71476I
a = 0.127432 0.901567I
b = 0.27414 + 1.75440I
14.7550 + 13.7953I 0
u = 0.12922 2.71476I
a = 0.127432 + 0.901567I
b = 0.27414 1.75440I
14.7550 13.7953I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.07164 + 2.78151I
a = 0.159925 + 0.862115I
b = 0.25526 1.71524I
15.5530 5.8620I 0
u = 0.07164 2.78151I
a = 0.159925 0.862115I
b = 0.25526 + 1.71524I
15.5530 + 5.8620I 0
u = 0.32784 + 2.77330I
a = 0.079049 + 0.854859I
b = 0.06611 1.66236I
9.77050 + 3.12424I 0
u = 0.32784 2.77330I
a = 0.079049 0.854859I
b = 0.06611 + 1.66236I
9.77050 3.12424I 0
9
II.
I
u
2
= h4.80 × 10
5
u
10
2.12 × 10
6
u
9
+ · · · + 7.10 × 10
4
b 1.19 × 10
6
, 2.39 ×
10
5
u
10
+9.93×10
5
u
9
+· · ·+3.55×10
4
a+9.73×10
5
, u
11
4u
10
+· · ·11u1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
6
=
6.73149u
10
27.9740u
9
+ ··· 221.023u 27.4316
6.76188u
10
+ 29.8797u
9
+ ··· + 142.163u + 16.7608
a
5
=
0.0303906u
10
+ 1.90562u
9
+ ··· 78.8596u 10.6707
6.76188u
10
+ 29.8797u
9
+ ··· + 142.163u + 16.7608
a
4
=
0.0303906u
10
+ 1.90562u
9
+ ··· 78.8596u 10.6707
8.06267u
10
+ 35.7716u
9
+ ··· + 161.757u + 18.5449
a
2
=
11.1264u
10
+ 48.7428u
9
+ ··· + 260.727u + 35.5197
7.45591u
10
+ 33.4040u
9
+ ··· + 137.150u + 15.0996
a
9
=
5.52166u
10
+ 23.6000u
9
+ ··· + 159.059u + 22.6573
1.66821u
10
7.26548u
9
+ ··· 38.1666u 4.78324
a
11
=
5.52166u
10
23.6000u
9
+ ··· 159.059u 22.6573
5.60475u
10
25.1429u
9
+ ··· 101.667u 10.8624
a
7
=
0.691854u
10
2.26038u
9
+ ··· 49.0295u 6.10828
4.45455u
10
+ 19.7759u
9
+ ··· + 90.5815u + 10.4505
a
3
=
0.722019u
10
+ 5.76214u
9
+ ··· 106.881u 20.0806
9.39040u
10
+ 41.6118u
9
+ ··· + 192.292u + 23.0600
a
10
=
2.25640u
10
8.91251u
9
+ ··· 104.377u 18.8743
3.11448u
10
14.0435u
9
+ ··· 53.7697u 5.09808
(ii) Obstruction class = 1
(iii) Cusp Shapes =
337445
17744
u
10
1511195
17744
u
9
+
2742643
17744
u
8
9383585
17744
u
7
+
4567969
4436
u
6
1254329
8872
u
5
+
3112763
8872
u
4
6155547
8872
u
3
18822875
17744
u
2
366794
1109
u
635379
17744
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
11
+ 7u
9
+ 18u
7
+ u
6
+ 22u
5
+ 5u
4
+ 14u
3
+ 6u
2
+ 4u + 1
c
2
u
11
3u
10
+ ··· 47u + 101
c
3
u
11
u
10
+ ··· + 22u + 4
c
4
u
11
u
10
+ u
9
6u
8
+ 3u
7
+ 3u
6
+ 29u
5
+ 27u
4
+ 28u
3
u
2
6u 7
c
5
u
11
+ 7u
9
+ 18u
7
u
6
+ 22u
5
5u
4
+ 14u
3
6u
2
+ 4u 1
c
6
u
11
2u
10
+ 7u
8
7u
7
5u
6
+ 15u
5
7u
4
7u
3
+ 10u
2
5u + 1
c
7
u
11
+ 6u
10
+ ··· + 2u + 1
c
8
u
11
3u
9
u
8
+ 3u
7
+ 2u
6
2u
5
+ u
3
u
2
+ 1
c
9
u
11
u
9
u
8
+ 2u
6
+ 2u
5
3u
4
u
3
+ 3u
2
1
c
10
u
11
6u
10
+ ··· + 2u 1
c
12
u
11
4u
10
+ ··· 11u 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
y
11
+ 14y
10
+ ··· + 4y 1
c
2
y
11
5y
10
+ ··· 1427y 10201
c
3
y
11
+ 13y
10
+ ··· + 156y 16
c
4
y
11
+ y
10
+ ··· + 22y 49
c
6
y
11
4y
10
+ ··· + 5y 1
c
7
, c
10
y
11
6y
10
+ ··· + 2y 1
c
8
y
11
6y
10
+ ··· + 2y 1
c
9
y
11
2y
10
+ ··· + 6y 1
c
12
y
11
4y
10
+ ··· + 31y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.220751 + 1.034860I
a = 1.083470 0.902408I
b = 0.146555 + 1.398110I
1.22111 + 1.62586I 4.59364 0.34038I
u = 0.220751 1.034860I
a = 1.083470 + 0.902408I
b = 0.146555 1.398110I
1.22111 1.62586I 4.59364 + 0.34038I
u = 1.51215
a = 0.674582
b = 0.287899
6.03089 0.409510
u = 0.460304 + 0.019735I
a = 0.349750 + 0.389318I
b = 0.585282 + 0.924323I
0.87162 2.16835I 10.04732 2.60427I
u = 0.460304 0.019735I
a = 0.349750 0.389318I
b = 0.585282 0.924323I
0.87162 + 2.16835I 10.04732 + 2.60427I
u = 0.224917 + 0.097237I
a = 4.05209 4.10027I
b = 0.209535 + 0.545606I
0.76129 4.28079I 1.91886 + 3.11496I
u = 0.224917 0.097237I
a = 4.05209 + 4.10027I
b = 0.209535 0.545606I
0.76129 + 4.28079I 1.91886 3.11496I
u = 0.55730 + 2.45122I
a = 0.097167 + 0.873801I
b = 0.02440 1.69392I
9.41812 + 3.72319I 2.84715 8.70383I
u = 0.55730 2.45122I
a = 0.097167 0.873801I
b = 0.02440 + 1.69392I
9.41812 3.72319I 2.84715 + 8.70383I
u = 2.70719 + 0.06892I
a = 0.080229 + 0.646110I
b = 0.109646 1.218970I
3.15344 5.47871I 5.29777 + 8.13210I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.70719 0.06892I
a = 0.080229 0.646110I
b = 0.109646 + 1.218970I
3.15344 + 5.47871I 5.29777 8.13210I
14
III. I
u
3
= h−7u
5
33u
4
+ · · · + 23b 13, 51u
5
+ 247u
4
+ · · · + 23a +
236, u
6
+ 5u
5
+ 14u
4
+ 18u
3
+ 13u
2
+ 7u + 1i
(i) Arc colorings
a
8
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
6
=
2.21739u
5
10.7391u
4
+ ··· 21.9130u 10.2609
0.304348u
5
+ 1.43478u
4
+ ··· + 0.478261u + 0.565217
a
5
=
1.91304u
5
9.30435u
4
+ ··· 21.4348u 9.69565
0.304348u
5
+ 1.43478u
4
+ ··· + 0.478261u + 0.565217
a
4
=
1.91304u
5
9.30435u
4
+ ··· 21.4348u 9.69565
0.0869565u
5
+ 0.695652u
4
+ ··· + 0.565217u + 0.304348
a
2
=
0.608696u
5
2.86957u
4
+ ··· 8.95652u 4.13043
0.0869565u
5
+ 0.304348u
4
+ ··· + 3.43478u + 0.695652
a
9
=
0.391304u
5
1.13043u
4
+ ··· + 3.95652u + 2.13043
1.17391u
5
5.39130u
4
+ ··· 9.13043u 1.60870
a
11
=
u
5
+ 5u
4
+ 14u
3
+ 18u
2
+ 13u + 7
0.391304u
5
2.13043u
4
+ ··· 4.04348u 0.869565
a
7
=
u
5
5u
4
14u
3
18u
2
13u 7
0.391304u
5
+ 2.13043u
4
+ ··· + 5.04348u + 0.869565
a
3
=
0.608696u
5
2.86957u
4
+ ··· 8.95652u 4.13043
0.0869565u
5
+ 0.304348u
4
+ ··· + 3.43478u + 0.695652
a
10
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
23
u
5
33
23
u
4
220
23
u
3
809
23
u
2
563
23
u
542
23
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
3
u
2
+ 2u 1)
2
c
2
u
6
c
3
(u
3
+ u
2
1)
2
c
4
u
6
+ 2u
5
2u
3
+ 2u
2
3u 7
c
5
(u
3
+ u
2
+ 2u + 1)
2
c
6
u
6
3u
5
+ 2u
4
+ u
3
+ u
2
2u 1
c
7
(u 1)
6
c
8
, c
9
u
6
4u
4
u
3
+ 4u
2
1
c
10
(u + 1)
6
c
12
u
6
+ 5u
5
+ 14u
4
+ 18u
3
+ 13u
2
+ 7u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
2
y
6
c
3
(y
3
y
2
+ 2y 1)
2
c
4
y
6
4y
5
+ 12y
4
6y
3
8y
2
37y + 49
c
6
y
6
5y
5
+ 12y
4
11y
3
+ y
2
6y + 1
c
7
, c
10
(y 1)
6
c
8
, c
9
y
6
8y
5
+ 24y
4
35y
3
+ 24y
2
8y + 1
c
12
y
6
+ 3y
5
+ 42y
4
28y
3
55y
2
23y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.211786 + 0.750504I
a = 0.999155 + 0.334189I
b = 0.215080 1.307140I
1.37919 + 2.82812I 3.91642 4.54590I
u = 0.211786 0.750504I
a = 0.999155 0.334189I
b = 0.215080 + 1.307140I
1.37919 2.82812I 3.91642 + 4.54590I
u = 1.23104
a = 0.329355
b = 0.569840
2.75839 34.1530
u = 0.199118
a = 7.05839
b = 0.569840
2.75839 20.0130
u = 1.57313 + 2.05765I
a = 0.134639 0.607788I
b = 0.215080 + 1.307140I
1.37919 2.82812I 11.50056 + 1.38392I
u = 1.57313 2.05765I
a = 0.134639 + 0.607788I
b = 0.215080 1.307140I
1.37919 + 2.82812I 11.50056 1.38392I
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
3
u
2
+ 2u 1)
2
· (u
11
+ 7u
9
+ 18u
7
+ u
6
+ 22u
5
+ 5u
4
+ 14u
3
+ 6u
2
+ 4u + 1)
· (u
44
u
43
+ ··· 22u 1)
c
2
u
6
(u
11
3u
10
+ ··· 47u + 101)(u
44
2u
43
+ ··· + 544u + 64)
c
3
((u
3
+ u
2
1)
2
)(u
11
u
10
+ ··· + 22u + 4)(u
44
+ 2u
43
+ ··· + 68u 52)
c
4
(u
6
+ 2u
5
2u
3
+ 2u
2
3u 7)
· (u
11
u
10
+ u
9
6u
8
+ 3u
7
+ 3u
6
+ 29u
5
+ 27u
4
+ 28u
3
u
2
6u 7)
· (u
44
32u
42
+ ··· + 6459u + 461)
c
5
(u
3
+ u
2
+ 2u + 1)
2
· (u
11
+ 7u
9
+ 18u
7
u
6
+ 22u
5
5u
4
+ 14u
3
6u
2
+ 4u 1)
· (u
44
u
43
+ ··· 22u 1)
c
6
(u
6
3u
5
+ 2u
4
+ u
3
+ u
2
2u 1)
· (u
11
2u
10
+ 7u
8
7u
7
5u
6
+ 15u
5
7u
4
7u
3
+ 10u
2
5u + 1)
· (u
44
5u
42
+ ··· 11u + 1)
c
7
((u 1)
6
)(u
11
+ 6u
10
+ ··· + 2u + 1)(u
44
+ u
43
+ ··· 108u 11)
c
8
(u
6
4u
4
u
3
+ 4u
2
1)(u
11
3u
9
+ ··· u
2
+ 1)
· (u
44
+ u
43
+ ··· 288u + 32)
c
9
(u
6
4u
4
u
3
+ 4u
2
1)(u
11
u
9
+ ··· + 3u
2
1)
· (u
44
u
43
+ ··· 46u + 43)
c
10
((u + 1)
6
)(u
11
6u
10
+ ··· + 2u 1)(u
44
+ u
43
+ ··· 108u 11)
c
12
(u
6
+ 5u
5
+ ··· + 7u + 1)(u
11
4u
10
+ ··· 11u 1)
· (u
44
+ 39u
42
+ ··· + 4u 1)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
11
+ 14y
10
+ ··· + 4y 1)
· (y
44
+ 59y
43
+ ··· + 50y + 1)
c
2
y
6
(y
11
5y
10
+ ··· 1427y 10201)
· (y
44
26y
43
+ ··· 246784y + 4096)
c
3
((y
3
y
2
+ 2y 1)
2
)(y
11
+ 13y
10
+ ··· + 156y 16)
· (y
44
+ 46y
43
+ ··· 55168y + 2704)
c
4
(y
6
4y
5
+ ··· 37y + 49)(y
11
+ y
10
+ ··· + 22y 49)
· (y
44
64y
43
+ ··· 67584469y + 212521)
c
6
(y
6
5y
5
+ ··· 6y + 1)(y
11
4y
10
+ ··· + 5y 1)
· (y
44
10y
43
+ ··· 41y + 1)
c
7
, c
10
((y 1)
6
)(y
11
6y
10
+ ··· + 2y 1)(y
44
+ 7y
43
+ ··· + 1822y + 121)
c
8
(y
6
8y
5
+ ··· 8y + 1)(y
11
6y
10
+ ··· + 2y 1)
· (y
44
3y
43
+ ··· 139264y + 1024)
c
9
(y
6
8y
5
+ ··· 8y + 1)(y
11
2y
10
+ ··· + 6y 1)
· (y
44
39y
43
+ ··· 62660y + 1849)
c
12
(y
6
+ 3y
5
+ ··· 23y + 1)(y
11
4y
10
+ ··· + 31y 1)
· (y
44
+ 78y
43
+ ··· + 108y + 1)
20