12n
0742
(K12n
0742
)
A knot diagram
1
Linearized knot diagam
4 6 7 8 12 10 1 2 6 7 3 5
Solving Sequence
6,10 3,7
4 11 12 2 1 5 9 8
c
6
c
3
c
10
c
11
c
2
c
1
c
5
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h54417405u
24
+ 534792001u
23
+ ··· + 33311573b + 3681796776,
32555757366u
24
+ 426906642534u
23
+ ··· + 2831483705a + 4024705159097,
u
25
+ 14u
24
+ ··· + 802u + 85i
I
u
2
= h26555u
18
198357u
17
+ ··· + 36185b 144112,
163099u
18
1122706u
17
+ ··· + 36185a 527630, u
19
7u
18
+ ··· 7u + 1i
I
u
3
= h1445734u
6
a
5
1807249u
6
a
4
+ ··· 3844804a + 2844990, u
6
a
5
2u
6
a
4
+ ··· 37a + 3,
u
7
2u
6
+ 2u
5
+ u
4
2u
3
+ 3u
2
2u + 1i
I
u
4
= ha
5
5a
4
+ 5a
3
+ 5a
2
+ 7b 10a 2, a
6
a
5
a
4
+ 4a
3
+ 3a
2
1, u + 1i
I
v
1
= ha, b
3
+ b
2
1, v 1i
* 5 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h5.44 × 10
7
u
24
+ 5.35 × 10
8
u
23
+ · · · + 3.33 × 10
7
b + 3.68 × 10
9
, 3.26 × 10
10
u
24
+
4.27 × 10
11
u
23
+ · · · + 2.83 × 10
9
a + 4.02 × 10
12
, u
25
+ 14u
24
+ · · · + 802u + 85i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
11.4978u
24
150.771u
23
+ ··· 10908.2u 1421.41
1.63359u
24
16.0542u
23
+ ··· 598.744u 110.526
a
7
=
1
u
2
a
4
=
1.30031u
24
16.5707u
23
+ ··· 3108.43u 444.101
3.38147u
24
53.3166u
23
+ ··· 6600.19u 838.456
a
11
=
u
u
3
+ u
a
12
=
6.05270u
24
+ 79.5081u
23
+ ··· + 5244.89u + 673.380
2.36945u
24
+ 27.1163u
23
+ ··· + 502.162u + 69.9568
a
2
=
9.86418u
24
134.717u
23
+ ··· 10309.5u 1310.89
1.63359u
24
16.0542u
23
+ ··· 598.744u 110.526
a
1
=
4.83382u
24
68.1991u
23
+ ··· 7333.97u 961.507
3.85589u
24
51.6884u
23
+ ··· 3026.16u 368.196
a
5
=
3.32745u
24
47.7352u
23
+ ··· 3929.81u 486.742
3.53542u
24
41.2464u
23
+ ··· 561.643u 67.3117
a
9
=
u
u
a
8
=
4.06599u
24
+ 56.5411u
23
+ ··· + 7053.62u + 949.032
5.22968u
24
+ 70.3553u
23
+ ··· + 4181.88u + 514.479
(ii) Obstruction class = 1
(iii) Cusp Shapes =
989445234
33311573
u
24
+
12906576392
33311573
u
23
+ ··· +
940441773198
33311573
u +
123998150314
33311573
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
25
24u
24
+ ··· 1246u + 85
c
2
, c
11
u
25
+ 18u
23
+ ··· + 10u + 1
c
3
, c
8
u
25
15u
23
+ ··· u 1
c
4
, c
7
u
25
u
24
+ ··· + u 1
c
5
, c
12
u
25
15u
24
+ ··· 768u + 64
c
6
, c
9
, c
10
u
25
14u
24
+ ··· + 802u 85
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
25
12y
24
+ ··· 5534y 7225
c
2
, c
11
y
25
+ 36y
24
+ ··· + 36y 1
c
3
, c
8
y
25
30y
24
+ ··· + 15y 1
c
4
, c
7
y
25
+ 9y
24
+ ··· + 3y 1
c
5
, c
12
y
25
+ 13y
24
+ ··· + 30720y 4096
c
6
, c
9
, c
10
y
25
8y
24
+ ··· + 28824y 7225
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.150840 + 0.071771I
a = 0.388264 + 0.151015I
b = 0.994844 0.281020I
3.73403 + 0.45497I 9.6713 10.3747I
u = 1.150840 0.071771I
a = 0.388264 0.151015I
b = 0.994844 + 0.281020I
3.73403 0.45497I 9.6713 + 10.3747I
u = 0.485653 + 0.637254I
a = 0.238682 1.222900I
b = 0.134188 0.806451I
0.04540 2.20353I 6.08023 + 5.72200I
u = 0.485653 0.637254I
a = 0.238682 + 1.222900I
b = 0.134188 + 0.806451I
0.04540 + 2.20353I 6.08023 5.72200I
u = 1.170090 + 0.293084I
a = 0.088746 + 0.564255I
b = 0.211593 0.098690I
0.536147 0.634353I 11.05095 0.92711I
u = 1.170090 0.293084I
a = 0.088746 0.564255I
b = 0.211593 + 0.098690I
0.536147 + 0.634353I 11.05095 + 0.92711I
u = 1.30739
a = 0.650104
b = 0.261258
2.40793 2.92560
u = 1.275970 + 0.445097I
a = 0.185309 0.188647I
b = 0.799684 + 0.217507I
0.48601 + 6.98392I 7.58735 2.98209I
u = 1.275970 0.445097I
a = 0.185309 + 0.188647I
b = 0.799684 0.217507I
0.48601 6.98392I 7.58735 + 2.98209I
u = 0.022372 + 0.589385I
a = 0.859515 0.602687I
b = 0.650024 + 0.333678I
2.78859 2.82391I 3.91126 + 3.02621I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.022372 0.589385I
a = 0.859515 + 0.602687I
b = 0.650024 0.333678I
2.78859 + 2.82391I 3.91126 3.02621I
u = 0.547968 + 0.005640I
a = 0.882270 1.038890I
b = 0.219128 0.256889I
1.078030 0.317833I 10.34199 + 2.86675I
u = 0.547968 0.005640I
a = 0.882270 + 1.038890I
b = 0.219128 + 0.256889I
1.078030 + 0.317833I 10.34199 2.86675I
u = 0.90468 + 1.23994I
a = 0.366520 + 0.971389I
b = 0.37973 + 1.94506I
12.68230 6.03173I 0
u = 0.90468 1.23994I
a = 0.366520 0.971389I
b = 0.37973 1.94506I
12.68230 + 6.03173I 0
u = 1.10702 + 1.09764I
a = 0.598281 1.082670I
b = 0.79280 1.97341I
13.8057 16.2441I 0
u = 1.10702 1.09764I
a = 0.598281 + 1.082670I
b = 0.79280 + 1.97341I
13.8057 + 16.2441I 0
u = 1.07816 + 1.16839I
a = 0.771238 + 0.692967I
b = 0.05163 + 1.92956I
13.9765 + 8.0107I 0
u = 1.07816 1.16839I
a = 0.771238 0.692967I
b = 0.05163 1.92956I
13.9765 8.0107I 0
u = 1.16562 + 1.12611I
a = 0.578628 + 0.852161I
b = 0.65543 + 1.78358I
8.04349 10.14930I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.16562 1.12611I
a = 0.578628 0.852161I
b = 0.65543 1.78358I
8.04349 + 10.14930I 0
u = 1.05000 + 1.24515I
a = 0.549717 0.744389I
b = 0.19613 1.86795I
8.47813 + 1.61102I 0
u = 1.05000 1.24515I
a = 0.549717 + 0.744389I
b = 0.19613 + 1.86795I
8.47813 1.61102I 0
u = 1.28631 + 1.03268I
a = 0.739647 0.587900I
b = 0.43837 1.61163I
11.46130 2.25746I 0
u = 1.28631 1.03268I
a = 0.739647 + 0.587900I
b = 0.43837 + 1.61163I
11.46130 + 2.25746I 0
7
II. I
u
2
= h26555u
18
198357u
17
+ · · · + 36185b 144112, 1.63 × 10
5
u
18
1.12 × 10
6
u
17
+ · · · + 3.62 × 10
4
a 5.28 × 10
5
, u
19
7u
18
+ · · · 7u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
4.50736u
18
+ 31.0268u
17
+ ··· 73.3920u + 14.5815
0.733868u
18
+ 5.48175u
17
+ ··· 17.8044u + 3.98264
a
7
=
1
u
2
a
4
=
3.98264u
18
+ 27.1446u
17
+ ··· 56.4219u + 10.0741
0.869393u
18
+ 5.81719u
17
+ ··· 15.8157u + 3.77350
a
11
=
u
u
3
+ u
a
12
=
5.19580u
18
+ 34.7581u
17
+ ··· 69.3087u + 9.04523
1.23542u
18
+ 8.41895u
17
+ ··· 20.2338u + 3.58332
a
2
=
3.77350u
18
+ 25.5451u
17
+ ··· 55.5876u + 10.5988
0.733868u
18
+ 5.48175u
17
+ ··· 17.8044u + 3.98264
a
1
=
1.43106u
18
8.75258u
17
+ ··· 3.21879u + 5.32624
1.34440u
18
8.49272u
17
+ ··· + 13.2778u 1.56476
a
5
=
3.37262u
18
24.2115u
17
+ ··· + 81.5293u 19.2865
0.115700u
18
+ 0.302081u
17
+ ··· + 6.21904u 2.96929
a
9
=
u
u
a
8
=
6.03238u
18
+ 40.1547u
17
+ ··· 80.8073u + 11.4943
1.61249u
18
+ 10.9103u
17
+ ··· 26.3254u + 5.19580
(ii) Obstruction class = 1
(iii) Cusp Shapes =
175307
36185
u
18
+
1123384
36185
u
17
+ ···
2188741
36185
u +
386871
36185
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
19
11u
18
+ ··· 575u + 125
c
2
, c
11
u
19
+ u
18
+ ··· + 3u + 1
c
3
, c
8
u
19
+ u
18
+ ··· + 2u + 1
c
4
, c
7
u
19
+ 4u
17
+ ··· + 4u + 1
c
5
u
19
+ 3u
18
+ ··· 30u 7
c
6
u
19
7u
18
+ ··· 7u + 1
c
9
, c
10
u
19
+ 7u
18
+ ··· 7u 1
c
12
u
19
3u
18
+ ··· 30u + 7
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
19
9y
18
+ ··· + 103125y 15625
c
2
, c
11
y
19
+ 15y
18
+ ··· + 7y 1
c
3
, c
8
y
19
19y
18
+ ··· 6y 1
c
4
, c
7
y
19
+ 8y
18
+ ··· + 22y 1
c
5
, c
12
y
19
+ 13y
18
+ ··· 206y 49
c
6
, c
9
, c
10
y
19
9y
18
+ ··· y 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.030941 + 1.036600I
a = 0.057572 0.720594I
b = 0.733161 0.814685I
4.91601 3.49525I 0.97939 + 3.44758I
u = 0.030941 1.036600I
a = 0.057572 + 0.720594I
b = 0.733161 + 0.814685I
4.91601 + 3.49525I 0.97939 3.44758I
u = 1.11948
a = 0.394977
b = 0.937170
3.52860 4.95410
u = 0.404942 + 0.627084I
a = 0.12194 + 1.73383I
b = 0.129374 + 1.114130I
1.79745 + 4.35854I 0.0010 6.03173I
u = 0.404942 0.627084I
a = 0.12194 1.73383I
b = 0.129374 1.114130I
1.79745 4.35854I 0.0010 + 6.03173I
u = 1.297110 + 0.232714I
a = 0.062267 0.224578I
b = 0.005685 + 0.709074I
0.109284 0.792626I 1.36200 + 1.44719I
u = 1.297110 0.232714I
a = 0.062267 + 0.224578I
b = 0.005685 0.709074I
0.109284 + 0.792626I 1.36200 1.44719I
u = 1.360490 + 0.283318I
a = 0.530378 + 0.419990I
b = 0.422327 + 0.086336I
0.10891 + 7.90490I 4.83691 9.16857I
u = 1.360490 0.283318I
a = 0.530378 0.419990I
b = 0.422327 0.086336I
0.10891 7.90490I 4.83691 + 9.16857I
u = 0.191568 + 0.560311I
a = 1.06731 + 1.40164I
b = 0.994805 + 0.947251I
5.82927 1.11371I 3.17634 + 1.02276I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.191568 0.560311I
a = 1.06731 1.40164I
b = 0.994805 0.947251I
5.82927 + 1.11371I 3.17634 1.02276I
u = 1.42423 + 0.16239I
a = 0.746131 + 0.085376I
b = 0.405505 0.273306I
2.38680 1.23386I 2.53593 + 6.06239I
u = 1.42423 0.16239I
a = 0.746131 0.085376I
b = 0.405505 + 0.273306I
2.38680 + 1.23386I 2.53593 6.06239I
u = 0.97747 + 1.08905I
a = 0.509235 1.105650I
b = 0.53468 1.86527I
10.59590 + 5.86698I 3.20212 2.48946I
u = 0.97747 1.08905I
a = 0.509235 + 1.105650I
b = 0.53468 + 1.86527I
10.59590 5.86698I 3.20212 + 2.48946I
u = 1.14236 + 1.02230I
a = 0.807801 + 0.694310I
b = 0.19902 + 1.67365I
10.09310 + 1.89591I 3.41811 1.70053I
u = 1.14236 1.02230I
a = 0.807801 0.694310I
b = 0.19902 1.67365I
10.09310 1.89591I 3.41811 + 1.70053I
u = 0.269868 + 0.223025I
a = 1.08636 4.55418I
b = 0.735580 1.012370I
5.46263 + 6.62471I 0.45143 4.04109I
u = 0.269868 0.223025I
a = 1.08636 + 4.55418I
b = 0.735580 + 1.012370I
5.46263 6.62471I 0.45143 + 4.04109I
12
III. I
u
3
= h1.45 × 10
6
a
5
u
6
1.81 × 10
6
a
4
u
6
+ · · · 3.84 × 10
6
a + 2.84 ×
10
6
, u
6
a
5
2u
6
a
4
+ · · · 37a + 3, u
7
2u
6
+ 2u
5
+ u
4
2u
3
+ 3u
2
2u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
a
0.209331a
5
u
6
+ 0.261676a
4
u
6
+ ··· + 0.556698a 0.411933
a
7
=
1
u
2
a
4
=
0.209331a
5
u
6
0.261676a
4
u
6
+ ··· + 0.443302a + 0.411933
0.0993729a
5
u
6
0.219734a
4
u
6
+ ··· + 0.219607a + 0.321828
a
11
=
u
u
3
+ u
a
12
=
0.0322938a
5
u
6
+ 0.0201516a
4
u
6
+ ··· 1.50291a 0.470480
0.0322938a
5
u
6
+ 0.0201516a
4
u
6
+ ··· 1.50291a + 0.529520
a
2
=
0.209331a
5
u
6
0.261676a
4
u
6
+ ··· + 0.443302a + 0.411933
0.209331a
5
u
6
+ 0.261676a
4
u
6
+ ··· + 0.556698a 0.411933
a
1
=
0.00106654a
5
u
6
0.272359a
4
u
6
+ ··· + 1.67095a 1.26789
0.00910831a
5
u
6
+ 0.0943514a
4
u
6
+ ··· 2.00070a + 2.42464
a
5
=
0.0637385a
5
u
6
+ 0.118112a
4
u
6
+ ··· 0.00769021a + 1.73068
0.0231855a
5
u
6
0.0741997a
4
u
6
+ ··· + 0.497788a 2.89512
a
9
=
u
u
a
8
=
0.0322938a
5
u
6
+ 0.0201516a
4
u
6
+ ··· 1.50291a 0.470480
0.0322938a
5
u
6
0.0201516a
4
u
6
+ ··· + 1.50291a + 0.470480
(ii) Obstruction class = 1
(iii) Cusp Shapes =
251624
6906439
u
6
a
5
2606528
6906439
u
6
a
4
+ ··· +
55270856
6906439
a +
8988269
6906439
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 3u
6
+ 3u
5
2u
4
6u
3
3u
2
+ 3u + 2)
6
c
2
, c
11
u
42
3u
41
+ ··· + 3904u 211
c
3
, c
8
u
42
24u
40
+ ··· 18828u + 2079
c
4
, c
7
u
42
+ 6u
40
+ ··· 824u + 37
c
5
, c
12
(u
3
+ u
2
+ 2u + 1)
14
c
6
, c
9
, c
10
(u
7
+ 2u
6
+ 2u
5
u
4
2u
3
3u
2
2u 1)
6
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
7
3y
6
+ 9y
5
16y
4
+ 30y
3
37y
2
+ 21y 4)
6
c
2
, c
11
y
42
+ 49y
41
+ ··· + 2545240y + 44521
c
3
, c
8
y
42
48y
41
+ ··· 47845242y + 4322241
c
4
, c
7
y
42
+ 12y
41
+ ··· 687930y + 1369
c
5
, c
12
(y
3
+ 3y
2
+ 2y 1)
14
c
6
, c
9
, c
10
(y
7
+ 4y
5
y
4
6y
3
3y
2
2y 1)
6
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.17019
a = 0.868891
b = 0.539106
2.29929 1.30030
u = 1.17019
a = 0.528273 + 0.353145I
b = 0.596628 + 0.748519I
1.83829 2.82812I 5.22897 + 2.97945I
u = 1.17019
a = 0.528273 0.353145I
b = 0.596628 0.748519I
1.83829 + 2.82812I 5.22897 2.97945I
u = 1.17019
a = 0.556064
b = 0.255326
2.29929 1.30030
u = 1.17019
a = 1.12804 + 1.05290I
b = 0.926482 1.028530I
1.83829 2.82812I 5.22897 + 2.97945I
u = 1.17019
a = 1.12804 1.05290I
b = 0.926482 + 1.028530I
1.83829 + 2.82812I 5.22897 2.97945I
u = 0.011299 + 0.825523I
a = 0.714686 0.336755I
b = 2.48991 0.29670I
6.79883 5.36696I 4.37320 + 4.79030I
u = 0.011299 + 0.825523I
a = 0.31540 + 1.38661I
b = 0.43610 + 2.25720I
6.79883 + 0.28928I 4.37320 1.16859I
u = 0.011299 + 0.825523I
a = 0.28834 1.57933I
b = 0.376827 1.210580I
2.66125 2.53884I 2.15607 + 1.81085I
u = 0.011299 + 0.825523I
a = 1.59987 0.21472I
b = 0.0550300 + 0.0998932I
6.79883 + 0.28928I 4.37320 1.16859I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.011299 + 0.825523I
a = 0.171890 + 0.180445I
b = 1.186770 0.129718I
2.66125 2.53884I 2.15607 + 1.81085I
u = 0.011299 + 0.825523I
a = 0.13070 + 2.41689I
b = 0.225961 + 1.055410I
6.79883 5.36696I 4.37320 + 4.79030I
u = 0.011299 0.825523I
a = 0.714686 + 0.336755I
b = 2.48991 + 0.29670I
6.79883 + 5.36696I 4.37320 4.79030I
u = 0.011299 0.825523I
a = 0.31540 1.38661I
b = 0.43610 2.25720I
6.79883 0.28928I 4.37320 + 1.16859I
u = 0.011299 0.825523I
a = 0.28834 + 1.57933I
b = 0.376827 + 1.210580I
2.66125 + 2.53884I 2.15607 1.81085I
u = 0.011299 0.825523I
a = 1.59987 + 0.21472I
b = 0.0550300 0.0998932I
6.79883 0.28928I 4.37320 + 1.16859I
u = 0.011299 0.825523I
a = 0.171890 0.180445I
b = 1.186770 + 0.129718I
2.66125 + 2.53884I 2.15607 1.81085I
u = 0.011299 0.825523I
a = 0.13070 2.41689I
b = 0.225961 1.055410I
6.79883 + 5.36696I 4.37320 4.79030I
u = 0.542568 + 0.510771I
a = 0.001593 + 0.449134I
b = 1.304380 0.124427I
5.00506 + 1.89516I 3.50931 6.19343I
u = 0.542568 + 0.510771I
a = 0.61501 + 1.50358I
b = 0.26483 + 1.53096I
0.86748 + 4.72329I 10.03858 9.17288I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.542568 + 0.510771I
a = 0.60283 1.61972I
b = 0.36969 2.21523I
5.00506 + 7.55141I 3.50931 12.15232I
u = 0.542568 + 0.510771I
a = 0.56538 1.75401I
b = 0.148437 0.129555I
0.86748 + 4.72329I 10.03858 9.17288I
u = 0.542568 + 0.510771I
a = 1.61755 1.32277I
b = 0.558791 1.096730I
5.00506 + 1.89516I 3.50931 6.19343I
u = 0.542568 + 0.510771I
a = 0.52210 + 3.07554I
b = 0.532763 + 0.178517I
5.00506 + 7.55141I 3.50931 12.15232I
u = 0.542568 0.510771I
a = 0.001593 0.449134I
b = 1.304380 + 0.124427I
5.00506 1.89516I 3.50931 + 6.19343I
u = 0.542568 0.510771I
a = 0.61501 1.50358I
b = 0.26483 1.53096I
0.86748 4.72329I 10.03858 + 9.17288I
u = 0.542568 0.510771I
a = 0.60283 + 1.61972I
b = 0.36969 + 2.21523I
5.00506 7.55141I 3.50931 + 12.15232I
u = 0.542568 0.510771I
a = 0.56538 + 1.75401I
b = 0.148437 + 0.129555I
0.86748 4.72329I 10.03858 + 9.17288I
u = 0.542568 0.510771I
a = 1.61755 + 1.32277I
b = 0.558791 + 1.096730I
5.00506 1.89516I 3.50931 + 6.19343I
u = 0.542568 0.510771I
a = 0.52210 3.07554I
b = 0.532763 0.178517I
5.00506 7.55141I 3.50931 + 12.15232I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.05382 + 1.07114I
a = 0.636651 + 0.799114I
b = 0.05712 + 1.80415I
7.70577 + 3.91715I 4.22349 3.00324I
u = 1.05382 + 1.07114I
a = 0.483361 1.033770I
b = 0.29586 1.71294I
11.84340 + 6.74527I 2.30577 5.98269I
u = 1.05382 + 1.07114I
a = 0.949402 0.634817I
b = 0.33592 2.21885I
11.84340 + 1.08902I 2.30577 0.02379I
u = 1.05382 + 1.07114I
a = 0.784649 + 0.847003I
b = 0.20283 + 1.45463I
11.84340 + 1.08902I 2.30577 0.02379I
u = 1.05382 + 1.07114I
a = 0.644337 0.975137I
b = 0.65087 1.65072I
7.70577 + 3.91715I 4.22349 3.00324I
u = 1.05382 + 1.07114I
a = 0.665982 + 1.230780I
b = 1.13741 + 2.12047I
11.84340 + 6.74527I 2.30577 5.98269I
u = 1.05382 1.07114I
a = 0.636651 0.799114I
b = 0.05712 1.80415I
7.70577 3.91715I 4.22349 + 3.00324I
u = 1.05382 1.07114I
a = 0.483361 + 1.033770I
b = 0.29586 + 1.71294I
11.84340 6.74527I 2.30577 + 5.98269I
u = 1.05382 1.07114I
a = 0.949402 + 0.634817I
b = 0.33592 + 2.21885I
11.84340 1.08902I 2.30577 + 0.02379I
u = 1.05382 1.07114I
a = 0.784649 0.847003I
b = 0.20283 1.45463I
11.84340 1.08902I 2.30577 + 0.02379I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.05382 1.07114I
a = 0.644337 + 0.975137I
b = 0.65087 + 1.65072I
7.70577 3.91715I 4.22349 + 3.00324I
u = 1.05382 1.07114I
a = 0.665982 1.230780I
b = 1.13741 2.12047I
11.84340 6.74527I 2.30577 + 5.98269I
20
IV.
I
u
4
= ha
5
5a
4
+ 5a
3
+ 5a
2
+ 7b 10a 2, a
6
a
5
a
4
+ 4a
3
+ 3a
2
1, u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
1
a
3
=
a
1
7
a
5
+
5
7
a
4
+ ··· +
10
7
a +
2
7
a
7
=
1
1
a
4
=
1
7
a
5
5
7
a
4
+ ···
10
7
a
2
7
2
7
a
5
+
10
7
a
4
+ ··· +
27
7
a +
4
7
a
11
=
1
0
a
12
=
4
7
a
5
6
7
a
4
+ ··· +
2
7
a
8
7
4
7
a
5
6
7
a
4
+ ··· +
2
7
a
1
7
a
2
=
1
7
a
5
5
7
a
4
+ ···
3
7
a
2
7
1
7
a
5
+
5
7
a
4
+ ··· +
10
7
a +
2
7
a
1
=
1
7
a
5
5
7
a
4
+ ···
3
7
a
2
7
1
7
a
5
+
5
7
a
4
+ ··· +
10
7
a +
2
7
a
5
=
2
7
a
5
+
3
7
a
4
+ ··· +
6
7
a +
4
7
3
7
a
5
1
7
a
4
+ ··· +
12
7
a
6
7
a
9
=
1
1
a
8
=
4
7
a
5
6
7
a
4
+ ··· +
2
7
a +
6
7
4
7
a
5
+
6
7
a
4
+ ···
2
7
a
6
7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
7
a
5
+
20
7
a
4
20
7
a
3
20
7
a
2
+
40
7
a +
127
7
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
c
2
, c
11
(u
3
u
2
+ 1)
2
c
3
, c
4
, c
7
c
8
u
6
u
5
u
4
+ 4u
3
+ 3u
2
1
c
5
(u
3
u
2
+ 2u 1)
2
c
6
(u + 1)
6
c
9
, c
10
(u 1)
6
c
12
(u
3
+ u
2
+ 2u + 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
c
2
, c
11
(y
3
y
2
+ 2y 1)
2
c
3
, c
4
, c
7
c
8
y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1
c
5
, c
12
(y
3
+ 3y
2
+ 2y 1)
2
c
6
, c
9
, c
10
(y 1)
6
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.22142
b = 0.754878
2.75839 20.0200
u = 1.00000
a = 0.542287 + 0.460350I
b = 0.877439 + 0.744862I
1.37919 2.82812I 13.49024 + 2.97945I
u = 1.00000
a = 0.542287 0.460350I
b = 0.877439 0.744862I
1.37919 + 2.82812I 13.49024 2.97945I
u = 1.00000
a = 0.466540
b = 0.754878
2.75839 20.0200
u = 1.00000
a = 1.41973 + 1.20521I
b = 0.877439 0.744862I
1.37919 + 2.82812I 13.49024 2.97945I
u = 1.00000
a = 1.41973 1.20521I
b = 0.877439 + 0.744862I
1.37919 2.82812I 13.49024 + 2.97945I
24
V. I
v
1
= ha, b
3
+ b
2
1, v 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
1
0
a
3
=
0
b
a
7
=
1
0
a
4
=
b
b
a
11
=
1
0
a
12
=
1
b
2
a
2
=
b
b
a
1
=
b
b
a
5
=
b
2
+ 1
b
2
+ b 1
a
9
=
1
0
a
8
=
b
2
+ 1
b
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b + 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
9
c
10
u
3
c
2
, c
3
, c
4
c
7
, c
8
, c
11
u
3
+ u
2
1
c
5
, c
12
u
3
u
2
+ 2u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
y
3
c
2
, c
3
, c
4
c
7
, c
8
, c
11
y
3
y
2
+ 2y 1
c
5
, c
12
y
3
+ 3y
2
+ 2y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 0.877439 + 0.744862I
3.02413 2.82812I 2.49024 + 2.97945I
v = 1.00000
a = 0
b = 0.877439 0.744862I
3.02413 + 2.82812I 2.49024 2.97945I
v = 1.00000
a = 0
b = 0.754878
1.11345 9.01950
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
9
(u
7
+ 3u
6
+ 3u
5
2u
4
6u
3
3u
2
+ 3u + 2)
6
· (u
19
11u
18
+ ··· 575u + 125)(u
25
24u
24
+ ··· 1246u + 85)
c
2
, c
11
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
19
+ u
18
+ ··· + 3u + 1)
· (u
25
+ 18u
23
+ ··· + 10u + 1)(u
42
3u
41
+ ··· + 3904u 211)
c
3
, c
8
(u
3
+ u
2
1)(u
6
u
5
+ ··· + 3u
2
1)(u
19
+ u
18
+ ··· + 2u + 1)
· (u
25
15u
23
+ ··· u 1)(u
42
24u
40
+ ··· 18828u + 2079)
c
4
, c
7
(u
3
+ u
2
1)(u
6
u
5
+ ··· + 3u
2
1)(u
19
+ 4u
17
+ ··· + 4u + 1)
· (u
25
u
24
+ ··· + u 1)(u
42
+ 6u
40
+ ··· 824u + 37)
c
5
((u
3
u
2
+ 2u 1)
3
)(u
3
+ u
2
+ 2u + 1)
14
(u
19
+ 3u
18
+ ··· 30u 7)
· (u
25
15u
24
+ ··· 768u + 64)
c
6
u
3
(u + 1)
6
(u
7
+ 2u
6
+ 2u
5
u
4
2u
3
3u
2
2u 1)
6
· (u
19
7u
18
+ ··· 7u + 1)(u
25
14u
24
+ ··· + 802u 85)
c
9
, c
10
u
3
(u 1)
6
(u
7
+ 2u
6
+ 2u
5
u
4
2u
3
3u
2
2u 1)
6
· (u
19
+ 7u
18
+ ··· 7u 1)(u
25
14u
24
+ ··· + 802u 85)
c
12
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
16
(u
19
3u
18
+ ··· 30u + 7)
· (u
25
15u
24
+ ··· 768u + 64)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
9
(y
7
3y
6
+ 9y
5
16y
4
+ 30y
3
37y
2
+ 21y 4)
6
· (y
19
9y
18
+ ··· + 103125y 15625)
· (y
25
12y
24
+ ··· 5534y 7225)
c
2
, c
11
((y
3
y
2
+ 2y 1)
3
)(y
19
+ 15y
18
+ ··· + 7y 1)
· (y
25
+ 36y
24
+ ··· + 36y 1)(y
42
+ 49y
41
+ ··· + 2545240y + 44521)
c
3
, c
8
(y
3
y
2
+ 2y 1)(y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1)
· (y
19
19y
18
+ ··· 6y 1)(y
25
30y
24
+ ··· + 15y 1)
· (y
42
48y
41
+ ··· 47845242y + 4322241)
c
4
, c
7
(y
3
y
2
+ 2y 1)(y
6
3y
5
+ 15y
4
24y
3
+ 11y
2
6y + 1)
· (y
19
+ 8y
18
+ ··· + 22y 1)(y
25
+ 9y
24
+ ··· + 3y 1)
· (y
42
+ 12y
41
+ ··· 687930y + 1369)
c
5
, c
12
((y
3
+ 3y
2
+ 2y 1)
17
)(y
19
+ 13y
18
+ ··· 206y 49)
· (y
25
+ 13y
24
+ ··· + 30720y 4096)
c
6
, c
9
, c
10
y
3
(y 1)
6
(y
7
+ 4y
5
y
4
6y
3
3y
2
2y 1)
6
· (y
19
9y
18
+ ··· y 1)(y
25
8y
24
+ ··· + 28824y 7225)
30