12n
0723
(K12n
0723
)
A knot diagram
1
Linearized knot diagam
4 6 7 9 2 3 12 11 4 7 8 10
Solving Sequence
7,12 4,8
3 6 2 5 11 10 1 9
c
7
c
3
c
6
c
2
c
5
c
11
c
10
c
12
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
14
+ 2u
13
+ ··· + 2b 1, u
14
+ 4u
13
+ ··· + 2a + 4, u
15
3u
14
+ ··· 3u + 1i
I
u
2
= h−au + b, u
2
a + a
2
+ au 2u
2
+ 2a u 3, u
3
+ u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 21 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
14
+2u
13
+· · ·+2b 1, u
14
+4u
13
+· · ·+2a +4, u
15
3u
14
+· · ·3u +1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
1
2
u
14
2u
13
+ ··· + 9u 2
1
2
u
14
u
13
+ ··· +
1
2
u +
1
2
a
8
=
1
u
2
a
3
=
u
14
3u
13
+ ··· +
19
2
u
3
2
1
2
u
14
u
13
+ ··· +
1
2
u +
1
2
a
6
=
1
2
u
12
+ u
11
+ ···
7
2
u +
1
2
1
2
u
14
u
13
+ ··· +
3
2
u
1
2
a
2
=
1
2
u
14
u
13
+ ···
7
2
u
2
+ 5u
1
2
u
14
+ u
13
+ ···
1
2
u +
1
2
a
5
=
1
2
u
14
+ u
13
+ ··· 7u + 1
1
2
u
14
2u
13
+ ··· +
5
2
u
3
2
a
11
=
u
u
3
+ u
a
10
=
u
3
2u
u
3
+ u
a
1
=
u
7
+ 4u
5
+ 4u
3
u
7
3u
5
2u
3
+ u
a
9
=
u
2
+ 1
u
4
2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
13
+
1
2
u
12
7
2
u
11
+
5
2
u
10
17
2
u
9
+
11
2
u
8
13u
7
+
27
2
u
6
53
2
u
5
+26u
4
69
2
u
3
+18u
2
11u
9
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
18u
14
+ ··· + 4668u + 207
c
2
, c
3
, c
5
c
6
u
15
+ 4u
14
+ ··· + 6u 1
c
4
, c
9
u
15
+ u
14
+ ··· 96u 64
c
7
, c
8
, c
11
u
15
+ 3u
14
+ ··· 3u 1
c
10
u
15
3u
14
+ ··· 37u 41
c
12
u
15
u
14
+ ··· 15u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
110y
14
+ ··· + 14260806y 42849
c
2
, c
3
, c
5
c
6
y
15
26y
14
+ ··· + 46y 1
c
4
, c
9
y
15
+ 35y
14
+ ··· + 33792y 4096
c
7
, c
8
, c
11
y
15
+ 17y
14
+ ··· 15y 1
c
10
y
15
+ 21y
14
+ ··· 37007y 1681
c
12
y
15
+ 41y
14
+ ··· + 273y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.900691 + 0.591172I
a = 1.46534 + 1.01047I
b = 1.91718 0.04386I
17.6730 + 2.9604I 3.47231 2.17330I
u = 0.900691 0.591172I
a = 1.46534 1.01047I
b = 1.91718 + 0.04386I
17.6730 2.9604I 3.47231 + 2.17330I
u = 0.508960 + 0.560149I
a = 1.18891 1.58128I
b = 1.49086 + 0.13884I
8.38938 + 1.78426I 4.62403 2.81000I
u = 0.508960 0.560149I
a = 1.18891 + 1.58128I
b = 1.49086 0.13884I
8.38938 1.78426I 4.62403 + 2.81000I
u = 0.184001 + 1.341680I
a = 0.211499 0.179174I
b = 0.279310 + 0.250795I
3.45010 2.42340I 3.50251 + 0.27987I
u = 0.184001 1.341680I
a = 0.211499 + 0.179174I
b = 0.279310 0.250795I
3.45010 + 2.42340I 3.50251 0.27987I
u = 0.03840 + 1.49525I
a = 0.358226 + 0.638671I
b = 0.968727 0.511112I
7.29450 + 0.31744I 5.62657 1.11275I
u = 0.03840 1.49525I
a = 0.358226 0.638671I
b = 0.968727 + 0.511112I
7.29450 0.31744I 5.62657 + 1.11275I
u = 0.498442
a = 0.328877
b = 0.163926
0.854874 12.4950
u = 0.14640 + 1.58860I
a = 0.162813 1.015850I
b = 1.58994 + 0.40736I
15.7392 + 4.1680I 6.43676 2.09201I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.14640 1.58860I
a = 0.162813 + 1.015850I
b = 1.58994 0.40736I
15.7392 4.1680I 6.43676 + 2.09201I
u = 0.33131 + 1.59485I
a = 0.156693 + 1.177500I
b = 1.92985 0.14022I
10.55240 + 7.55501I 5.88870 2.72866I
u = 0.33131 1.59485I
a = 0.156693 1.177500I
b = 1.92985 + 0.14022I
10.55240 7.55501I 5.88870 + 2.72866I
u = 0.084263 + 0.319070I
a = 0.11365 + 1.99296I
b = 0.626317 0.204194I
1.181970 + 0.424054I 6.20164 1.93342I
u = 0.084263 0.319070I
a = 0.11365 1.99296I
b = 0.626317 + 0.204194I
1.181970 0.424054I 6.20164 + 1.93342I
6
II. I
u
2
= h−au + b, u
2
a + a
2
+ au 2u
2
+ 2a u 3, u
3
+ u
2
+ 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
12
=
0
u
a
4
=
a
au
a
8
=
1
u
2
a
3
=
au + a
au
a
6
=
au + u
2
a + u + 2
au 1
a
2
=
u
2
a + u + 1
au 1
a
5
=
a
au
a
11
=
u
u
2
u 1
a
10
=
u
2
+ 1
u
2
u 1
a
1
=
1
0
a
9
=
u
2
+ 1
u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a + 3u
2
+ a + 5u
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u
2
+ u 1)
3
c
4
, c
9
u
6
c
5
, c
6
(u
2
u 1)
3
c
7
, c
8
(u
3
+ u
2
+ 2u + 1)
2
c
10
, c
12
(u
3
+ u
2
1)
2
c
11
(u
3
u
2
+ 2u 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
(y
2
3y + 1)
3
c
4
, c
9
y
6
c
7
, c
8
, c
11
(y
3
+ 3y
2
+ 2y 1)
2
c
10
, c
12
(y
3
y
2
+ 2y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.198308 1.205210I
b = 1.61803
11.90680 2.82812I 5.91278 + 1.52866I
u = 0.215080 + 1.307140I
a = 0.075747 + 0.460350I
b = 0.618034
4.01109 2.82812I 6.11966 + 6.11708I
u = 0.215080 1.307140I
a = 0.198308 + 1.205210I
b = 1.61803
11.90680 + 2.82812I 5.91278 1.52866I
u = 0.215080 1.307140I
a = 0.075747 0.460350I
b = 0.618034
4.01109 + 2.82812I 6.11966 6.11708I
u = 0.569840
a = 1.08457
b = 0.618034
0.126494 1.14270
u = 0.569840
a = 2.83945
b = 1.61803
7.76919 3.79250
10
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
3
)(u
15
18u
14
+ ··· + 4668u + 207)
c
2
, c
3
((u
2
+ u 1)
3
)(u
15
+ 4u
14
+ ··· + 6u 1)
c
4
, c
9
u
6
(u
15
+ u
14
+ ··· 96u 64)
c
5
, c
6
((u
2
u 1)
3
)(u
15
+ 4u
14
+ ··· + 6u 1)
c
7
, c
8
((u
3
+ u
2
+ 2u + 1)
2
)(u
15
+ 3u
14
+ ··· 3u 1)
c
10
((u
3
+ u
2
1)
2
)(u
15
3u
14
+ ··· 37u 41)
c
11
((u
3
u
2
+ 2u 1)
2
)(u
15
+ 3u
14
+ ··· 3u 1)
c
12
((u
3
+ u
2
1)
2
)(u
15
u
14
+ ··· 15u 3)
11
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
3
)(y
15
110y
14
+ ··· + 1.42608 × 10
7
y 42849)
c
2
, c
3
, c
5
c
6
((y
2
3y + 1)
3
)(y
15
26y
14
+ ··· + 46y 1)
c
4
, c
9
y
6
(y
15
+ 35y
14
+ ··· + 33792y 4096)
c
7
, c
8
, c
11
((y
3
+ 3y
2
+ 2y 1)
2
)(y
15
+ 17y
14
+ ··· 15y 1)
c
10
((y
3
y
2
+ 2y 1)
2
)(y
15
+ 21y
14
+ ··· 37007y 1681)
c
12
((y
3
y
2
+ 2y 1)
2
)(y
15
+ 41y
14
+ ··· + 273y 9)
12