12n
0745
(K12n
0745
)
A knot diagram
1
Linearized knot diagam
4 12 8 9 12 2 11 1 2 8 7 5
Solving Sequence
5,9 1,4
2 10 8 3 12 6 7 11
c
4
c
1
c
9
c
8
c
3
c
12
c
5
c
6
c
11
c
2
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−7.72392 × 10
20
u
31
1.85563 × 10
20
u
30
+ ··· + 1.12162 × 10
21
b + 1.59649 × 10
21
, a 1,
u
32
u
30
+ ··· 2u + 1i
I
u
2
= h−1.04878 × 10
64
u
47
4.13535 × 10
64
u
46
+ ··· + 4.36700 × 10
65
b + 2.54209 × 10
65
,
6.42157 × 10
113
u
47
2.04396 × 10
114
u
46
+ ··· + 2.06184 × 10
114
a 4.26495 × 10
114
,
u
48
+ 3u
47
+ ··· 8u + 4i
I
u
3
= h−4169u
17
110u
16
+ ··· + 1711b + 2133, a + 1, u
18
+ 4u
16
+ ··· u + 1i
* 3 irreducible components of dim
C
= 0, with total 98 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−7.72 × 10
20
u
31
1.86 × 10
20
u
30
+ · · · + 1.12 × 10
21
b + 1.60 ×
10
21
, a 1, u
32
u
30
+ · · · 2u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
0.688642u
31
+ 0.165443u
30
+ ··· + 2.18437u 1.42339
a
4
=
1
u
2
a
2
=
0.688642u
31
0.165443u
30
+ ··· 2.18437u + 2.42339
0.608785u
31
+ 0.235945u
30
+ ··· + 2.54213u 1.25794
a
10
=
0.678532u
31
+ 0.284449u
30
+ ··· + 1.99493u 1.92526
0.695736u
31
0.103896u
30
+ ··· 2.15066u + 0.952167
a
8
=
u
0.165443u
31
0.0798571u
30
+ ··· + 1.04610u + 0.688642
a
3
=
0.0798571u
31
+ 0.0705021u
30
+ ··· + 0.357757u + 1.16544
0.220463u
31
0.127057u
30
+ ··· 0.347333u 0.749034
a
12
=
0.688642u
31
0.165443u
30
+ ··· 2.18437u + 2.42339
0.688642u
31
+ 0.165443u
30
+ ··· + 2.18437u 1.42339
a
6
=
1.07690u
31
0.654094u
30
+ ··· 8.58223u + 0.101317
0.388260u
31
+ 0.488651u
30
+ ··· + 6.39786u + 2.32207
a
7
=
0.390513u
31
0.541351u
30
+ ··· 6.51468u 1.02957
0.00795809u
31
+ 0.188677u
30
+ ··· + 3.52208u + 2.59118
a
11
=
0.657110u
31
+ 0.487486u
30
+ ··· + 2.71903u 2.58761
1.04986u
31
0.281223u
30
+ ··· 4.71166u + 1.64877
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5229796107208695447003
1121615042862392489704
u
31
715184273316583329535
1121615042862392489704
u
30
+ ···
8046640764422946709729
1121615042862392489704
u +
1349461904188813944858
140201880357799061213
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
32
20u
31
+ ··· 30u + 4
c
2
, c
6
u
32
+ 3u
31
+ ··· + 4u + 1
c
3
, c
9
u
32
u
31
+ ··· 4u + 1
c
4
, c
8
u
32
u
30
+ ··· 2u + 1
c
5
, c
12
u
32
22u
31
+ ··· 65536u + 4096
c
7
, c
10
, c
11
u
32
+ 9u
31
+ ··· + 84u + 16
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
32
+ 6y
31
+ ··· + 52y + 16
c
2
, c
6
y
32
+ 31y
31
+ ··· + 16y + 1
c
3
, c
9
y
32
+ 3y
31
+ ··· + 28y + 1
c
4
, c
8
y
32
2y
31
+ ··· 6y + 1
c
5
, c
12
y
32
+ 20y
31
+ ··· 58720256y + 16777216
c
7
, c
10
, c
11
y
32
+ 29y
31
+ ··· + 976y + 256
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.854141 + 0.589787I
a = 1.00000
b = 1.61917 0.24070I
1.65554 + 9.31216I 1.84214 8.38213I
u = 0.854141 0.589787I
a = 1.00000
b = 1.61917 + 0.24070I
1.65554 9.31216I 1.84214 + 8.38213I
u = 0.681898 + 0.783221I
a = 1.00000
b = 1.05126 1.11867I
2.14431 0.79389I 0.82722 + 2.16238I
u = 0.681898 0.783221I
a = 1.00000
b = 1.05126 + 1.11867I
2.14431 + 0.79389I 0.82722 2.16238I
u = 0.890039 + 0.585697I
a = 1.00000
b = 1.43226 + 0.19100I
6.67694 4.51179I 6.15098 + 5.45447I
u = 0.890039 0.585697I
a = 1.00000
b = 1.43226 0.19100I
6.67694 + 4.51179I 6.15098 5.45447I
u = 0.916035 + 0.550973I
a = 1.00000
b = 1.219860 0.165666I
3.73962 0.48491I 4.20188 0.50541I
u = 0.916035 0.550973I
a = 1.00000
b = 1.219860 + 0.165666I
3.73962 + 0.48491I 4.20188 + 0.50541I
u = 0.431637 + 0.743730I
a = 1.00000
b = 0.92824 + 1.35316I
1.65395 + 4.46956I 0.48829 7.44725I
u = 0.431637 0.743730I
a = 1.00000
b = 0.92824 1.35316I
1.65395 4.46956I 0.48829 + 7.44725I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.024610 + 0.504956I
a = 1.00000
b = 0.533957 + 0.881464I
1.70935 + 1.94531I 0.00275 3.34094I
u = 1.024610 0.504956I
a = 1.00000
b = 0.533957 0.881464I
1.70935 1.94531I 0.00275 + 3.34094I
u = 0.777247 + 0.867459I
a = 1.00000
b = 0.179266 0.950489I
1.94782 2.84531I 1.95741 + 3.32411I
u = 0.777247 0.867459I
a = 1.00000
b = 0.179266 + 0.950489I
1.94782 + 2.84531I 1.95741 3.32411I
u = 0.283223 + 0.764433I
a = 1.00000
b = 1.02191 1.47989I
2.68020 8.65463I 5.91760 + 9.44360I
u = 0.283223 0.764433I
a = 1.00000
b = 1.02191 + 1.47989I
2.68020 + 8.65463I 5.91760 9.44360I
u = 0.809344 + 0.018130I
a = 1.00000
b = 0.415210 + 0.522569I
1.03206 + 2.11233I 2.04339 4.47982I
u = 0.809344 0.018130I
a = 1.00000
b = 0.415210 0.522569I
1.03206 2.11233I 2.04339 + 4.47982I
u = 0.659843 + 0.411748I
a = 1.00000
b = 0.448371 + 0.082927I
1.117840 + 0.605282I 7.12622 1.99848I
u = 0.659843 0.411748I
a = 1.00000
b = 0.448371 0.082927I
1.117840 0.605282I 7.12622 + 1.99848I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.561882 + 0.315219I
a = 1.00000
b = 0.234400 1.066140I
1.17379 1.66385I 1.34708 + 4.23096I
u = 0.561882 0.315219I
a = 1.00000
b = 0.234400 + 1.066140I
1.17379 + 1.66385I 1.34708 4.23096I
u = 0.92006 + 1.19321I
a = 1.00000
b = 0.11932 + 1.69118I
11.89360 + 4.45420I 10.94466 + 4.53535I
u = 0.92006 1.19321I
a = 1.00000
b = 0.11932 1.69118I
11.89360 4.45420I 10.94466 4.53535I
u = 1.06882 + 1.12604I
a = 1.00000
b = 0.64807 1.43272I
0.30085 6.14505I 2.00000 + 4.65224I
u = 1.06882 1.12604I
a = 1.00000
b = 0.64807 + 1.43272I
0.30085 + 6.14505I 2.00000 4.65224I
u = 1.08392 + 1.16200I
a = 1.00000
b = 0.74928 + 1.40670I
2.88862 + 11.98220I 2.00000 7.44446I
u = 1.08392 1.16200I
a = 1.00000
b = 0.74928 1.40670I
2.88862 11.98220I 2.00000 + 7.44446I
u = 1.07590 + 1.18845I
a = 1.00000
b = 0.80706 1.39926I
1.9477 17.3570I 0. + 9.21229I
u = 1.07590 1.18845I
a = 1.00000
b = 0.80706 + 1.39926I
1.9477 + 17.3570I 0. 9.21229I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.258111 + 0.252796I
a = 1.00000
b = 0.40763 + 2.09525I
7.70724 + 1.01308I 5.62144 11.03014I
u = 0.258111 0.252796I
a = 1.00000
b = 0.40763 2.09525I
7.70724 1.01308I 5.62144 + 11.03014I
8
II. I
u
2
= h−1.05 × 10
64
u
47
4.14 × 10
64
u
46
+ · · · + 4.37 × 10
65
b + 2.54 ×
10
65
, 6.42 × 10
113
u
47
2.04 × 10
114
u
46
+ · · · + 2.06 × 10
114
a 4.26 ×
10
114
, u
48
+ 3u
47
+ · · · 8u + 4i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
0.311449u
47
+ 0.991329u
46
+ ··· + 0.847152u + 2.06852
0.0240161u
47
+ 0.0946955u
46
+ ··· 0.639391u 0.582113
a
4
=
1
u
2
a
2
=
0.278120u
47
+ 0.883581u
46
+ ··· + 0.696600u + 2.42270
0.0496330u
47
+ 0.175946u
46
+ ··· 0.568159u 0.551070
a
10
=
0.735175u
47
1.98945u
46
+ ··· + 26.4077u 1.01077
0.198693u
47
+ 0.565009u
46
+ ··· + 0.667493u 0.561155
a
8
=
0.516499u
47
1.38596u
46
+ ··· + 19.5082u 1.01728
0.217962u
47
+ 0.585339u
46
+ ··· + 2.47664u 0.963807
a
3
=
0.307444u
47
+ 1.10182u
46
+ ··· 6.60757u 0.540466
0.0564039u
47
0.210594u
46
+ ··· + 1.90700u 1.45060
a
12
=
0.287433u
47
+ 0.896634u
46
+ ··· + 1.48654u + 2.65063
0.0240161u
47
+ 0.0946955u
46
+ ··· 0.639391u 0.582113
a
6
=
0.216936u
47
+ 0.846122u
46
+ ··· 10.5723u + 0.131137
0.0240161u
47
+ 0.0946955u
46
+ ··· 0.639391u + 0.417887
a
7
=
0.374374u
47
+ 1.21541u
46
+ ··· 3.68521u + 8.14264
0.0673151u
47
0.193492u
46
+ ··· 0.803336u 0.737240
a
11
=
0.0696329u
47
0.0589159u
46
+ ··· + 6.42131u 3.80302
0.118786u
47
+ 0.364650u
46
+ ··· 1.74055u + 0.186064
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.487275u
47
1.61319u
46
+ ··· + 30.2781u 4.18524
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
12
+ 5u
11
+ ··· + 3u
2
+ 1)
4
c
2
, c
6
u
48
u
47
+ ··· + 188u + 304
c
3
, c
9
u
48
+ u
47
+ ··· 972u + 432
c
4
, c
8
u
48
+ 3u
47
+ ··· 8u + 4
c
5
, c
12
(u
2
+ u + 1)
24
c
7
, c
10
, c
11
(u
12
3u
11
+ ··· + 2u + 1)
4
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
12
+ y
11
+ ··· + 6y + 1)
4
c
2
, c
6
y
48
+ 15y
47
+ ··· + 4909520y + 92416
c
3
, c
9
y
48
+ 3y
47
+ ··· + 2702160y + 186624
c
4
, c
8
y
48
+ 15y
47
+ ··· + 264y + 16
c
5
, c
12
(y
2
+ y + 1)
24
c
7
, c
10
, c
11
(y
12
+ 9y
11
+ ··· 6y + 1)
4
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.466251 + 0.940882I
a = 1.53047 + 0.34796I
b = 0.500000 0.866025I
6.16619 + 4.56735I 8.43865 5.17685I
u = 0.466251 0.940882I
a = 1.53047 0.34796I
b = 0.500000 + 0.866025I
6.16619 4.56735I 8.43865 + 5.17685I
u = 0.934419 + 0.170095I
a = 1.07506 + 1.58682I
b = 0.500000 + 0.866025I
0.55801 6.49071I 5.64801 + 8.19237I
u = 0.934419 0.170095I
a = 1.07506 1.58682I
b = 0.500000 0.866025I
0.55801 + 6.49071I 5.64801 8.19237I
u = 0.442095 + 0.991323I
a = 0.505636 0.363702I
b = 0.500000 0.866025I
6.16619 0.50759I 8.43865 1.75135I
u = 0.442095 0.991323I
a = 0.505636 + 0.363702I
b = 0.500000 + 0.866025I
6.16619 + 0.50759I 8.43865 + 1.75135I
u = 0.924979 + 0.574553I
a = 0.624586 1.242220I
b = 0.500000 0.866025I
1.25303 4.19921I 2.04009 + 7.81755I
u = 0.924979 0.574553I
a = 0.624586 + 1.242220I
b = 0.500000 + 0.866025I
1.25303 + 4.19921I 2.04009 7.81755I
u = 0.241577 + 1.064520I
a = 0.508209 + 0.077004I
b = 0.500000 + 0.866025I
4.65197 + 3.37411I 4.52298 5.09926I
u = 0.241577 1.064520I
a = 0.508209 0.077004I
b = 0.500000 0.866025I
4.65197 3.37411I 4.52298 + 5.09926I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.859240 + 0.201681I
a = 0.00624 + 2.08104I
b = 0.500000 + 0.866025I
3.58098 1.11020I 9.53074 3.71786I
u = 0.859240 0.201681I
a = 0.00624 2.08104I
b = 0.500000 0.866025I
3.58098 + 1.11020I 9.53074 + 3.71786I
u = 0.839585 + 0.875884I
a = 1.252350 + 0.217188I
b = 0.500000 + 0.866025I
1.93740 5.36645I 0
u = 0.839585 0.875884I
a = 1.252350 0.217188I
b = 0.500000 0.866025I
1.93740 + 5.36645I 0
u = 0.284359 + 0.711335I
a = 0.603734 + 0.347904I
b = 0.500000 0.866025I
1.93740 1.30669I 3.82297 1.53987I
u = 0.284359 0.711335I
a = 0.603734 0.347904I
b = 0.500000 + 0.866025I
1.93740 + 1.30669I 3.82297 + 1.53987I
u = 0.137007 + 0.662039I
a = 1.30336 0.93751I
b = 0.500000 + 0.866025I
6.16619 + 0.50759I 8.43865 + 1.75135I
u = 0.137007 0.662039I
a = 1.30336 + 0.93751I
b = 0.500000 0.866025I
6.16619 0.50759I 8.43865 1.75135I
u = 0.204744 + 0.522394I
a = 1.92353 + 0.29146I
b = 0.500000 0.866025I
4.65197 3.37411I 4.52298 + 5.09926I
u = 0.204744 0.522394I
a = 1.92353 0.29146I
b = 0.500000 + 0.866025I
4.65197 + 3.37411I 4.52298 5.09926I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.66481 + 1.27906I
a = 0.957832 0.374579I
b = 0.500000 + 0.866025I
4.65197 7.43387I 0
u = 0.66481 1.27906I
a = 0.957832 + 0.374579I
b = 0.500000 0.866025I
4.65197 + 7.43387I 0
u = 0.075799 + 0.528387I
a = 1.24345 + 0.71654I
b = 0.500000 + 0.866025I
1.93740 + 1.30669I 3.82297 + 1.53987I
u = 0.075799 0.528387I
a = 1.24345 0.71654I
b = 0.500000 0.866025I
1.93740 1.30669I 3.82297 1.53987I
u = 1.11589 + 0.97610I
a = 0.905536 0.354128I
b = 0.500000 0.866025I
4.65197 + 7.43387I 0
u = 1.11589 0.97610I
a = 0.905536 + 0.354128I
b = 0.500000 + 0.866025I
4.65197 7.43387I 0
u = 0.254089 + 0.445251I
a = 0.55945 + 4.05431I
b = 0.500000 0.866025I
1.25303 + 8.25898I 2.0401 14.7458I
u = 0.254089 0.445251I
a = 0.55945 4.05431I
b = 0.500000 + 0.866025I
1.25303 8.25898I 2.0401 + 14.7458I
u = 0.13599 + 1.50788I
a = 0.323082 + 0.642567I
b = 0.500000 0.866025I
1.25303 4.19921I 0
u = 0.13599 1.50788I
a = 0.323082 0.642567I
b = 0.500000 + 0.866025I
1.25303 + 4.19921I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.86123 + 1.27926I
a = 0.775182 + 0.134435I
b = 0.500000 0.866025I
1.93740 + 5.36645I 0
u = 0.86123 1.27926I
a = 0.775182 0.134435I
b = 0.500000 + 0.866025I
1.93740 5.36645I 0
u = 1.40081 + 0.77138I
a = 0.067526 0.143827I
b = 0.500000 0.866025I
0.55801 2.43094I 0
u = 1.40081 0.77138I
a = 0.067526 + 0.143827I
b = 0.500000 + 0.866025I
0.55801 + 2.43094I 0
u = 0.231026 + 0.304516I
a = 0.52387 5.30363I
b = 0.500000 + 0.866025I
3.58098 2.94957I 9.5307 + 10.6461I
u = 0.231026 0.304516I
a = 0.52387 + 5.30363I
b = 0.500000 0.866025I
3.58098 + 2.94957I 9.5307 10.6461I
u = 1.04097 + 1.27776I
a = 0.621280 + 0.141250I
b = 0.500000 + 0.866025I
6.16619 4.56735I 0
u = 1.04097 1.27776I
a = 0.621280 0.141250I
b = 0.500000 0.866025I
6.16619 + 4.56735I 0
u = 0.205537 + 0.149385I
a = 2.67472 + 5.69702I
b = 0.500000 0.866025I
0.55801 2.43094I 5.64801 + 1.26417I
u = 0.205537 0.149385I
a = 2.67472 5.69702I
b = 0.500000 + 0.866025I
0.55801 + 2.43094I 5.64801 1.26417I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.73464 + 1.66561I
a = 0.292633 + 0.431936I
b = 0.500000 0.866025I
0.55801 + 6.49071I 0
u = 0.73464 1.66561I
a = 0.292633 0.431936I
b = 0.500000 + 0.866025I
0.55801 6.49071I 0
u = 0.42507 + 1.78686I
a = 0.001442 0.480524I
b = 0.500000 + 0.866025I
3.58098 1.11020I 0
u = 0.42507 1.78686I
a = 0.001442 + 0.480524I
b = 0.500000 0.866025I
3.58098 + 1.11020I 0
u = 1.73607 + 1.06575I
a = 0.018444 + 0.186728I
b = 0.500000 + 0.866025I
3.58098 2.94957I 0
u = 1.73607 1.06575I
a = 0.018444 0.186728I
b = 0.500000 0.866025I
3.58098 + 2.94957I 0
u = 1.66304 + 1.27925I
a = 0.033399 0.242042I
b = 0.500000 0.866025I
1.25303 + 8.25898I 0
u = 1.66304 1.27925I
a = 0.033399 + 0.242042I
b = 0.500000 + 0.866025I
1.25303 8.25898I 0
16
III.
I
u
3
= h−4169u
17
110u
16
+ · · · + 1711b + 2133, a + 1, u
18
+ 4u
16
+ · · · u + 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
1
=
1
2.43659u
17
+ 0.0642899u
16
+ ··· + 11.6990u 1.24664
a
4
=
1
u
2
a
2
=
2.43659u
17
0.0642899u
16
+ ··· 11.6990u + 0.246639
2.96259u
17
+ 0.0333139u
16
+ ··· + 14.0713u 1.18235
a
10
=
0.904734u
17
+ 0.506721u
16
+ ··· + 7.40035u + 0.910579
0.842198u
17
0.109293u
16
+ ··· 8.98831u + 1.01929
a
8
=
u
0.0642899u
17
0.526008u
16
+ ··· + 2.18995u 2.43659
a
3
=
0.526008u
17
+ 0.0309760u
16
+ ··· 2.37230u + 0.935710
0.526008u
17
0.0309760u
16
+ ··· + 2.37230u 0.935710
a
12
=
2.43659u
17
0.0642899u
16
+ ··· 11.6990u + 0.246639
2.43659u
17
+ 0.0642899u
16
+ ··· + 11.6990u 1.24664
a
6
=
0.473992u
17
1.03098u
16
+ ··· 0.627703u 6.93571
2.91058u
17
+ 1.09527u
16
+ ··· + 12.3267u + 6.68907
a
7
=
1.45587u
17
1.09351u
16
+ ··· + 9.25599u 6.27762
0.0572764u
17
+ 1.16774u
16
+ ··· 1.92168u + 7.02922
a
11
=
0.830508u
17
+ 0.932203u
16
+ ··· + 6.13559u + 2.42373
1.92577u
17
0.425482u
16
+ ··· 14.7352u + 0.486850
(ii) Obstruction class = 1
(iii) Cusp Shapes =
420
1711
u
17
3903
1711
u
16
+ ··· +
16951
1711
u
58693
1711
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
11u
17
+ ··· + 2u
2
+ 1
c
2
, c
6
u
18
+ 3u
17
+ ··· 3u + 1
c
3
, c
9
u
18
u
17
+ ··· + 3u + 5
c
4
, c
8
u
18
+ 4u
16
+ ··· u + 1
c
5
u
18
+ 3u
17
+ ··· + 16u + 5
c
7
u
18
+ 4u
17
+ ··· + 8u + 1
c
10
, c
11
u
18
4u
17
+ ··· 8u + 1
c
12
u
18
3u
17
+ ··· 16u + 5
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
+ 5y
17
+ ··· + 4y + 1
c
2
, c
6
y
18
+ y
17
+ ··· 15y + 1
c
3
, c
9
y
18
+ y
17
+ ··· 139y + 25
c
4
, c
8
y
18
+ 8y
17
+ ··· + 19y + 1
c
5
, c
12
y
18
+ 19y
17
+ ··· + 104y + 25
c
7
, c
10
, c
11
y
18
+ 20y
17
+ ··· + 16y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.227222 + 0.933002I
a = 1.00000
b = 0.570402 + 0.267582I
5.91735 + 2.24114I 9.01697 3.26604I
u = 0.227222 0.933002I
a = 1.00000
b = 0.570402 0.267582I
5.91735 2.24114I 9.01697 + 3.26604I
u = 0.636335 + 0.689593I
a = 1.00000
b = 0.563137 0.791150I
1.04432 7.37218I 0.40617 + 4.21110I
u = 0.636335 0.689593I
a = 1.00000
b = 0.563137 + 0.791150I
1.04432 + 7.37218I 0.40617 4.21110I
u = 0.664732 + 0.842154I
a = 1.00000
b = 0.462994 + 0.821976I
3.31445 + 2.16551I 4.00255 1.37120I
u = 0.664732 0.842154I
a = 1.00000
b = 0.462994 0.821976I
3.31445 2.16551I 4.00255 + 1.37120I
u = 0.718055 + 1.007170I
a = 1.00000
b = 0.358244 0.932951I
0.42782 + 3.41794I 3.16879 3.77825I
u = 0.718055 1.007170I
a = 1.00000
b = 0.358244 + 0.932951I
0.42782 3.41794I 3.16879 + 3.77825I
u = 0.112765 + 0.658981I
a = 1.00000
b = 0.617520 0.993221I
2.48715 1.52476I 12.11698 + 4.46390I
u = 0.112765 0.658981I
a = 1.00000
b = 0.617520 + 0.993221I
2.48715 + 1.52476I 12.11698 4.46390I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.821490 + 1.131200I
a = 1.00000
b = 0.460000 + 0.702000I
4.72724 6.31712I 4.50945 + 3.68152I
u = 0.821490 1.131200I
a = 1.00000
b = 0.460000 0.702000I
4.72724 + 6.31712I 4.50945 3.68152I
u = 0.868208 + 1.108810I
a = 1.00000
b = 0.415489 1.012400I
3.17492 + 5.22960I 4.69895 4.30954I
u = 0.868208 1.108810I
a = 1.00000
b = 0.415489 + 1.012400I
3.17492 5.22960I 4.69895 + 4.30954I
u = 0.89808 + 1.21515I
a = 1.00000
b = 0.11100 + 1.63460I
12.12290 4.59015I 15.2185 + 10.6507I
u = 0.89808 1.21515I
a = 1.00000
b = 0.11100 1.63460I
12.12290 + 4.59015I 15.2185 10.6507I
u = 0.047242 + 0.417816I
a = 1.00000
b = 0.70996 + 2.08504I
7.95638 + 0.90560I 22.2043 + 0.5995I
u = 0.047242 0.417816I
a = 1.00000
b = 0.70996 2.08504I
7.95638 0.90560I 22.2043 0.5995I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
12
+ 5u
11
+ ··· + 3u
2
+ 1)
4
)(u
18
11u
17
+ ··· + 2u
2
+ 1)
· (u
32
20u
31
+ ··· 30u + 4)
c
2
, c
6
(u
18
+ 3u
17
+ ··· 3u + 1)(u
32
+ 3u
31
+ ··· + 4u + 1)
· (u
48
u
47
+ ··· + 188u + 304)
c
3
, c
9
(u
18
u
17
+ ··· + 3u + 5)(u
32
u
31
+ ··· 4u + 1)
· (u
48
+ u
47
+ ··· 972u + 432)
c
4
, c
8
(u
18
+ 4u
16
+ ··· u + 1)(u
32
u
30
+ ··· 2u + 1)
· (u
48
+ 3u
47
+ ··· 8u + 4)
c
5
((u
2
+ u + 1)
24
)(u
18
+ 3u
17
+ ··· + 16u + 5)
· (u
32
22u
31
+ ··· 65536u + 4096)
c
7
((u
12
3u
11
+ ··· + 2u + 1)
4
)(u
18
+ 4u
17
+ ··· + 8u + 1)
· (u
32
+ 9u
31
+ ··· + 84u + 16)
c
10
, c
11
((u
12
3u
11
+ ··· + 2u + 1)
4
)(u
18
4u
17
+ ··· 8u + 1)
· (u
32
+ 9u
31
+ ··· + 84u + 16)
c
12
((u
2
+ u + 1)
24
)(u
18
3u
17
+ ··· 16u + 5)
· (u
32
22u
31
+ ··· 65536u + 4096)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
12
+ y
11
+ ··· + 6y + 1)
4
)(y
18
+ 5y
17
+ ··· + 4y + 1)
· (y
32
+ 6y
31
+ ··· + 52y + 16)
c
2
, c
6
(y
18
+ y
17
+ ··· 15y + 1)(y
32
+ 31y
31
+ ··· + 16y + 1)
· (y
48
+ 15y
47
+ ··· + 4909520y + 92416)
c
3
, c
9
(y
18
+ y
17
+ ··· 139y + 25)(y
32
+ 3y
31
+ ··· + 28y + 1)
· (y
48
+ 3y
47
+ ··· + 2702160y + 186624)
c
4
, c
8
(y
18
+ 8y
17
+ ··· + 19y + 1)(y
32
2y
31
+ ··· 6y + 1)
· (y
48
+ 15y
47
+ ··· + 264y + 16)
c
5
, c
12
((y
2
+ y + 1)
24
)(y
18
+ 19y
17
+ ··· + 104y + 25)
· (y
32
+ 20y
31
+ ··· 58720256y + 16777216)
c
7
, c
10
, c
11
((y
12
+ 9y
11
+ ··· 6y + 1)
4
)(y
18
+ 20y
17
+ ··· + 16y + 1)
· (y
32
+ 29y
31
+ ··· + 976y + 256)
23