12n
0730
(K12n
0730
)
A knot diagram
1
Linearized knot diagam
4 10 8 10 1 3 10 12 3 1 8 6
Solving Sequence
3,8 4,10
2 1 7 6 5 9 12 11
c
3
c
2
c
1
c
7
c
6
c
5
c
9
c
12
c
11
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h1.44280 × 10
94
u
39
+ 8.50468 × 10
94
u
38
+ ··· + 1.31536 × 10
97
b 5.65969 × 10
97
,
7.99853 × 10
97
u
39
1.12262 × 10
98
u
38
+ ··· + 2.19271 × 10
100
a 2.21181 × 10
101
,
u
40
+ 3u
39
+ ··· + 1016u 1667i
I
u
2
= h−7910373u
16
+ 432236197u
15
+ ··· + 1605075802b + 422623648,
996003064u
16
1757434994u
15
+ ··· + 1605075802a + 2036147287, u
17
2u
16
+ ··· u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 57 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.44 × 10
94
u
39
+ 8.50 × 10
94
u
38
+ · · · + 1.32 × 10
97
b 5.66 ×
10
97
, 8.00 × 10
97
u
39
1.12 × 10
98
u
38
+ · · · + 2.19 × 10
100
a 2.21 ×
10
101
, u
40
+ 3u
39
+ · · · + 1016u 1667i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.00364778u
39
+ 0.00511977u
38
+ ··· 16.1044u + 10.0871
0.00109689u
39
0.00646565u
38
+ ··· + 1.45140u + 4.30276
a
2
=
0.00182775u
39
+ 0.0000852465u
38
+ ··· + 7.45312u 9.20414
0.00494909u
39
+ 0.0143198u
38
+ ··· 7.75640u + 2.00982
a
1
=
0.000306195u
39
+ 0.0113462u
38
+ ··· + 8.40116u 16.4770
0.00369323u
39
+ 0.00540172u
38
+ ··· 9.13598u + 10.1100
a
7
=
0.0149546u
39
0.0418621u
38
+ ··· + 30.1162u 7.15726
0.00556849u
39
+ 0.0195206u
38
+ ··· 7.34714u 3.04686
a
6
=
0.00938611u
39
0.0223414u
38
+ ··· + 22.7690u 10.2041
0.00556849u
39
+ 0.0195206u
38
+ ··· 7.34714u 3.04686
a
5
=
0.00482950u
39
+ 0.0248160u
38
+ ··· + 0.583500u 13.7252
0.00213394u
39
0.0112609u
38
+ ··· 0.948044u + 7.27286
a
9
=
0.00255090u
39
0.00134588u
38
+ ··· 14.6530u + 14.3899
0.00109689u
39
0.00646565u
38
+ ··· + 1.45140u + 4.30276
a
12
=
0.00391056u
39
0.0175058u
38
+ ··· + 6.93355u + 8.56793
0.00163120u
39
0.00313351u
38
+ ··· + 5.54321u 3.60264
a
11
=
0.00391056u
39
0.0175058u
38
+ ··· + 6.93355u + 8.56793
0.00128477u
39
+ 0.0119254u
38
+ ··· + 4.89087u 13.2282
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0225460u
39
+ 0.0929089u
38
+ ··· + 1.19705u 39.3928
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
6u
39
+ ··· 585u + 81
c
2
, c
9
u
40
+ u
39
+ ··· 1593u 281
c
3
u
40
3u
39
+ ··· 1016u 1667
c
4
u
40
2u
39
+ ··· + 18u 7
c
5
, c
12
u
40
+ 2u
39
+ ··· + 45u 181
c
6
u
40
+ 23u
38
+ ··· + 72246u 10339
c
7
u
40
u
39
+ ··· + 119u + 7
c
8
, c
11
u
40
4u
39
+ ··· + 159u + 39
c
10
u
40
3u
39
+ ··· + 77u + 49
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
22y
39
+ ··· 215217y + 6561
c
2
, c
9
y
40
+ 55y
39
+ ··· + 1314861y + 78961
c
3
y
40
+ 35y
39
+ ··· + 25863122y + 2778889
c
4
y
40
38y
39
+ ··· + 10176y + 49
c
5
, c
12
y
40
+ 28y
39
+ ··· + 424773y + 32761
c
6
y
40
+ 46y
39
+ ··· 3212684616y + 106894921
c
7
y
40
55y
39
+ ··· 3745y + 49
c
8
, c
11
y
40
22y
39
+ ··· 88383y + 1521
c
10
y
40
29y
39
+ ··· 130291y + 2401
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.074225 + 0.995798I
a = 1.48142 0.88202I
b = 0.069778 + 0.251836I
1.68029 6.30373I 1.75666 + 6.49211I
u = 0.074225 0.995798I
a = 1.48142 + 0.88202I
b = 0.069778 0.251836I
1.68029 + 6.30373I 1.75666 6.49211I
u = 0.019908 + 1.014730I
a = 0.933442 + 0.125283I
b = 0.321710 + 0.172172I
2.72752 0.30261I 4.74009 + 1.12705I
u = 0.019908 1.014730I
a = 0.933442 0.125283I
b = 0.321710 0.172172I
2.72752 + 0.30261I 4.74009 1.12705I
u = 0.090932 + 1.056100I
a = 0.69809 1.51032I
b = 0.39797 + 1.53949I
8.40378 + 2.27498I 2.47436 4.06313I
u = 0.090932 1.056100I
a = 0.69809 + 1.51032I
b = 0.39797 1.53949I
8.40378 2.27498I 2.47436 + 4.06313I
u = 0.384077 + 0.999119I
a = 0.75184 1.68276I
b = 0.06076 + 1.71893I
9.33802 0.43323I 1.80383 1.69832I
u = 0.384077 0.999119I
a = 0.75184 + 1.68276I
b = 0.06076 1.71893I
9.33802 + 0.43323I 1.80383 + 1.69832I
u = 0.744898 + 0.775177I
a = 0.209036 0.214334I
b = 1.145770 + 0.121712I
4.62154 2.17421I 9.73588 + 5.09039I
u = 0.744898 0.775177I
a = 0.209036 + 0.214334I
b = 1.145770 0.121712I
4.62154 + 2.17421I 9.73588 5.09039I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.969293 + 0.598574I
a = 0.875542 0.894161I
b = 0.124340 + 0.752925I
0.244335 1.176990I 6.16007 + 1.36199I
u = 0.969293 0.598574I
a = 0.875542 + 0.894161I
b = 0.124340 0.752925I
0.244335 + 1.176990I 6.16007 1.36199I
u = 1.103180 + 0.358015I
a = 0.751248 + 0.156995I
b = 0.530673 0.765497I
1.66991 + 2.90598I 0.37953 2.28494I
u = 1.103180 0.358015I
a = 0.751248 0.156995I
b = 0.530673 + 0.765497I
1.66991 2.90598I 0.37953 + 2.28494I
u = 0.898417 + 0.778153I
a = 0.096570 0.403680I
b = 0.535046 0.126132I
4.45088 + 3.00898I 9.22623 + 0.17791I
u = 0.898417 0.778153I
a = 0.096570 + 0.403680I
b = 0.535046 + 0.126132I
4.45088 3.00898I 9.22623 0.17791I
u = 0.530454 + 1.115730I
a = 0.109870 + 0.125763I
b = 1.69402 0.58477I
1.60625 + 4.02862I 2.67808 1.97162I
u = 0.530454 1.115730I
a = 0.109870 0.125763I
b = 1.69402 + 0.58477I
1.60625 4.02862I 2.67808 + 1.97162I
u = 0.946367 + 0.805651I
a = 0.594098 + 0.206972I
b = 0.866066 0.936600I
0.05822 3.02351I 2.19172 + 2.97004I
u = 0.946367 0.805651I
a = 0.594098 0.206972I
b = 0.866066 + 0.936600I
0.05822 + 3.02351I 2.19172 2.97004I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.547294 + 1.146790I
a = 0.07437 1.44792I
b = 0.351725 + 1.262160I
1.36525 2.63988I 0.758920 0.234307I
u = 0.547294 1.146790I
a = 0.07437 + 1.44792I
b = 0.351725 1.262160I
1.36525 + 2.63988I 0.758920 + 0.234307I
u = 0.110521 + 1.325330I
a = 0.210888 + 1.057420I
b = 0.82951 1.82120I
9.68403 3.29803I 1.76650 + 2.63916I
u = 0.110521 1.325330I
a = 0.210888 1.057420I
b = 0.82951 + 1.82120I
9.68403 + 3.29803I 1.76650 2.63916I
u = 0.400029 + 1.319180I
a = 0.302273 + 1.229320I
b = 0.25236 2.15666I
10.73370 + 3.93558I 1.98176 4.05917I
u = 0.400029 1.319180I
a = 0.302273 1.229320I
b = 0.25236 + 2.15666I
10.73370 3.93558I 1.98176 + 4.05917I
u = 0.499216
a = 0.294586
b = 0.384818
0.791835 13.1510
u = 0.60667 + 1.39679I
a = 0.177788 + 1.087880I
b = 0.08306 1.87544I
2.61258 4.98918I 0
u = 0.60667 1.39679I
a = 0.177788 1.087880I
b = 0.08306 + 1.87544I
2.61258 + 4.98918I 0
u = 0.057521 + 0.459196I
a = 1.04344 1.83286I
b = 0.049531 + 0.594009I
1.36870 1.27202I 0.60073 + 4.17984I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.057521 0.459196I
a = 1.04344 + 1.83286I
b = 0.049531 0.594009I
1.36870 + 1.27202I 0.60073 4.17984I
u = 0.451499
a = 1.24714
b = 1.34904
7.99269 41.4500
u = 1.71262 + 0.03239I
a = 0.625667 0.062971I
b = 0.701464 + 1.129030I
2.55596 3.89352I 0
u = 1.71262 0.03239I
a = 0.625667 + 0.062971I
b = 0.701464 1.129030I
2.55596 + 3.89352I 0
u = 0.93976 + 1.68582I
a = 0.302089 + 0.934011I
b = 0.52563 2.12471I
7.2434 + 13.4515I 0
u = 0.93976 1.68582I
a = 0.302089 0.934011I
b = 0.52563 + 2.12471I
7.2434 13.4515I 0
u = 0.75189 + 1.95033I
a = 0.179356 0.815834I
b = 0.24537 + 2.12821I
4.31816 + 4.85736I 0
u = 0.75189 1.95033I
a = 0.179356 + 0.815834I
b = 0.24537 2.12821I
4.31816 4.85736I 0
u = 0.00784 + 2.54288I
a = 0.024216 + 0.721328I
b = 0.41910 2.14226I
13.20450 2.73784I 0
u = 0.00784 2.54288I
a = 0.024216 0.721328I
b = 0.41910 + 2.14226I
13.20450 + 2.73784I 0
8
II.
I
u
2
= h−7.91 × 10
6
u
16
+ 4.32 × 10
8
u
15
+ · · · + 1.61 × 10
9
b + 4.23 × 10
8
, 9.96 ×
10
8
u
16
1.76×10
9
u
15
+· · · +1.61×10
9
a+2.04×10
9
, u
17
2u
16
+· · · u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
8
=
0
u
a
4
=
1
u
2
a
10
=
0.620533u
16
+ 1.09492u
15
+ ··· 0.305972u 1.26857
0.00492835u
16
0.269293u
15
+ ··· 1.22753u 0.263304
a
2
=
0.151781u
16
+ 0.152336u
15
+ ··· 4.08959u + 0.621432
0.149622u
16
+ 0.0695177u
15
+ ··· + 1.46667u 1.24998
a
1
=
0.498942u
16
+ 0.618046u
15
+ ··· 2.77470u 0.779776
0.274767u
16
+ 0.350118u
15
+ ··· + 1.81383u 1.02137
a
7
=
0.537305u
16
+ 1.17062u
15
+ ··· 0.571419u + 2.57166
0.151225u
16
+ 0.499990u
15
+ ··· + 0.621432u + 0.151781
a
6
=
0.688530u
16
+ 1.67061u
15
+ ··· + 0.0500138u + 2.72344
0.151225u
16
+ 0.499990u
15
+ ··· + 0.621432u + 0.151781
a
5
=
0.247793u
16
0.451462u
15
+ ··· + 6.66125u + 1.91587
0.347162u
16
0.465710u
15
+ ··· 1.31489u + 1.40121
a
9
=
0.615605u
16
+ 0.825630u
15
+ ··· 1.53350u 1.53187
0.00492835u
16
0.269293u
15
+ ··· 1.22753u 0.263304
a
12
=
0.606095u
16
1.10067u
15
+ ··· + 2.24416u + 1.10418
0.0253392u
16
+ 0.352876u
15
+ ··· + 3.62140u 1.08505
a
11
=
0.606095u
16
1.10067u
15
+ ··· + 2.24416u + 1.10418
0.171636u
16
+ 0.583572u
15
+ ··· + 3.01530u 1.19657
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7112656685
1605075802
u
16
7923058150
802537901
u
15
+ ···
29249964323
1605075802
u
13984566
802537901
9
(iv) u-Polynomials at the component
10
Crossings u-Polynomials at each crossing
c
1
u
17
7u
16
+ ··· + 33u 11
c
2
u
17
+ 6u
15
+ ··· 9u 1
c
3
u
17
2u
16
+ ··· u
2
+ 1
c
4
u
17
+ u
16
+ ··· + 84u 19
c
5
u
17
u
16
+ ··· + u 1
c
6
u
17
+ u
16
+ ··· 14u 1
c
7
u
17
+ 6u
16
+ ··· + 45u + 11
c
8
u
17
3u
16
+ ··· + u 1
c
9
u
17
+ 6u
15
+ ··· 9u + 1
c
10
u
17
4u
16
+ ··· 5u 1
c
11
u
17
+ 3u
16
+ ··· + u + 1
c
12
u
17
+ u
16
+ ··· + u + 1
11
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
13y
16
+ ··· + 561y 121
c
2
, c
9
y
17
+ 12y
16
+ ··· + 19y 1
c
3
y
17
+ 12y
16
+ ··· + 2y 1
c
4
y
17
13y
16
+ ··· + 3104y 361
c
5
, c
12
y
17
+ 9y
16
+ ··· + 11y 1
c
6
y
17
+ 11y
16
+ ··· + 72y 1
c
7
y
17
22y
16
+ ··· + 1321y 121
c
8
, c
11
y
17
9y
16
+ ··· + 7y 1
c
10
y
17
12y
16
+ ··· + 11y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.020499 + 0.998308I
a = 0.37175 1.89988I
b = 0.18081 + 1.72832I
9.62563 + 1.51829I 1.39343 3.45515I
u = 0.020499 0.998308I
a = 0.37175 + 1.89988I
b = 0.18081 1.72832I
9.62563 1.51829I 1.39343 + 3.45515I
u = 0.380557 + 0.938672I
a = 0.739410 + 0.323312I
b = 1.246230 0.332058I
4.22062 + 1.12566I 5.94166 + 0.72076I
u = 0.380557 0.938672I
a = 0.739410 0.323312I
b = 1.246230 + 0.332058I
4.22062 1.12566I 5.94166 0.72076I
u = 0.995936 + 0.621165I
a = 0.280702 0.424421I
b = 0.353305 0.553264I
5.01697 + 3.35175I 1.60696 5.55747I
u = 0.995936 0.621165I
a = 0.280702 + 0.424421I
b = 0.353305 + 0.553264I
5.01697 3.35175I 1.60696 + 5.55747I
u = 1.178520 + 0.479735I
a = 0.655660 + 0.253208I
b = 0.090891 0.717128I
2.58072 3.16432I 9.05012 + 4.68936I
u = 1.178520 0.479735I
a = 0.655660 0.253208I
b = 0.090891 + 0.717128I
2.58072 + 3.16432I 9.05012 4.68936I
u = 0.692730 + 0.052899I
a = 1.72978 + 0.41261I
b = 0.232122 0.090819I
0.745228 + 0.220813I 1.69301 + 1.79583I
u = 0.692730 0.052899I
a = 1.72978 0.41261I
b = 0.232122 + 0.090819I
0.745228 0.220813I 1.69301 1.79583I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.531547 + 1.299730I
a = 0.013837 1.218520I
b = 0.113827 + 1.336070I
0.72305 3.21935I 6.16546 + 5.06885I
u = 0.531547 1.299730I
a = 0.013837 + 1.218520I
b = 0.113827 1.336070I
0.72305 + 3.21935I 6.16546 5.06885I
u = 0.016024 + 0.519282I
a = 1.90689 1.51776I
b = 1.092870 + 0.142474I
2.88743 5.63292I 6.98267 + 4.20336I
u = 0.016024 0.519282I
a = 1.90689 + 1.51776I
b = 1.092870 0.142474I
2.88743 + 5.63292I 6.98267 4.20336I
u = 0.346914
a = 1.87486
b = 1.39658
7.87029 24.2710
u = 0.11063 + 2.21488I
a = 0.074096 + 0.817459I
b = 0.46997 2.10827I
13.9624 2.5342I 2.69679 + 0.52341I
u = 0.11063 2.21488I
a = 0.074096 0.817459I
b = 0.46997 + 2.10827I
13.9624 + 2.5342I 2.69679 0.52341I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
7u
16
+ ··· + 33u 11)(u
40
6u
39
+ ··· 585u + 81)
c
2
(u
17
+ 6u
15
+ ··· 9u 1)(u
40
+ u
39
+ ··· 1593u 281)
c
3
(u
17
2u
16
+ ··· u
2
+ 1)(u
40
3u
39
+ ··· 1016u 1667)
c
4
(u
17
+ u
16
+ ··· + 84u 19)(u
40
2u
39
+ ··· + 18u 7)
c
5
(u
17
u
16
+ ··· + u 1)(u
40
+ 2u
39
+ ··· + 45u 181)
c
6
(u
17
+ u
16
+ ··· 14u 1)(u
40
+ 23u
38
+ ··· + 72246u 10339)
c
7
(u
17
+ 6u
16
+ ··· + 45u + 11)(u
40
u
39
+ ··· + 119u + 7)
c
8
(u
17
3u
16
+ ··· + u 1)(u
40
4u
39
+ ··· + 159u + 39)
c
9
(u
17
+ 6u
15
+ ··· 9u + 1)(u
40
+ u
39
+ ··· 1593u 281)
c
10
(u
17
4u
16
+ ··· 5u 1)(u
40
3u
39
+ ··· + 77u + 49)
c
11
(u
17
+ 3u
16
+ ··· + u + 1)(u
40
4u
39
+ ··· + 159u + 39)
c
12
(u
17
+ u
16
+ ··· + u + 1)(u
40
+ 2u
39
+ ··· + 45u 181)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
13y
16
+ ··· + 561y 121)
· (y
40
22y
39
+ ··· 215217y + 6561)
c
2
, c
9
(y
17
+ 12y
16
+ ··· + 19y 1)(y
40
+ 55y
39
+ ··· + 1314861y + 78961)
c
3
(y
17
+ 12y
16
+ ··· + 2y 1)
· (y
40
+ 35y
39
+ ··· + 25863122y + 2778889)
c
4
(y
17
13y
16
+ ··· + 3104y 361)(y
40
38y
39
+ ··· + 10176y + 49)
c
5
, c
12
(y
17
+ 9y
16
+ ··· + 11y 1)(y
40
+ 28y
39
+ ··· + 424773y + 32761)
c
6
(y
17
+ 11y
16
+ ··· + 72y 1)
· (y
40
+ 46y
39
+ ··· 3212684616y + 106894921)
c
7
(y
17
22y
16
+ ··· + 1321y 121)(y
40
55y
39
+ ··· 3745y + 49)
c
8
, c
11
(y
17
9y
16
+ ··· + 7y 1)(y
40
22y
39
+ ··· 88383y + 1521)
c
10
(y
17
12y
16
+ ··· + 11y 1)(y
40
29y
39
+ ··· 130291y + 2401)
17