12n
0720
(K12n
0720
)
A knot diagram
1
Linearized knot diagam
4 12 11 10 12 3 4 11 5 1 7 9
Solving Sequence
4,10 1,5
11 3 9 8 7 12 6 2
c
4
c
10
c
3
c
9
c
8
c
7
c
12
c
5
c
2
c
1
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−3.07560 × 10
132
u
71
+ 1.26113 × 10
133
u
70
+ ··· + 2.19169 × 10
132
b + 3.53314 × 10
134
,
5.04578 × 10
133
u
71
+ 1.39574 × 10
133
u
70
+ ··· + 3.72587 × 10
133
a + 1.11463 × 10
135
,
u
72
+ 24u
70
+ ··· + u + 17i
I
u
2
= h−6463690u
21
7551941u
20
+ ··· + 5470469b 13759554,
16456196u
21
+ 170258u
20
+ ··· + 5470469a 12909429, u
22
u
21
+ ··· 4u + 1i
* 2 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3.08 × 10
132
u
71
+ 1.26 × 10
133
u
70
+ · · · + 2.19 × 10
132
b + 3.53 ×
10
134
, 5.05 × 10
133
u
71
+ 1.40 × 10
133
u
70
+ · · · + 3.73 × 10
133
a + 1.11 ×
10
135
, u
72
+ 24u
70
+ · · · + u + 17i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
1
=
1.35425u
71
0.374609u
70
+ ··· 0.0210176u 29.9160
1.40330u
71
5.75416u
70
+ ··· 30.8710u 161.206
a
5
=
1
u
2
a
11
=
1.25553u
71
0.745166u
70
+ ··· + 19.7594u 26.2435
1.91303u
71
0.436232u
70
+ ··· 47.9897u + 4.43250
a
3
=
0.701200u
71
+ 0.0578726u
70
+ ··· + 47.0698u + 38.4140
1.03169u
71
+ 4.22675u
70
+ ··· + 111.003u + 105.693
a
9
=
u
u
3
+ u
a
8
=
0.136773u
71
+ 0.391862u
70
+ ··· 1.59510u + 12.1738
3.37201u
71
0.539374u
70
+ ··· 67.2143u + 17.8222
a
7
=
3.23524u
71
+ 0.931236u
70
+ ··· + 65.6192u 5.64844
3.37201u
71
0.539374u
70
+ ··· 67.2143u + 17.8222
a
12
=
0.364800u
71
+ 2.58232u
70
+ ··· 18.9166u + 51.2212
1.51001u
71
4.55294u
70
+ ··· 23.4995u 130.337
a
6
=
2.19576u
71
+ 1.19016u
70
+ ··· 52.7840u + 45.5645
1.33590u
71
2.38359u
70
+ ··· + 7.26507u 84.1876
a
2
=
0.0490483u
71
+ 5.37955u
70
+ ··· + 30.8499u + 131.290
1.40330u
71
5.75416u
70
+ ··· 30.8710u 161.206
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10.1241u
71
+ 9.90473u
70
+ ··· 214.226u + 268.653
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
72
9u
71
+ ··· + 1961u 77
c
2
u
72
+ 10u
71
+ ··· 907019u 119125
c
3
u
72
+ 2u
71
+ ··· + 60020u + 6341
c
4
, c
9
u
72
+ 24u
70
+ ··· + u + 17
c
5
u
72
21u
70
+ ··· + 35839731u 10044233
c
6
u
72
+ 4u
71
+ ··· + 28820u + 2887
c
7
u
72
4u
71
+ ··· + 157706u + 75839
c
8
u
72
17u
71
+ ··· 149942054u + 20559187
c
10
u
72
u
71
+ ··· + 7u 1
c
11
u
72
+ 3u
71
+ ··· 12u + 1
c
12
u
72
+ u
71
+ ··· + 865u 575
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
72
29y
71
+ ··· 1058891y + 5929
c
2
y
72
78y
71
+ ··· + 24427750639y + 14190765625
c
3
y
72
+ 78y
71
+ ··· 240503656y + 40208281
c
4
, c
9
y
72
+ 48y
71
+ ··· + 6051y + 289
c
5
y
72
42y
71
+ ··· 2956824736496503y + 100886616558289
c
6
y
72
74y
71
+ ··· 527457400y + 8334769
c
7
y
72
+ 90y
71
+ ··· 90986257534y + 5751553921
c
8
y
72
71y
71
+ ··· 12442914146716706y + 422680170100969
c
10
y
72
y
71
+ ··· 7y + 1
c
11
y
72
+ 5y
71
+ ··· 44y + 1
c
12
y
72
5y
71
+ ··· 2688275y + 330625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.477362 + 0.897642I
a = 0.067877 0.313856I
b = 1.151550 0.136492I
1.61428 + 1.42833I 0
u = 0.477362 0.897642I
a = 0.067877 + 0.313856I
b = 1.151550 + 0.136492I
1.61428 1.42833I 0
u = 0.315889 + 0.926424I
a = 0.432112 0.805014I
b = 1.14826 + 2.39805I
6.56364 + 2.44744I 0
u = 0.315889 0.926424I
a = 0.432112 + 0.805014I
b = 1.14826 2.39805I
6.56364 2.44744I 0
u = 0.133880 + 0.943058I
a = 0.707754 + 1.162790I
b = 0.66351 1.47027I
0.37726 3.40325I 4.42658 + 3.83460I
u = 0.133880 0.943058I
a = 0.707754 1.162790I
b = 0.66351 + 1.47027I
0.37726 + 3.40325I 4.42658 3.83460I
u = 0.301550 + 0.900946I
a = 0.147062 + 1.390830I
b = 0.742542 0.916719I
2.08548 1.83389I 10.93305 + 0.I
u = 0.301550 0.900946I
a = 0.147062 1.390830I
b = 0.742542 + 0.916719I
2.08548 + 1.83389I 10.93305 + 0.I
u = 0.215828 + 1.034000I
a = 1.77643 0.46095I
b = 0.933208 + 0.211167I
3.17186 + 2.86604I 0
u = 0.215828 1.034000I
a = 1.77643 + 0.46095I
b = 0.933208 0.211167I
3.17186 2.86604I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.377147 + 1.000300I
a = 0.60630 1.79537I
b = 0.491494 + 0.082853I
6.71932 7.41916I 0
u = 0.377147 1.000300I
a = 0.60630 + 1.79537I
b = 0.491494 0.082853I
6.71932 + 7.41916I 0
u = 0.433501 + 0.982102I
a = 0.464224 0.505661I
b = 0.40071 + 1.38684I
0.19065 + 4.37559I 0
u = 0.433501 0.982102I
a = 0.464224 + 0.505661I
b = 0.40071 1.38684I
0.19065 4.37559I 0
u = 0.502019 + 0.960993I
a = 0.38438 + 1.51469I
b = 0.472013 + 0.149646I
6.73385 0.03465I 0
u = 0.502019 0.960993I
a = 0.38438 1.51469I
b = 0.472013 0.149646I
6.73385 + 0.03465I 0
u = 0.871305 + 0.250604I
a = 1.134100 + 0.159082I
b = 0.910776 + 1.001180I
3.47313 + 3.50227I 18.3256 7.5930I
u = 0.871305 0.250604I
a = 1.134100 0.159082I
b = 0.910776 1.001180I
3.47313 3.50227I 18.3256 + 7.5930I
u = 1.101040 + 0.158588I
a = 0.860403 + 0.773355I
b = 1.230070 + 0.481564I
10.34360 2.43121I 0
u = 1.101040 0.158588I
a = 0.860403 0.773355I
b = 1.230070 0.481564I
10.34360 + 2.43121I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.027610 + 0.439052I
a = 0.144621 + 0.779286I
b = 0.540452 + 0.832986I
1.51227 + 2.95975I 0
u = 1.027610 0.439052I
a = 0.144621 0.779286I
b = 0.540452 0.832986I
1.51227 2.95975I 0
u = 0.298638 + 1.108140I
a = 0.589128 + 0.524624I
b = 1.68842 2.24180I
4.91427 + 6.35505I 0
u = 0.298638 1.108140I
a = 0.589128 0.524624I
b = 1.68842 + 2.24180I
4.91427 6.35505I 0
u = 0.461914 + 1.060090I
a = 1.41949 + 0.47743I
b = 1.32124 0.96303I
1.40577 6.31505I 0
u = 0.461914 1.060090I
a = 1.41949 0.47743I
b = 1.32124 + 0.96303I
1.40577 + 6.31505I 0
u = 1.158870 + 0.142308I
a = 0.786009 0.769271I
b = 1.173780 0.714165I
10.2439 + 10.5771I 0
u = 1.158870 0.142308I
a = 0.786009 + 0.769271I
b = 1.173780 + 0.714165I
10.2439 10.5771I 0
u = 0.091289 + 0.794865I
a = 1.00922 1.97778I
b = 0.130734 + 0.316777I
2.12580 1.30198I 4.55096 6.52596I
u = 0.091289 0.794865I
a = 1.00922 + 1.97778I
b = 0.130734 0.316777I
2.12580 + 1.30198I 4.55096 + 6.52596I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.249808 + 1.185040I
a = 0.975289 0.228857I
b = 0.368779 + 0.841330I
3.99365 + 0.15429I 0
u = 0.249808 1.185040I
a = 0.975289 + 0.228857I
b = 0.368779 0.841330I
3.99365 0.15429I 0
u = 0.120517 + 0.770120I
a = 0.162776 0.214456I
b = 3.44943 0.72600I
7.47162 4.79394I 20.2086 + 8.5185I
u = 0.120517 0.770120I
a = 0.162776 + 0.214456I
b = 3.44943 + 0.72600I
7.47162 + 4.79394I 20.2086 8.5185I
u = 0.620042 + 0.447810I
a = 0.64813 + 1.64366I
b = 0.950767 + 0.538188I
3.27579 + 2.08206I 17.7678 0.3325I
u = 0.620042 0.447810I
a = 0.64813 1.64366I
b = 0.950767 0.538188I
3.27579 2.08206I 17.7678 + 0.3325I
u = 0.233988 + 0.718232I
a = 0.897689 + 0.560342I
b = 1.67915 + 0.25556I
2.73046 0.85081I 9.21790 + 8.47139I
u = 0.233988 0.718232I
a = 0.897689 0.560342I
b = 1.67915 0.25556I
2.73046 + 0.85081I 9.21790 8.47139I
u = 0.285520 + 1.237420I
a = 0.909356 + 0.100600I
b = 0.419131 0.190885I
2.91597 + 2.97580I 0
u = 0.285520 1.237420I
a = 0.909356 0.100600I
b = 0.419131 + 0.190885I
2.91597 2.97580I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.674386 + 0.248008I
a = 0.258287 0.326727I
b = 0.732396 0.442297I
1.74066 0.28469I 7.78828 0.51945I
u = 0.674386 0.248008I
a = 0.258287 + 0.326727I
b = 0.732396 + 0.442297I
1.74066 + 0.28469I 7.78828 + 0.51945I
u = 0.335449 + 1.244040I
a = 0.946840 + 0.168434I
b = 0.381827 0.463105I
2.87885 + 3.03592I 0
u = 0.335449 1.244040I
a = 0.946840 0.168434I
b = 0.381827 + 0.463105I
2.87885 3.03592I 0
u = 0.667924 + 0.216904I
a = 1.260200 + 0.408081I
b = 0.523105 + 0.107419I
2.59475 2.25621I 0.944475 + 0.319958I
u = 0.667924 0.216904I
a = 1.260200 0.408081I
b = 0.523105 0.107419I
2.59475 + 2.25621I 0.944475 0.319958I
u = 1.31641
a = 0.552186
b = 1.00106
4.19770 0
u = 0.396288 + 1.256520I
a = 0.850383 0.277855I
b = 1.30590 + 0.64512I
6.79619 6.17817I 0
u = 0.396288 1.256520I
a = 0.850383 + 0.277855I
b = 1.30590 0.64512I
6.79619 + 6.17817I 0
u = 0.638512 + 1.215610I
a = 1.076520 + 0.088288I
b = 0.76164 1.34841I
1.05057 8.98234I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638512 1.215610I
a = 1.076520 0.088288I
b = 0.76164 + 1.34841I
1.05057 + 8.98234I 0
u = 0.211859 + 0.584522I
a = 0.413735 + 0.785763I
b = 0.755167 + 0.763418I
1.03163 + 1.71552I 5.97336 2.93223I
u = 0.211859 0.584522I
a = 0.413735 0.785763I
b = 0.755167 0.763418I
1.03163 1.71552I 5.97336 + 2.93223I
u = 0.449186 + 1.330600I
a = 0.990007 0.648279I
b = 0.80809 + 1.20012I
1.29689 + 8.20198I 0
u = 0.449186 1.330600I
a = 0.990007 + 0.648279I
b = 0.80809 1.20012I
1.29689 8.20198I 0
u = 0.59562 + 1.28747I
a = 1.008800 + 0.407018I
b = 1.47932 1.12490I
6.83234 + 8.40177I 0
u = 0.59562 1.28747I
a = 1.008800 0.407018I
b = 1.47932 + 1.12490I
6.83234 8.40177I 0
u = 0.411073 + 0.374057I
a = 2.18791 1.24049I
b = 1.376760 0.314484I
8.24212 + 4.00105I 12.46070 3.51515I
u = 0.411073 0.374057I
a = 2.18791 + 1.24049I
b = 1.376760 + 0.314484I
8.24212 4.00105I 12.46070 + 3.51515I
u = 0.61038 + 1.31809I
a = 1.060960 0.401433I
b = 1.32898 + 1.29138I
6.5694 16.7734I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.61038 1.31809I
a = 1.060960 + 0.401433I
b = 1.32898 1.29138I
6.5694 + 16.7734I 0
u = 0.63936 + 1.31443I
a = 0.671719 0.351431I
b = 1.05068 + 1.00047I
0.37191 + 6.68129I 0
u = 0.63936 1.31443I
a = 0.671719 + 0.351431I
b = 1.05068 1.00047I
0.37191 6.68129I 0
u = 0.261621 + 0.430282I
a = 2.82143 + 0.82812I
b = 1.402730 0.052584I
8.34849 + 4.22802I 12.83906 0.71232I
u = 0.261621 0.430282I
a = 2.82143 0.82812I
b = 1.402730 + 0.052584I
8.34849 4.22802I 12.83906 + 0.71232I
u = 0.484388
a = 1.12010
b = 0.0840423
0.873780 11.6300
u = 0.59538 + 1.39839I
a = 0.375797 + 0.018450I
b = 0.603812 0.400265I
4.97601 3.89570I 0
u = 0.59538 1.39839I
a = 0.375797 0.018450I
b = 0.603812 + 0.400265I
4.97601 + 3.89570I 0
u = 0.56370 + 1.70638I
a = 0.012157 + 0.317984I
b = 0.448416 0.201438I
4.68702 + 3.51849I 0
u = 0.56370 1.70638I
a = 0.012157 0.317984I
b = 0.448416 + 0.201438I
4.68702 3.51849I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.46249 + 1.84938I
a = 0.138376 0.192728I
b = 0.406510 0.107185I
4.41396 + 4.27518I 0
u = 0.46249 1.84938I
a = 0.138376 + 0.192728I
b = 0.406510 + 0.107185I
4.41396 4.27518I 0
12
II.
I
u
2
= h−6.46 × 10
6
u
21
7.55 × 10
6
u
20
+ · · · + 5.47 × 10
6
b 1.38 × 10
7
, 1.65 ×
10
7
u
21
+ 1.70× 10
5
u
20
+ · · · + 5.47 × 10
6
a 1.29 × 10
7
, u
22
u
21
+ · · · 4u + 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
1
=
3.00819u
21
0.0311231u
20
+ ··· 11.3724u + 2.35984
1.18156u
21
+ 1.38049u
20
+ ··· 14.0123u + 2.51524
a
5
=
1
u
2
a
11
=
0.537044u
21
3.70196u
20
+ ··· + 35.3077u 9.76644
0.953189u
21
+ 0.862066u
20
+ ··· + 1.08333u 1.13292
a
3
=
2.10844u
21
4.02584u
20
+ ··· + 11.2325u 0.0780423
0.373706u
21
2.38305u
20
+ ··· + 10.5890u 2.03858
a
9
=
u
u
3
+ u
a
8
=
5.99193u
21
+ 8.34635u
20
+ ··· 22.3824u + 3.42673
1.49872u
21
1.97473u
20
+ ··· + 5.98233u 0.526097
a
7
=
7.49065u
21
+ 10.3211u
20
+ ··· 28.3647u + 3.95283
1.49872u
21
1.97473u
20
+ ··· + 5.98233u 0.526097
a
12
=
2.42473u
21
0.488635u
20
+ ··· 5.92228u + 1.09391
1.23736u
21
+ 0.981295u
20
+ ··· 12.1427u + 2.29028
a
6
=
10.0766u
21
+ 9.72932u
20
+ ··· 12.2092u + 0.870113
0.0167594u
21
+ 2.37374u
20
+ ··· 15.6411u + 4.64844
a
2
=
1.82663u
21
1.41162u
20
+ ··· + 2.63998u 0.155403
1.18156u
21
+ 1.38049u
20
+ ··· 14.0123u + 2.51524
(ii) Obstruction class = 1
(iii) Cusp Shapes =
75092121
5470469
u
21
34821641
5470469
u
20
+ ···
92994051
5470469
u
28848469
5470469
13
(iv) u-Polynomials at the component
14
Crossings u-Polynomials at each crossing
c
1
u
22
6u
21
+ ··· + 2u + 1
c
2
u
22
+ 11u
21
+ ··· + 6u + 1
c
3
u
22
+ u
21
+ ··· + u + 1
c
4
u
22
u
21
+ ··· 4u + 1
c
5
u
22
+ u
21
+ ··· + 114u + 13
c
6
u
22
3u
21
+ ··· 13u + 5
c
7
u
22
u
21
+ ··· + 3u + 1
c
8
u
22
+ 6u
21
+ ··· 105u + 13
c
9
u
22
+ u
21
+ ··· + 4u + 1
c
10
u
22
+ u
20
+ ··· + 2u + 1
c
11
u
22
+ 6u
20
+ ··· + u + 1
c
12
u
22
+ 5u
20
+ ··· + 4u + 1
15
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
18y
21
+ ··· 12y + 1
c
2
y
22
11y
21
+ ··· + 10y + 1
c
3
y
22
+ 21y
21
+ ··· + 15y + 1
c
4
, c
9
y
22
+ 19y
21
+ ··· + 2y + 1
c
5
y
22
7y
21
+ ··· 2596y + 169
c
6
y
22
19y
21
+ ··· 389y + 25
c
7
y
22
+ 17y
21
+ ··· + y + 1
c
8
y
22
20y
21
+ ··· 2887y + 169
c
10
y
22
+ 2y
21
+ ··· + 12y + 1
c
11
y
22
+ 12y
21
+ ··· + 3y + 1
c
12
y
22
+ 10y
21
+ ··· 8y + 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.388555 + 0.923513I
a = 0.853623 + 0.736114I
b = 1.20745 1.34705I
1.50369 3.99443I 12.16830 + 6.90515I
u = 0.388555 0.923513I
a = 0.853623 0.736114I
b = 1.20745 + 1.34705I
1.50369 + 3.99443I 12.16830 6.90515I
u = 0.055836 + 0.829858I
a = 0.943490 0.363773I
b = 2.63731 + 0.49911I
7.05318 + 4.57510I 3.48568 0.67518I
u = 0.055836 0.829858I
a = 0.943490 + 0.363773I
b = 2.63731 0.49911I
7.05318 4.57510I 3.48568 + 0.67518I
u = 0.217691 + 1.176020I
a = 1.43864 0.21091I
b = 0.308754 + 0.219854I
4.16265 2.72117I 2.10086 + 2.56105I
u = 0.217691 1.176020I
a = 1.43864 + 0.21091I
b = 0.308754 0.219854I
4.16265 + 2.72117I 2.10086 2.56105I
u = 0.751016 + 0.273791I
a = 0.83572 + 1.15453I
b = 0.790163 + 0.824931I
2.63678 + 2.66212I 11.56563 5.13370I
u = 0.751016 0.273791I
a = 0.83572 1.15453I
b = 0.790163 0.824931I
2.63678 2.66212I 11.56563 + 5.13370I
u = 0.763538 + 0.171279I
a = 1.196400 + 0.620756I
b = 0.832121 + 0.312002I
2.06710 + 2.62365I 11.48407 6.35850I
u = 0.763538 0.171279I
a = 1.196400 0.620756I
b = 0.832121 0.312002I
2.06710 2.62365I 11.48407 + 6.35850I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.064699 + 0.744144I
a = 1.58203 1.69510I
b = 0.500021 + 0.426948I
1.98210 + 1.78424I 9.34784 7.39339I
u = 0.064699 0.744144I
a = 1.58203 + 1.69510I
b = 0.500021 0.426948I
1.98210 1.78424I 9.34784 + 7.39339I
u = 0.434982 + 1.274440I
a = 0.885624 0.332093I
b = 1.37133 + 1.02552I
6.25032 + 7.01593I 5.78583 8.24156I
u = 0.434982 1.274440I
a = 0.885624 + 0.332093I
b = 1.37133 1.02552I
6.25032 7.01593I 5.78583 + 8.24156I
u = 0.561065 + 1.277390I
a = 0.985213 + 0.422579I
b = 0.87768 1.25355I
0.64404 7.81110I 11.10365 + 6.57562I
u = 0.561065 1.277390I
a = 0.985213 0.422579I
b = 0.87768 + 1.25355I
0.64404 + 7.81110I 11.10365 6.57562I
u = 0.48975 + 1.40212I
a = 0.520962 0.101567I
b = 0.260442 0.282393I
5.35239 + 3.50447I 0.732534 + 0.879738I
u = 0.48975 1.40212I
a = 0.520962 + 0.101567I
b = 0.260442 + 0.282393I
5.35239 3.50447I 0.732534 0.879738I
u = 0.389749 + 0.230136I
a = 1.44318 + 0.91022I
b = 1.261020 + 0.016789I
3.02242 0.02950I 15.3029 0.2723I
u = 0.389749 0.230136I
a = 1.44318 0.91022I
b = 1.261020 0.016789I
3.02242 + 0.02950I 15.3029 + 0.2723I
19
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.00073 + 1.70029I
a = 0.121295 0.083969I
b = 0.633280 + 0.100713I
4.59759 3.98208I 16.0895 + 3.9194I
u = 0.00073 1.70029I
a = 0.121295 + 0.083969I
b = 0.633280 0.100713I
4.59759 + 3.98208I 16.0895 3.9194I
20
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
22
6u
21
+ ··· + 2u + 1)(u
72
9u
71
+ ··· + 1961u 77)
c
2
(u
22
+ 11u
21
+ ··· + 6u + 1)(u
72
+ 10u
71
+ ··· 907019u 119125)
c
3
(u
22
+ u
21
+ ··· + u + 1)(u
72
+ 2u
71
+ ··· + 60020u + 6341)
c
4
(u
22
u
21
+ ··· 4u + 1)(u
72
+ 24u
70
+ ··· + u + 17)
c
5
(u
22
+ u
21
+ ··· + 114u + 13)
· (u
72
21u
70
+ ··· + 35839731u 10044233)
c
6
(u
22
3u
21
+ ··· 13u + 5)(u
72
+ 4u
71
+ ··· + 28820u + 2887)
c
7
(u
22
u
21
+ ··· + 3u + 1)(u
72
4u
71
+ ··· + 157706u + 75839)
c
8
(u
22
+ 6u
21
+ ··· 105u + 13)
· (u
72
17u
71
+ ··· 149942054u + 20559187)
c
9
(u
22
+ u
21
+ ··· + 4u + 1)(u
72
+ 24u
70
+ ··· + u + 17)
c
10
(u
22
+ u
20
+ ··· + 2u + 1)(u
72
u
71
+ ··· + 7u 1)
c
11
(u
22
+ 6u
20
+ ··· + u + 1)(u
72
+ 3u
71
+ ··· 12u + 1)
c
12
(u
22
+ 5u
20
+ ··· + 4u + 1)(u
72
+ u
71
+ ··· + 865u 575)
21
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
22
18y
21
+ ··· 12y + 1)(y
72
29y
71
+ ··· 1058891y + 5929)
c
2
(y
22
11y
21
+ ··· + 10y + 1)
· (y
72
78y
71
+ ··· + 24427750639y + 14190765625)
c
3
(y
22
+ 21y
21
+ ··· + 15y + 1)
· (y
72
+ 78y
71
+ ··· 240503656y + 40208281)
c
4
, c
9
(y
22
+ 19y
21
+ ··· + 2y + 1)(y
72
+ 48y
71
+ ··· + 6051y + 289)
c
5
(y
22
7y
21
+ ··· 2596y + 169)
· (y
72
42y
71
+ ··· 2956824736496503y + 100886616558289)
c
6
(y
22
19y
21
+ ··· 389y + 25)
· (y
72
74y
71
+ ··· 527457400y + 8334769)
c
7
(y
22
+ 17y
21
+ ··· + y + 1)
· (y
72
+ 90y
71
+ ··· 90986257534y + 5751553921)
c
8
(y
22
20y
21
+ ··· 2887y + 169)
· (y
72
71y
71
+ ··· 12442914146716706y + 422680170100969)
c
10
(y
22
+ 2y
21
+ ··· + 12y + 1)(y
72
y
71
+ ··· 7y + 1)
c
11
(y
22
+ 12y
21
+ ··· + 3y + 1)(y
72
+ 5y
71
+ ··· 44y + 1)
c
12
(y
22
+ 10y
21
+ ··· 8y + 1)(y
72
5y
71
+ ··· 2688275y + 330625)
22