12n
0735
(K12n
0735
)
A knot diagram
1
Linearized knot diagam
4 11 7 1 11 2 5 12 2 7 9 8
Solving Sequence
2,11 3,7
4 1 6 5 10 9 12 8
c
2
c
3
c
1
c
6
c
5
c
10
c
9
c
11
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.47491 × 10
161
u
52
1.00334 × 10
161
u
51
+ ··· + 6.59902 × 10
163
b 4.00631 × 10
164
,
1.55727 × 10
164
u
52
4.68658 × 10
163
u
51
+ ··· + 6.14369 × 10
166
a 7.33068 × 10
167
,
u
53
u
52
+ ··· + 1260u 931i
I
u
2
= h−1092u
17
+ 1979u
16
+ ··· + 1579b 2918, 862u
17
922u
16
+ ··· + 1579a + 3868,
u
18
+ 6u
16
u
15
+ 10u
14
4u
13
+ 2u
12
4u
11
+ u
10
4u
9
+ 5u
8
5u
7
4u
6
+ 6u
5
+ 8u
4
3u
3
4u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.47 × 10
161
u
52
1.00 × 10
161
u
51
+ · · · + 6.60 × 10
163
b 4.01 ×
10
164
, 1.56 × 10
164
u
52
4.69 × 10
163
u
51
+ · · · + 6.14 × 10
166
a 7.33 ×
10
167
, u
53
u
52
+ · · · + 1260u 931i
(i) Arc colorings
a
2
=
1
0
a
11
=
0
u
a
3
=
1
u
2
a
7
=
0.00253474u
52
+ 0.000762828u
51
+ ··· 12.6342u + 11.9320
0.00223505u
52
+ 0.00152044u
51
+ ··· 5.41272u + 6.07107
a
4
=
0.000307309u
52
0.00341411u
51
+ ··· 25.6189u + 13.2717
0.00388609u
52
0.00479985u
51
+ ··· 9.07382u 1.92407
a
1
=
0.000445713u
52
0.00127751u
51
+ ··· 7.34876u + 4.21132
0.000455151u
52
+ 0.00111184u
51
+ ··· + 16.0717u 6.35644
a
6
=
0.00476979u
52
+ 0.00228326u
51
+ ··· 18.0470u + 18.0031
0.00223505u
52
+ 0.00152044u
51
+ ··· 5.41272u + 6.07107
a
5
=
0.00476979u
52
+ 0.00228326u
51
+ ··· 18.0470u + 18.0031
0.000888908u
52
+ 0.000380323u
51
+ ··· 6.72037u + 3.75612
a
10
=
0.00734689u
52
0.00837266u
51
+ ··· 33.0209u + 0.0462951
0.00168842u
52
0.00168620u
51
+ ··· 2.75207u 1.24109
a
9
=
0.00903531u
52
0.0100589u
51
+ ··· 35.7730u 1.19480
0.00168842u
52
0.00168620u
51
+ ··· 2.75207u 1.24109
a
12
=
0.000777537u
52
0.00530471u
51
+ ··· 33.5819u + 14.2472
0.00375707u
52
0.00500103u
51
+ ··· 18.9354u + 2.02528
a
8
=
0.00441879u
52
+ 0.00343811u
51
+ ··· 10.9752u + 9.12520
0.00140540u
52
0.00443957u
51
+ ··· 26.4019u + 9.54110
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00251009u
52
0.00470979u
51
+ ··· + 12.2699u + 11.1088
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
53
5u
52
+ ··· 82u + 7
c
2
u
53
+ u
52
+ ··· + 1260u + 931
c
3
u
53
+ 4u
52
+ ··· + 208100u + 20921
c
5
u
53
24u
51
+ ··· 469428u + 50191
c
6
u
53
u
52
+ ··· + 1059u + 259
c
7
u
53
12u
52
+ ··· + 2540u 167
c
8
, c
11
, c
12
u
53
4u
52
+ ··· 2u + 1
c
9
u
53
2u
52
+ ··· + 7670694u + 814939
c
10
u
53
39u
51
+ ··· 634u + 389
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
53
+ 45y
52
+ ··· 1746y 49
c
2
y
53
+ 71y
52
+ ··· 25215890y 866761
c
3
y
53
+ 36y
52
+ ··· + 38130549598y 437688241
c
5
y
53
48y
52
+ ··· + 192928447348y 2519136481
c
6
y
53
+ 79y
52
+ ··· 2126897y 67081
c
7
y
53
+ 24y
52
+ ··· + 4177728y 27889
c
8
, c
11
, c
12
y
53
+ 60y
52
+ ··· 122y 1
c
9
y
53
+ 64y
52
+ ··· 1343304277888y 664125573721
c
10
y
53
78y
52
+ ··· + 6363770y 151321
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.840718 + 0.606406I
a = 0.277208 + 0.453633I
b = 0.145083 0.433241I
1.63830 + 2.38162I 1.12828 6.54565I
u = 0.840718 0.606406I
a = 0.277208 0.453633I
b = 0.145083 + 0.433241I
1.63830 2.38162I 1.12828 + 6.54565I
u = 0.736753 + 0.485579I
a = 1.38812 0.66054I
b = 0.292820 + 0.295820I
2.58306 + 2.49161I 3.55198 2.75069I
u = 0.736753 0.485579I
a = 1.38812 + 0.66054I
b = 0.292820 0.295820I
2.58306 2.49161I 3.55198 + 2.75069I
u = 0.697923 + 0.459418I
a = 0.483665 0.766875I
b = 0.160668 0.729369I
10.10000 0.16086I 2.21036 + 2.02057I
u = 0.697923 0.459418I
a = 0.483665 + 0.766875I
b = 0.160668 + 0.729369I
10.10000 + 0.16086I 2.21036 2.02057I
u = 0.171745 + 0.772459I
a = 0.696403 + 1.081210I
b = 0.713010 0.636217I
1.51102 0.59997I 4.11605 0.89073I
u = 0.171745 0.772459I
a = 0.696403 1.081210I
b = 0.713010 + 0.636217I
1.51102 + 0.59997I 4.11605 + 0.89073I
u = 1.101000 + 0.528901I
a = 0.282299 + 0.260750I
b = 1.182230 + 0.556160I
4.84724 + 0.39365I 0
u = 1.101000 0.528901I
a = 0.282299 0.260750I
b = 1.182230 0.556160I
4.84724 0.39365I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.759075
a = 0.460004
b = 0.368973
0.996264 8.17350
u = 0.473961 + 0.564197I
a = 0.548650 + 0.774800I
b = 1.39479 + 0.96442I
9.46781 + 5.75315I 1.15678 2.42893I
u = 0.473961 0.564197I
a = 0.548650 0.774800I
b = 1.39479 0.96442I
9.46781 5.75315I 1.15678 + 2.42893I
u = 0.348641 + 0.604316I
a = 2.40424 0.21358I
b = 0.712433 0.129566I
9.59529 6.13893I 0.27184 + 2.46024I
u = 0.348641 0.604316I
a = 2.40424 + 0.21358I
b = 0.712433 + 0.129566I
9.59529 + 6.13893I 0.27184 2.46024I
u = 1.118550 + 0.674070I
a = 0.593125 + 0.348906I
b = 0.110895 0.395203I
2.85176 + 2.98739I 0
u = 1.118550 0.674070I
a = 0.593125 0.348906I
b = 0.110895 + 0.395203I
2.85176 2.98739I 0
u = 0.578768 + 0.199265I
a = 0.562060 0.121794I
b = 0.809632 0.057928I
1.109960 + 0.030571I 3.57381 + 2.50459I
u = 0.578768 0.199265I
a = 0.562060 + 0.121794I
b = 0.809632 + 0.057928I
1.109960 0.030571I 3.57381 2.50459I
u = 0.02618 + 1.45150I
a = 0.40637 1.57861I
b = 0.68373 + 2.29360I
16.0150 2.2300I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.02618 1.45150I
a = 0.40637 + 1.57861I
b = 0.68373 2.29360I
16.0150 + 2.2300I 0
u = 0.321632 + 0.432414I
a = 0.501057 + 0.775061I
b = 0.658298 + 0.519110I
3.05620 + 1.45730I 2.91763 3.84500I
u = 0.321632 0.432414I
a = 0.501057 0.775061I
b = 0.658298 0.519110I
3.05620 1.45730I 2.91763 + 3.84500I
u = 0.101512 + 0.510380I
a = 1.63762 1.50988I
b = 0.286744 0.431400I
5.59306 + 3.05173I 1.18823 4.71810I
u = 0.101512 0.510380I
a = 1.63762 + 1.50988I
b = 0.286744 + 0.431400I
5.59306 3.05173I 1.18823 + 4.71810I
u = 0.177953 + 0.456691I
a = 0.523935 0.783978I
b = 1.121220 0.676233I
2.75416 4.05081I 0.12936 + 3.76873I
u = 0.177953 0.456691I
a = 0.523935 + 0.783978I
b = 1.121220 + 0.676233I
2.75416 + 4.05081I 0.12936 3.76873I
u = 0.07515 + 1.51838I
a = 0.407891 + 1.308850I
b = 0.32917 2.00352I
9.24345 + 1.84865I 0
u = 0.07515 1.51838I
a = 0.407891 1.308850I
b = 0.32917 + 2.00352I
9.24345 1.84865I 0
u = 1.30989 + 0.86519I
a = 0.404183 0.004191I
b = 0.506336 + 0.448197I
10.48660 6.53498I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.30989 0.86519I
a = 0.404183 + 0.004191I
b = 0.506336 0.448197I
10.48660 + 6.53498I 0
u = 0.014279 + 0.410182I
a = 1.91548 + 0.36685I
b = 0.082052 + 0.291523I
0.542061 1.221850I 5.29520 + 6.63859I
u = 0.014279 0.410182I
a = 1.91548 0.36685I
b = 0.082052 0.291523I
0.542061 + 1.221850I 5.29520 6.63859I
u = 0.16420 + 1.59659I
a = 0.184722 1.158090I
b = 0.54642 + 1.91576I
12.44650 + 2.07145I 0
u = 0.16420 1.59659I
a = 0.184722 + 1.158090I
b = 0.54642 1.91576I
12.44650 2.07145I 0
u = 0.22985 + 1.69814I
a = 0.109029 + 1.036300I
b = 0.11039 1.76694I
6.11300 + 0.81340I 0
u = 0.22985 1.69814I
a = 0.109029 1.036300I
b = 0.11039 + 1.76694I
6.11300 0.81340I 0
u = 0.29679 + 1.75324I
a = 0.354309 0.914956I
b = 0.21228 + 1.82313I
9.96547 1.07173I 0
u = 0.29679 1.75324I
a = 0.354309 + 0.914956I
b = 0.21228 1.82313I
9.96547 + 1.07173I 0
u = 0.30708 + 1.84408I
a = 0.079172 0.932460I
b = 0.22699 + 1.87203I
6.64424 4.88256I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.30708 1.84408I
a = 0.079172 + 0.932460I
b = 0.22699 1.87203I
6.64424 + 4.88256I 0
u = 0.40674 + 1.90462I
a = 0.058906 0.983240I
b = 0.34210 + 1.69746I
17.8761 1.8874I 0
u = 0.40674 1.90462I
a = 0.058906 + 0.983240I
b = 0.34210 1.69746I
17.8761 + 1.8874I 0
u = 0.38388 + 1.94831I
a = 0.000346 1.037260I
b = 0.24478 + 1.87973I
11.9113 + 9.7563I 0
u = 0.38388 1.94831I
a = 0.000346 + 1.037260I
b = 0.24478 1.87973I
11.9113 9.7563I 0
u = 0.43046 + 1.94155I
a = 0.037696 + 1.041050I
b = 0.38583 2.09483I
19.7372 13.8895I 0
u = 0.43046 1.94155I
a = 0.037696 1.041050I
b = 0.38583 + 2.09483I
19.7372 + 13.8895I 0
u = 0.39019 + 1.98182I
a = 0.031498 + 1.016350I
b = 0.00248 1.72309I
11.00050 3.60187I 0
u = 0.39019 1.98182I
a = 0.031498 1.016350I
b = 0.00248 + 1.72309I
11.00050 + 3.60187I 0
u = 0.46927 + 1.98045I
a = 0.291724 + 0.750465I
b = 0.63116 1.94516I
17.5539 + 0.5975I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.46927 1.98045I
a = 0.291724 0.750465I
b = 0.63116 + 1.94516I
17.5539 0.5975I 0
u = 0.36958 + 2.00799I
a = 0.064796 + 0.857021I
b = 0.45375 2.09744I
13.8228 + 7.5287I 0
u = 0.36958 2.00799I
a = 0.064796 0.857021I
b = 0.45375 + 2.09744I
13.8228 7.5287I 0
10
II. I
u
2
= h−1092u
17
+ 1979u
16
+ · · · + 1579b 2918, 862u
17
922u
16
+
· · · + 1579a + 3868, u
18
+ 6u
16
+ · · · 4u
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
11
=
0
u
a
3
=
1
u
2
a
7
=
0.545915u
17
+ 0.583914u
16
+ ··· 1.47245u 2.44965
0.691577u
17
1.25332u
16
+ ··· 0.385054u + 1.84801
a
4
=
0.545915u
17
0.583914u
16
+ ··· + 1.47245u + 4.44965
0.545915u
17
+ 0.583914u
16
+ ··· 1.47245u 2.44965
a
1
=
0.611146u
17
1.53072u
16
+ ··· + 1.63331u + 4.88157
1.23749u
17
+ 0.669411u
16
+ ··· + 1.85750u + 1.60165
a
6
=
1.23749u
17
0.669411u
16
+ ··· 1.85750u 0.601647
0.691577u
17
1.25332u
16
+ ··· 0.385054u + 1.84801
a
5
=
1.23749u
17
0.669411u
16
+ ··· 1.85750u 0.601647
1.29576u
17
1.80431u
16
+ ··· 1.62255u + 2.51742
a
10
=
0.669411u
17
0.604180u
16
+ ··· + 1.60165u + 1.23749
1.13490u
17
+ 0.763775u
16
+ ··· 3.11906u + 0.0582647
a
9
=
1.80431u
17
+ 0.159595u
16
+ ··· 1.51742u + 1.29576
1.13490u
17
+ 0.763775u
16
+ ··· 3.11906u + 0.0582647
a
12
=
0.614946u
17
1.84801u
16
+ ··· + 5.03103u 0.908803
0.665611u
17
1.92147u
16
+ ··· + 3.99937u + 1.44712
a
8
=
1.64345u
17
+ 2.27232u
16
+ ··· 0.986067u 2.83661
1.11843u
17
+ 0.611146u
16
+ ··· + 1.72894u 3.63331
(ii) Obstruction class = 1
(iii) Cusp Shapes =
993
1579
u
17
+
7877
1579
u
16
+ ··· +
6036
1579
u
48644
1579
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
4u
17
+ ··· 24u + 5
c
2
u
18
+ 6u
16
+ ··· 4u
2
+ 1
c
3
u
18
+ 3u
17
+ ··· 4u + 1
c
4
u
18
+ 4u
17
+ ··· + 24u + 5
c
5
u
18
u
17
+ ··· + 3u
2
+ 1
c
6
u
18
+ 8u
16
+ ··· + 37u + 13
c
7
u
18
u
17
+ ··· + 24u + 7
c
8
u
18
3u
17
+ ··· 2u + 1
c
9
u
18
u
17
+ ··· 16u + 7
c
10
u
18
+ 3u
17
+ ··· 8u + 5
c
11
, c
12
u
18
+ 3u
17
+ ··· + 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
+ 14y
17
+ ··· + 184y + 25
c
2
y
18
+ 12y
17
+ ··· 8y + 1
c
3
y
18
+ y
17
+ ··· 8y + 1
c
5
y
18
7y
17
+ ··· + 6y + 1
c
6
y
18
+ 16y
17
+ ··· 1317y + 169
c
7
y
18
+ y
17
+ ··· + 54y + 49
c
8
, c
11
, c
12
y
18
+ 21y
17
+ ··· 8y + 1
c
9
y
18
+ 17y
17
+ ··· 130y + 49
c
10
y
18
17y
17
+ ··· + 156y + 25
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.634936 + 0.809942I
a = 0.253920 + 0.526793I
b = 0.533045 0.259267I
0.94314 1.81857I 7.95701 + 2.41990I
u = 0.634936 0.809942I
a = 0.253920 0.526793I
b = 0.533045 + 0.259267I
0.94314 + 1.81857I 7.95701 2.41990I
u = 0.673695 + 0.591200I
a = 0.117610 + 1.215620I
b = 0.581518 0.929685I
3.44784 + 0.42863I 0.146598 + 0.096627I
u = 0.673695 0.591200I
a = 0.117610 1.215620I
b = 0.581518 + 0.929685I
3.44784 0.42863I 0.146598 0.096627I
u = 0.825879 + 0.224727I
a = 1.108690 + 0.402214I
b = 0.958725 + 0.489645I
4.65483 + 1.87331I 3.44153 2.58014I
u = 0.825879 0.224727I
a = 1.108690 0.402214I
b = 0.958725 0.489645I
4.65483 1.87331I 3.44153 + 2.58014I
u = 0.596151 + 0.449671I
a = 0.407937 1.348040I
b = 1.058740 + 0.248210I
8.33778 + 7.24017I 5.00222 6.15180I
u = 0.596151 0.449671I
a = 0.407937 + 1.348040I
b = 1.058740 0.248210I
8.33778 7.24017I 5.00222 + 6.15180I
u = 0.632269 + 0.295497I
a = 0.777931 0.335785I
b = 0.714494 0.186650I
1.41596 0.45768I 12.3817 + 7.3222I
u = 0.632269 0.295497I
a = 0.777931 + 0.335785I
b = 0.714494 + 0.186650I
1.41596 + 0.45768I 12.3817 7.3222I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.620783 + 0.124968I
a = 0.285723 + 1.231670I
b = 0.721103 0.527839I
1.68541 4.18335I 8.24028 + 6.19804I
u = 0.620783 0.124968I
a = 0.285723 1.231670I
b = 0.721103 + 0.527839I
1.68541 + 4.18335I 8.24028 6.19804I
u = 0.036992 + 1.411160I
a = 0.236048 1.324720I
b = 0.46312 + 1.95012I
14.7400 + 0.3318I 0.665045 + 0.274438I
u = 0.036992 1.411160I
a = 0.236048 + 1.324720I
b = 0.46312 1.95012I
14.7400 0.3318I 0.665045 0.274438I
u = 0.07842 + 1.63360I
a = 0.300508 + 1.150520I
b = 0.06711 1.84201I
8.57060 + 1.42162I 6.00677 + 0.42779I
u = 0.07842 1.63360I
a = 0.300508 1.150520I
b = 0.06711 + 1.84201I
8.57060 1.42162I 6.00677 0.42779I
u = 0.22091 + 1.64765I
a = 0.415251 1.018120I
b = 0.55111 + 1.86368I
13.31920 3.48291I 0.34112 + 3.44872I
u = 0.22091 1.64765I
a = 0.415251 + 1.018120I
b = 0.55111 1.86368I
13.31920 + 3.48291I 0.34112 3.44872I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
4u
17
+ ··· 24u + 5)(u
53
5u
52
+ ··· 82u + 7)
c
2
(u
18
+ 6u
16
+ ··· 4u
2
+ 1)(u
53
+ u
52
+ ··· + 1260u + 931)
c
3
(u
18
+ 3u
17
+ ··· 4u + 1)(u
53
+ 4u
52
+ ··· + 208100u + 20921)
c
4
(u
18
+ 4u
17
+ ··· + 24u + 5)(u
53
5u
52
+ ··· 82u + 7)
c
5
(u
18
u
17
+ ··· + 3u
2
+ 1)(u
53
24u
51
+ ··· 469428u + 50191)
c
6
(u
18
+ 8u
16
+ ··· + 37u + 13)(u
53
u
52
+ ··· + 1059u + 259)
c
7
(u
18
u
17
+ ··· + 24u + 7)(u
53
12u
52
+ ··· + 2540u 167)
c
8
(u
18
3u
17
+ ··· 2u + 1)(u
53
4u
52
+ ··· 2u + 1)
c
9
(u
18
u
17
+ ··· 16u + 7)(u
53
2u
52
+ ··· + 7670694u + 814939)
c
10
(u
18
+ 3u
17
+ ··· 8u + 5)(u
53
39u
51
+ ··· 634u + 389)
c
11
, c
12
(u
18
+ 3u
17
+ ··· + 2u + 1)(u
53
4u
52
+ ··· 2u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
18
+ 14y
17
+ ··· + 184y + 25)(y
53
+ 45y
52
+ ··· 1746y 49)
c
2
(y
18
+ 12y
17
+ ··· 8y + 1)
· (y
53
+ 71y
52
+ ··· 25215890y 866761)
c
3
(y
18
+ y
17
+ ··· 8y + 1)
· (y
53
+ 36y
52
+ ··· + 38130549598y 437688241)
c
5
(y
18
7y
17
+ ··· + 6y + 1)
· (y
53
48y
52
+ ··· + 192928447348y 2519136481)
c
6
(y
18
+ 16y
17
+ ··· 1317y + 169)
· (y
53
+ 79y
52
+ ··· 2126897y 67081)
c
7
(y
18
+ y
17
+ ··· + 54y + 49)(y
53
+ 24y
52
+ ··· + 4177728y 27889)
c
8
, c
11
, c
12
(y
18
+ 21y
17
+ ··· 8y + 1)(y
53
+ 60y
52
+ ··· 122y 1)
c
9
(y
18
+ 17y
17
+ ··· 130y + 49)
· (y
53
+ 64y
52
+ ··· 1343304277888y 664125573721)
c
10
(y
18
17y
17
+ ··· + 156y + 25)
· (y
53
78y
52
+ ··· + 6363770y 151321)
17