12n
0724
(K12n
0724
)
A knot diagram
1
Linearized knot diagam
4 6 7 9 2 3 11 12 4 1 9 8
Solving Sequence
8,12 4,9
5 1 2 11 7 3 6 10
c
8
c
4
c
12
c
1
c
11
c
7
c
3
c
6
c
10
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
34
2u
33
+ ··· + 2b + 2, 3u
35
+ 9u
34
+ ··· + 2a + 12, u
36
+ 3u
35
+ ··· + 5u + 1i
I
u
2
= h−u
2
a + b, u
2
a + a
2
u
2
a + u 2, u
3
u
2
+ 2u 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
34
2u
33
+· · ·+2b+2, 3u
35
+9u
34
+· · ·+2a+12, u
36
+3u
35
+· · ·+5u+1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
4
=
3
2
u
35
9
2
u
34
+ ···
13
2
u 6
1
2
u
34
+ u
33
+ ··· +
1
2
u 1
a
9
=
1
u
2
a
5
=
3
2
u
35
9
2
u
34
+ ···
15
2
u 7
1
2
u
34
u
33
+ ··· +
1
2
u 1
a
1
=
u
u
a
2
=
1
2
u
35
3
2
u
34
+ ··· + 12u
2
15
2
u
1
2
u
34
+ u
33
+ ··· +
9
2
u
2
+
1
2
u
a
11
=
u
u
3
+ u
a
7
=
u
4
u
2
+ 1
u
6
2u
4
u
2
a
3
=
2u
35
6u
34
+ ···
25
2
u
17
2
3
2
u
35
2u
34
+ ··· +
3
2
u
1
2
a
6
=
u
35
+ 3u
34
+ ··· +
19
2
u +
3
2
1
2
u
35
2u
34
+ ···
3
2
u
1
2
a
10
=
u
5
+ 2u
3
+ u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
35
5
2
u
34
+ ··· 12u
21
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
36
4u
35
+ ··· + 4u + 1
c
2
, c
3
, c
5
c
6
u
36
+ 4u
35
+ ··· 2u + 1
c
4
, c
9
u
36
+ u
35
+ ··· + 32u + 64
c
7
u
36
+ 3u
35
+ ··· 905u + 241
c
8
, c
11
, c
12
u
36
3u
35
+ ··· 5u + 1
c
10
u
36
5u
35
+ ··· + 9u + 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
36
+ 44y
35
+ ··· 26y + 1
c
2
, c
3
, c
5
c
6
y
36
40y
35
+ ··· 26y + 1
c
4
, c
9
y
36
35y
35
+ ··· 82944y + 4096
c
7
y
36
+ 15y
35
+ ··· 1047493y + 58081
c
8
, c
11
, c
12
y
36
+ 35y
35
+ ··· 29y + 1
c
10
y
36
+ 35y
35
+ ··· 885y + 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.584918 + 0.622459I
a = 0.393281 + 0.608399I
b = 1.024860 + 0.631550I
1.06074 3.44814I 9.28468 + 0.39535I
u = 0.584918 0.622459I
a = 0.393281 0.608399I
b = 1.024860 0.631550I
1.06074 + 3.44814I 9.28468 0.39535I
u = 0.750111 + 0.395247I
a = 0.51873 1.46690I
b = 0.823106 0.363879I
1.86419 + 7.98474I 10.81435 5.76584I
u = 0.750111 0.395247I
a = 0.51873 + 1.46690I
b = 0.823106 + 0.363879I
1.86419 7.98474I 10.81435 + 5.76584I
u = 0.704933 + 0.458093I
a = 0.514731 + 1.219340I
b = 0.898045 + 0.419560I
5.07187 + 4.59949I 7.09710 5.90387I
u = 0.704933 0.458093I
a = 0.514731 1.219340I
b = 0.898045 0.419560I
5.07187 4.59949I 7.09710 + 5.90387I
u = 0.650250 + 0.527342I
a = 0.486347 0.943180I
b = 0.959920 0.500736I
5.33026 0.08250I 6.15458 0.14164I
u = 0.650250 0.527342I
a = 0.486347 + 0.943180I
b = 0.959920 + 0.500736I
5.33026 + 0.08250I 6.15458 + 0.14164I
u = 0.781619
a = 0.928457
b = 0.540395
7.32938 12.6770
u = 0.333725 + 1.215310I
a = 0.313201 0.777608I
b = 0.067999 + 0.938160I
3.58469 4.02994I 8.71251 + 3.82957I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.333725 1.215310I
a = 0.313201 + 0.777608I
b = 0.067999 0.938160I
3.58469 + 4.02994I 8.71251 3.82957I
u = 0.239600 + 1.278530I
a = 0.185138 + 0.409163I
b = 0.007593 0.541465I
2.51540 3.15546I 0.55293 + 6.85711I
u = 0.239600 1.278530I
a = 0.185138 0.409163I
b = 0.007593 + 0.541465I
2.51540 + 3.15546I 0.55293 6.85711I
u = 0.570266 + 0.400726I
a = 0.877489 0.756539I
b = 0.297801 + 0.607076I
6.37924 1.83035I 12.43917 + 3.59444I
u = 0.570266 0.400726I
a = 0.877489 + 0.756539I
b = 0.297801 0.607076I
6.37924 + 1.83035I 12.43917 3.59444I
u = 0.096640 + 1.314140I
a = 1.86833 0.54003I
b = 2.39929 + 1.89454I
5.49210 + 1.78793I 8.00000 + 1.75055I
u = 0.096640 1.314140I
a = 1.86833 + 0.54003I
b = 2.39929 1.89454I
5.49210 1.78793I 8.00000 1.75055I
u = 0.003093 + 1.351590I
a = 1.346750 + 0.048804I
b = 1.75931 0.78922I
2.91594 + 0.49680I 6.76015 1.46543I
u = 0.003093 1.351590I
a = 1.346750 0.048804I
b = 1.75931 + 0.78922I
2.91594 0.49680I 6.76015 + 1.46543I
u = 0.632707
a = 0.514711
b = 0.261536
1.47548 4.26650
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.118075 + 1.391920I
a = 0.902722 + 0.302362I
b = 1.248310 + 0.060515I
4.66390 2.61771I 2.92989 + 4.33183I
u = 0.118075 1.391920I
a = 0.902722 0.302362I
b = 1.248310 0.060515I
4.66390 + 2.61771I 2.92989 4.33183I
u = 0.20804 + 1.44313I
a = 0.670803 0.683664I
b = 1.072410 + 0.518782I
0.46527 4.68513I 8.00000 + 0.I
u = 0.20804 1.44313I
a = 0.670803 + 0.683664I
b = 1.072410 0.518782I
0.46527 + 4.68513I 8.00000 + 0.I
u = 0.28295 + 1.47214I
a = 2.04519 + 0.99112I
b = 3.54834 1.01341I
4.15419 + 11.75140I 0
u = 0.28295 1.47214I
a = 2.04519 0.99112I
b = 3.54834 + 1.01341I
4.15419 11.75140I 0
u = 0.25376 + 1.49060I
a = 2.05918 0.92299I
b = 3.47531 + 0.84038I
11.38500 + 8.10134I 0
u = 0.25376 1.49060I
a = 2.05918 + 0.92299I
b = 3.47531 0.84038I
11.38500 8.10134I 0
u = 0.16804 + 1.50765I
a = 1.98331 0.75551I
b = 3.17021 + 0.44936I
5.88626 0.82923I 0
u = 0.16804 1.50765I
a = 1.98331 + 0.75551I
b = 3.17021 0.44936I
5.88626 + 0.82923I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.21821 + 1.50283I
a = 2.04552 + 0.85247I
b = 3.36643 0.66614I
11.93180 + 3.06807I 0
u = 0.21821 1.50283I
a = 2.04552 0.85247I
b = 3.36643 + 0.66614I
11.93180 3.06807I 0
u = 0.419044
a = 3.28668
b = 1.05760
9.57946 1.90810
u = 0.352645 + 0.225056I
a = 0.666608 + 0.999666I
b = 0.054962 0.463386I
0.508387 0.873575I 8.67347 + 7.93671I
u = 0.352645 0.225056I
a = 0.666608 0.999666I
b = 0.054962 + 0.463386I
0.508387 + 0.873575I 8.67347 7.93671I
u = 0.226552
a = 2.78574
b = 0.591839
1.26761 6.33540
8
II. I
u
2
= h−u
2
a + b, u
2
a + a
2
u
2
a + u 2, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
8
=
1
0
a
12
=
0
u
a
4
=
a
u
2
a
a
9
=
1
u
2
a
5
=
a
u
2
a
a
1
=
u
u
a
2
=
u
2
a u 1
u
2
a + 2u 1
a
11
=
u
u
2
u + 1
a
7
=
u
u
a
3
=
au + 2a
u
2
a + au a
a
6
=
au u
2
2a 1
u
2
a au + a + u 1
a
10
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
a au 5u
2
+ 3u 20
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
(u
2
+ u 1)
3
c
4
, c
9
u
6
c
5
, c
6
(u
2
u 1)
3
c
7
, c
10
(u
3
+ u
2
1)
2
c
8
(u
3
u
2
+ 2u 1)
2
c
11
, c
12
(u
3
+ u
2
+ 2u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
(y
2
3y + 1)
3
c
4
, c
9
y
6
c
7
, c
10
(y
3
y
2
+ 2y 1)
2
c
8
, c
11
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.071720 + 0.909787I
b = 1.27003 2.11500I
5.85852 2.82812I 10.89327 + 4.43024I
u = 0.215080 + 1.307140I
a = 0.409360 0.347508I
b = 0.485107 + 0.807858I
2.03717 2.82812I 11.10015 0.15818I
u = 0.215080 1.307140I
a = 1.071720 0.909787I
b = 1.27003 + 2.11500I
5.85852 + 2.82812I 10.89327 4.43024I
u = 0.215080 1.307140I
a = 0.409360 + 0.347508I
b = 0.485107 0.807858I
2.03717 + 2.82812I 11.10015 + 0.15818I
u = 0.569840
a = 0.818721
b = 0.265853
2.10041 19.1820
u = 0.569840
a = 2.14344
b = 0.696013
9.99610 21.8310
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
+ u 1)
3
)(u
36
4u
35
+ ··· + 4u + 1)
c
2
, c
3
((u
2
+ u 1)
3
)(u
36
+ 4u
35
+ ··· 2u + 1)
c
4
, c
9
u
6
(u
36
+ u
35
+ ··· + 32u + 64)
c
5
, c
6
((u
2
u 1)
3
)(u
36
+ 4u
35
+ ··· 2u + 1)
c
7
((u
3
+ u
2
1)
2
)(u
36
+ 3u
35
+ ··· 905u + 241)
c
8
((u
3
u
2
+ 2u 1)
2
)(u
36
3u
35
+ ··· 5u + 1)
c
10
((u
3
+ u
2
1)
2
)(u
36
5u
35
+ ··· + 9u + 3)
c
11
, c
12
((u
3
+ u
2
+ 2u + 1)
2
)(u
36
3u
35
+ ··· 5u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
3y + 1)
3
)(y
36
+ 44y
35
+ ··· 26y + 1)
c
2
, c
3
, c
5
c
6
((y
2
3y + 1)
3
)(y
36
40y
35
+ ··· 26y + 1)
c
4
, c
9
y
6
(y
36
35y
35
+ ··· 82944y + 4096)
c
7
((y
3
y
2
+ 2y 1)
2
)(y
36
+ 15y
35
+ ··· 1047493y + 58081)
c
8
, c
11
, c
12
((y
3
+ 3y
2
+ 2y 1)
2
)(y
36
+ 35y
35
+ ··· 29y + 1)
c
10
((y
3
y
2
+ 2y 1)
2
)(y
36
+ 35y
35
+ ··· 885y + 9)
14