12n
0722
(K12n
0722
)
A knot diagram
1
Linearized knot diagam
4 6 7 9 2 3 11 12 4 1 8 9
Solving Sequence
8,11
12 9 1
3,7
4 5 6 2 10
c
11
c
8
c
12
c
7
c
3
c
4
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
6
+ 3u
4
u
3
u
2
+ b + 2u + 1, u
6
+ 3u
4
u
3
u
2
+ a + 2u,
u
9
+ u
8
5u
7
4u
6
+ 8u
5
+ 3u
4
5u
3
+ 2u
2
+ 3u + 1i
I
u
2
= h4u
21
+ 3u
20
+ ··· + b 8u, u
21
2u
20
+ ··· + a + 6, u
22
+ 2u
21
+ ··· 5u + 1i
I
u
3
= hb 2u 2, a 2u 1, u
2
u 1i
I
u
4
= hb + 2, a + u, u
2
u 1i
* 4 irreducible components of dim
C
= 0, with total 35 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
6
+3u
4
u
3
u
2
+b+2u+1, u
6
+3u
4
u
3
u
2
+a+2u, u
9
+u
8
+· · ·+3u +1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
6
3u
4
+ u
3
+ u
2
2u
u
6
3u
4
+ u
3
+ u
2
2u 1
a
7
=
u
u
a
4
=
u
6
3u
4
+ u
3
+ 2u
2
2u
u
6
3u
4
+ u
3
+ 2u
2
2u 1
a
5
=
u
8
+ 5u
6
u
5
7u
4
+ 4u
3
+ 2u
2
4u 1
u
8
+ 5u
6
u
5
7u
4
+ 3u
3
+ 2u
2
2u 1
a
6
=
u
7
3u
5
+ u
4
+ u
3
2u
2
+ u
u
7
3u
5
+ u
4
+ u
3
2u
2
a
2
=
u
8
+ 4u
6
u
5
4u
4
+ 3u
3
2u
u
8
+ 4u
6
u
5
4u
4
+ 3u
3
+ u
2
2u 1
a
10
=
u
6
+ 3u
4
2u
2
+ 1
u
8
+ 4u
6
4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
2u
7
+ 24u
6
+ 6u
5
46u
4
+ 4u
3
+ 28u
2
18u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
9
u
8
+ 7u
7
2u
6
+ 16u
5
+ 3u
4
+ 9u
3
+ 10u
2
+ 3u + 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
11
, c
12
u
9
+ u
8
5u
7
4u
6
+ 8u
5
+ 3u
4
5u
3
+ 2u
2
+ 3u + 1
c
4
, c
9
u
9
+ 5u
8
+ 10u
7
+ 9u
6
u
5
15u
4
22u
3
16u
2
8u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
9
+ 13y
8
+ ··· 11y 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
11
, c
12
y
9
11y
8
+ 49y
7
112y
6
+ 140y
5
105y
4
+ 69y
3
40y
2
+ 5y 1
c
4
, c
9
y
9
5y
8
+ 8y
7
+ 5y
6
25y
5
13y
4
+ 92y
3
24y
2
64y 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.556651 + 0.655843I
a = 0.0328003 0.0846569I
b = 1.032800 0.084657I
4.56735 4.47297I 7.81258 + 6.23831I
u = 0.556651 0.655843I
a = 0.0328003 + 0.0846569I
b = 1.032800 + 0.084657I
4.56735 + 4.47297I 7.81258 6.23831I
u = 1.28665
a = 1.58604
b = 2.58604
6.48693 13.7120
u = 1.51165 + 0.13243I
a = 1.75672 + 1.70564I
b = 2.75672 + 1.70564I
13.17090 3.99995I 16.3846 + 2.3960I
u = 1.51165 0.13243I
a = 1.75672 1.70564I
b = 2.75672 1.70564I
13.17090 + 3.99995I 16.3846 2.3960I
u = 0.338768 + 0.252040I
a = 0.829715 0.547946I
b = 0.170285 0.547946I
0.531790 + 0.852880I 9.17076 8.14648I
u = 0.338768 0.252040I
a = 0.829715 + 0.547946I
b = 0.170285 + 0.547946I
0.531790 0.852880I 9.17076 + 8.14648I
u = 1.58621 + 0.20573I
a = 3.24718 1.53651I
b = 4.24718 1.53651I
9.8278 + 10.8008I 14.7759 5.3771I
u = 1.58621 0.20573I
a = 3.24718 + 1.53651I
b = 4.24718 + 1.53651I
9.8278 10.8008I 14.7759 + 5.3771I
5
II.
I
u
2
= h4u
21
+3u
20
+· · ·+b8u, u
21
2u
20
+· · ·+a+6, u
22
+2u
21
+· · ·5u+1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
9
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
21
+ 2u
20
+ ··· + 13u 6
4u
21
3u
20
+ ··· 16u
2
+ 8u
a
7
=
u
u
a
4
=
2u
21
+ 4u
20
+ ··· + 5u 5
u
21
u
20
+ ··· 8u
2
+ 1
a
5
=
3u
20
+ 3u
19
+ ··· + 15u 7
3u
21
3u
20
+ ··· 15u
2
+ 7u
a
6
=
u
21
+ 11u
19
+ ··· 17u
3
+ 9u
2u
21
2u
20
+ ··· 11u
2
+ 2u
a
2
=
u
20
u
19
+ ··· 7u + 1
u
21
+ u
20
+ ··· + 6u
3
+ 8u
2
a
10
=
u
6
+ 3u
4
2u
2
+ 1
u
8
+ 4u
6
4u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
20
+ 3u
19
32u
18
27u
17
+ 138u
16
+ 81u
15
317u
14
62u
13
+ 439u
12
123u
11
384u
10
+ 246u
9
+ 177u
8
178u
7
27u
6
+ 115u
5
+ 25u
4
37u
3
+ 20u
2
+ 18u 11
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
u
22
4u
21
+ ··· 11u 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
11
, c
12
u
22
+ 2u
21
+ ··· 5u + 1
c
4
, c
9
(u
11
2u
10
3u
9
+ 8u
8
8u
6
+ 9u
5
8u
4
7u
3
+ 12u
2
+ u 2)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
y
22
+ 12y
21
+ ··· 103y + 1
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
11
, c
12
y
22
24y
21
+ ··· 27y + 1
c
4
, c
9
(y
11
10y
10
+ ··· + 49y 4)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.653871 + 0.639377I
a = 0.678912 + 0.802720I
b = 2.04567 0.21056I
2.35449 7.64539I 11.71373 + 6.03391I
u = 0.653871 0.639377I
a = 0.678912 0.802720I
b = 2.04567 + 0.21056I
2.35449 + 7.64539I 11.71373 6.03391I
u = 0.452757 + 0.672728I
a = 0.132038 0.926413I
b = 0.244470
4.87434 6.59077 + 0.I
u = 0.452757 0.672728I
a = 0.132038 + 0.926413I
b = 0.244470
4.87434 6.59077 + 0.I
u = 0.326778 + 0.705531I
a = 0.32042 + 2.18575I
b = 0.242416 + 0.347557I
1.39120 + 3.13582I 9.76425 0.75545I
u = 0.326778 0.705531I
a = 0.32042 2.18575I
b = 0.242416 0.347557I
1.39120 3.13582I 9.76425 + 0.75545I
u = 0.715155
a = 0.362929
b = 0.686958
1.26486 6.07510
u = 1.300610 + 0.077299I
a = 1.58364 + 0.11845I
b = 2.57660
6.48450 13.63121 + 0.I
u = 1.300610 0.077299I
a = 1.58364 0.11845I
b = 2.57660
6.48450 13.63121 + 0.I
u = 0.472498 + 0.509885I
a = 0.670269 0.742959I
b = 0.829406 + 0.775983I
6.60747 + 1.76997I 13.10604 3.70025I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.472498 0.509885I
a = 0.670269 + 0.742959I
b = 0.829406 0.775983I
6.60747 1.76997I 13.10604 + 3.70025I
u = 1.48308 + 0.04696I
a = 0.500256 1.109360I
b = 0.829406 0.775983I
6.60747 1.76997I 13.10604 + 3.70025I
u = 1.48308 0.04696I
a = 0.500256 + 1.109360I
b = 0.829406 + 0.775983I
6.60747 + 1.76997I 13.10604 3.70025I
u = 1.48082 + 0.20358I
a = 0.090121 0.149824I
b = 0.242416 + 0.347557I
1.39120 + 3.13582I 9.76425 0.75545I
u = 1.48082 0.20358I
a = 0.090121 + 0.149824I
b = 0.242416 0.347557I
1.39120 3.13582I 9.76425 + 0.75545I
u = 1.52066
a = 4.11109
b = 5.21838
16.2219 13.6940
u = 1.54155 + 0.21133I
a = 1.57352 + 0.56059I
b = 2.04567 + 0.21056I
2.35449 + 7.64539I 11.71373 6.03391I
u = 1.54155 0.21133I
a = 1.57352 0.56059I
b = 2.04567 0.21056I
2.35449 7.64539I 11.71373 + 6.03391I
u = 0.443905
a = 1.87359
b = 1.80820
9.54474 0.158940
u = 1.63437
a = 1.53660
b = 1.80820
9.54474 0.158940
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.68381
a = 4.31528
b = 5.21838
16.2219 13.6940
u = 0.231731
a = 2.39918
b = 0.686958
1.26486 6.07510
11
III. I
u
3
= hb 2u 2, a 2u 1, u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u + 1
a
9
=
u
u 1
a
1
=
u
u
a
3
=
2u + 1
2u + 2
a
7
=
u
u
a
4
=
u
u + 1
a
5
=
u
u + 1
a
6
=
2u 2
3u 2
a
2
=
2u 1
3u 1
a
10
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
10
u
2
+ u 1
c
4
, c
9
u
2
c
5
, c
6
, c
11
c
12
u
2
u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
4
, c
9
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.236068
b = 0.763932
1.97392 20.0000
u = 1.61803
a = 4.23607
b = 5.23607
17.7653 20.0000
15
IV. I
u
4
= hb + 2, a + u, u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u + 1
a
9
=
u
u 1
a
1
=
u
u
a
3
=
u
2
a
7
=
u
u
a
4
=
u + 1
1
a
5
=
u + 1
1
a
6
=
u 1
u + 2
a
2
=
2
2u + 1
a
10
=
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 25
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
10
u
2
+ u 1
c
4
, c
9
u
2
c
5
, c
6
, c
11
c
12
u
2
u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
, c
11
c
12
y
2
3y + 1
c
4
, c
9
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.618034
b = 2.00000
9.86960 25.0000
u = 1.61803
a = 1.61803
b = 2.00000
9.86960 25.0000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
10
((u
2
+ u 1)
2
)(u
9
u
8
+ ··· + 3u + 1)
· (u
22
4u
21
+ ··· 11u 1)
c
2
, c
3
, c
7
c
8
(u
2
+ u 1)
2
(u
9
+ u
8
5u
7
4u
6
+ 8u
5
+ 3u
4
5u
3
+ 2u
2
+ 3u + 1)
· (u
22
+ 2u
21
+ ··· 5u + 1)
c
4
, c
9
u
4
(u
9
+ 5u
8
+ 10u
7
+ 9u
6
u
5
15u
4
22u
3
16u
2
8u 4)
· (u
11
2u
10
3u
9
+ 8u
8
8u
6
+ 9u
5
8u
4
7u
3
+ 12u
2
+ u 2)
2
c
5
, c
6
, c
11
c
12
(u
2
u 1)
2
(u
9
+ u
8
5u
7
4u
6
+ 8u
5
+ 3u
4
5u
3
+ 2u
2
+ 3u + 1)
· (u
22
+ 2u
21
+ ··· 5u + 1)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
10
((y
2
3y + 1)
2
)(y
9
+ 13y
8
+ ··· 11y 1)
· (y
22
+ 12y
21
+ ··· 103y + 1)
c
2
, c
3
, c
5
c
6
, c
7
, c
8
c
11
, c
12
(y
2
3y + 1)
2
· (y
9
11y
8
+ 49y
7
112y
6
+ 140y
5
105y
4
+ 69y
3
40y
2
+ 5y 1)
· (y
22
24y
21
+ ··· 27y + 1)
c
4
, c
9
y
4
(y
9
5y
8
+ 8y
7
+ 5y
6
25y
5
13y
4
+ 92y
3
24y
2
64y 16)
· (y
11
10y
10
+ ··· + 49y 4)
2
21