12n
0721
(K12n
0721
)
A knot diagram
1
Linearized knot diagam
4 6 7 9 2 3 11 12 4 7 8 10
Solving Sequence
7,11
8
4,12
3 6 2 5 10 1 9
c
7
c
11
c
3
c
6
c
2
c
5
c
10
c
12
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
15
2u
14
+ 7u
13
+ 12u
12
22u
11
21u
10
+ 47u
9
66u
7
+ 33u
6
+ 38u
5
32u
4
+ 4u
3
+ 11u
2
+ 2b u,
5u
15
+ 10u
14
+ ··· + 2a 4, u
16
+ 3u
15
+ ··· 6u
2
1i
I
u
2
= hb + u 1, a u + 1, u
2
u 1i
I
u
3
= hb u, a + u, u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 20 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
15
2u
14
+· · ·+2bu, 5u
15
+10u
14
+· · ·+2a4, u
16
+3u
15
+· · ·6u
2
1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
4
=
5
2
u
15
5u
14
+ ··· +
7
2
u + 2
1
2
u
15
+ u
14
+ ···
11
2
u
2
+
1
2
u
a
12
=
u
u
3
+ u
a
3
=
2u
15
4u
14
+ ··· + 4u + 2
1
2
u
15
+ u
14
+ ···
11
2
u
2
+
1
2
u
a
6
=
u
3
2u
1
2
u
15
u
14
+ ··· +
7
2
u
2
+
1
2
u
a
2
=
1
2
u
15
u
14
+ ··· +
7
2
u + 1
1
2
u
15
+ u
14
+ ···
7
2
u
2
+
1
2
u
a
5
=
1
2
u
15
+ u
14
+ ···
7
2
u 1
5
2
u
15
4u
14
+ ···
1
2
u + 1
a
10
=
u
u
a
1
=
u
5
+ 2u
3
+ u
u
5
3u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
15
7
2
u
13
+ 3u
12
+ 10u
11
39
2
u
10
19
2
u
9
+ 45u
8
21u
7
77
2
u
6
+ 59u
5
8u
4
31u
3
+
57
2
u
2
27
2
u 3
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
15u
15
+ ··· 1082u 31
c
2
, c
3
, c
5
c
6
u
16
+ 3u
15
+ ··· + 6u 1
c
4
, c
9
u
16
+ u
15
+ ··· + 16u + 16
c
7
, c
8
, c
10
c
11
u
16
3u
15
+ ··· 6u
2
1
c
12
u
16
u
15
+ ··· + 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
85y
15
+ ··· 746024y + 961
c
2
, c
3
, c
5
c
6
y
16
25y
15
+ ··· 68y + 1
c
4
, c
9
y
16
+ 25y
15
+ ··· 2176y + 256
c
7
, c
8
, c
10
c
11
y
16
17y
15
+ ··· + 12y + 1
c
12
y
16
+ 43y
15
+ ··· 72y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.588394 + 0.904691I
a = 0.036403 + 0.941230I
b = 1.85781 0.03762I
18.9500 + 2.9686I 2.68910 2.21532I
u = 0.588394 0.904691I
a = 0.036403 0.941230I
b = 1.85781 + 0.03762I
18.9500 2.9686I 2.68910 + 2.21532I
u = 1.15773
a = 0.686514
b = 1.71495
6.77980 2.42280
u = 0.383322 + 0.651485I
a = 0.022997 1.230160I
b = 1.41341 + 0.15665I
8.11407 + 1.96040I 3.80773 2.97128I
u = 0.383322 0.651485I
a = 0.022997 + 1.230160I
b = 1.41341 0.15665I
8.11407 1.96040I 3.80773 + 2.97128I
u = 1.329780 + 0.108886I
a = 0.33314 1.59285I
b = 0.429972 + 0.619424I
3.19833 2.02641I 3.60242 + 3.44848I
u = 1.329780 0.108886I
a = 0.33314 + 1.59285I
b = 0.429972 0.619424I
3.19833 + 2.02641I 3.60242 3.44848I
u = 1.44035
a = 0.317757
b = 1.11690
3.33662 2.15710
u = 0.527680
a = 0.542315
b = 0.135163
0.784966 13.2500
u = 1.45613 + 0.27551I
a = 0.88578 + 1.40121I
b = 1.259310 0.357655I
2.20746 5.42559I 0.36298 + 3.83626I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.45613 0.27551I
a = 0.88578 1.40121I
b = 1.259310 + 0.357655I
2.20746 + 5.42559I 0.36298 3.83626I
u = 1.59819
a = 0.0934299
b = 0.387958
8.26971 17.0160
u = 1.59142 + 0.33831I
a = 1.16055 1.16099I
b = 1.81685 + 0.10280I
13.4441 7.6018I 0.05971 + 3.02517I
u = 1.59142 0.33831I
a = 1.16055 + 1.16099I
b = 1.81685 0.10280I
13.4441 + 7.6018I 0.05971 3.02517I
u = 0.071327 + 0.313314I
a = 0.70738 + 1.71306I
b = 0.628677 0.215988I
1.188400 + 0.433304I 5.83178 2.04218I
u = 0.071327 0.313314I
a = 0.70738 1.71306I
b = 0.628677 + 0.215988I
1.188400 0.433304I 5.83178 + 2.04218I
6
II. I
u
2
= hb + u 1, a u + 1, u
2
u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u 1
a
4
=
u 1
u + 1
a
12
=
u
u 1
a
3
=
0
u + 1
a
6
=
1
u 2
a
2
=
u + 1
u 2
a
5
=
u 1
u + 1
a
10
=
u
u
a
1
=
1
0
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
9
u
2
c
5
, c
6
, c
7
c
8
u
2
u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
4
, c
9
y
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 1.61803
7.89568 5.00000
u = 1.61803
a = 0.618034
b = 0.618034
7.89568 5.00000
10
III. I
u
3
= hb u, a + u, u
2
u 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u 1
a
4
=
u
u
a
12
=
u
u 1
a
3
=
0
u
a
6
=
1
u 1
a
2
=
u
u 1
a
5
=
u
u
a
10
=
u
u
a
1
=
1
0
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
10
, c
11
, c
12
u
2
+ u 1
c
4
, c
9
u
2
c
5
, c
6
, c
7
c
8
u
2
u 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
4
, c
9
y
2
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 0.618034
0 0
u = 1.61803
a = 1.61803
b = 1.61803
0 0
14
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
2
)(u
16
15u
15
+ ··· 1082u 31)
c
2
, c
3
((u
2
+ u 1)
2
)(u
16
+ 3u
15
+ ··· + 6u 1)
c
4
, c
9
u
4
(u
16
+ u
15
+ ··· + 16u + 16)
c
5
, c
6
((u
2
u 1)
2
)(u
16
+ 3u
15
+ ··· + 6u 1)
c
7
, c
8
((u
2
u 1)
2
)(u
16
3u
15
+ ··· 6u
2
1)
c
10
, c
11
((u
2
+ u 1)
2
)(u
16
3u
15
+ ··· 6u
2
1)
c
12
((u
2
+ u 1)
2
)(u
16
u
15
+ ··· + 10u + 1)
15
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
2
)(y
16
85y
15
+ ··· 746024y + 961)
c
2
, c
3
, c
5
c
6
((y
2
3y + 1)
2
)(y
16
25y
15
+ ··· 68y + 1)
c
4
, c
9
y
4
(y
16
+ 25y
15
+ ··· 2176y + 256)
c
7
, c
8
, c
10
c
11
((y
2
3y + 1)
2
)(y
16
17y
15
+ ··· + 12y + 1)
c
12
((y
2
3y + 1)
2
)(y
16
+ 43y
15
+ ··· 72y + 1)
16