12n
0746
(K12n
0746
)
A knot diagram
1
Linearized knot diagam
4 6 7 8 12 10 1 2 7 6 3 5
Solving Sequence
2,6 3,10
7 4 11 12 1 5 9 8
c
2
c
6
c
3
c
10
c
11
c
1
c
5
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, 1.83924 × 10
21
u
27
+ 7.51768 × 10
21
u
26
+ ··· + 3.02460 × 10
21
a 9.01849 × 10
21
,
u
28
2u
27
+ ··· 2u + 1i
I
u
2
= h−4.38637 × 10
21
u
23
6.05223 × 10
21
u
22
+ ··· + 9.74526 × 10
20
b + 2.66742 × 10
23
,
1.58823 × 10
23
u
23
2.15936 × 10
23
u
22
+ ··· + 2.24141 × 10
22
a + 9.91766 × 10
24
,
u
24
+ u
23
+ ··· 230u + 23i
I
u
3
= hb + u, 99658301453u
19
+ 22815726133u
18
+ ··· + 73658938123a 286826314291,
u
20
u
19
+ ··· 2u + 1i
I
u
4
= h−3.66729 × 10
26
u
23
+ 3.10786 × 10
26
u
22
+ ··· + 9.53312 × 10
27
b 4.94358 × 10
28
,
7.82120 × 10
27
u
23
+ 8.56311 × 10
27
u
22
+ ··· + 4.09924 × 10
29
a 2.28465 × 10
30
,
u
24
8u
22
+ ··· + 242u + 43i
I
u
5
= hb u, a, u
3
+ u
2
1i
* 5 irreducible components of dim
C
= 0, with total 99 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, 1.84 × 10
21
u
27
+ 7.52 × 10
21
u
26
+ · · · + 3.02 × 10
21
a
9.02 × 10
21
, u
28
2u
27
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
0.608092u
27
2.48551u
26
+ ··· 16.5137u + 2.98171
u
a
7
=
3.02147u
27
5.56752u
26
+ ··· 8.71227u 7.54372
0.146622u
27
0.672339u
26
+ ··· 2.14675u + 1.26933
a
4
=
1.25423u
27
2.25494u
26
+ ··· + 7.72816u + 4.89956
0.309280u
27
+ 0.794974u
26
+ ··· + 1.07232u 0.906326
a
11
=
0.608092u
27
2.48551u
26
+ ··· 16.5137u + 2.98171
0.146622u
27
+ 0.672339u
26
+ ··· + 4.14675u 1.26933
a
12
=
0.608092u
27
2.48551u
26
+ ··· 15.5137u + 2.98171
0.146622u
27
+ 0.672339u
26
+ ··· + 4.14675u 1.26933
a
1
=
2.64646u
27
4.80020u
26
+ ··· + 5.40118u 0.731153
0.452414u
27
+ 1.16215u
26
+ ··· + 1.92755u 0.493859
a
5
=
3.31472u
27
+ 6.91219u
26
+ ··· + 15.0058u + 5.00506
0.0676430u
27
+ 0.0431589u
26
+ ··· + 0.266521u 0.986574
a
9
=
2.27197u
27
3.48515u
26
+ ··· + 13.3274u 0.442136
0.317299u
27
0.919860u
26
+ ··· 4.21736u + 0.793896
a
8
=
2.58927u
27
4.40501u
26
+ ··· + 9.11008u + 0.351760
0.317299u
27
0.919860u
26
+ ··· 4.21736u + 0.793896
(ii) Obstruction class = 1
(iii) Cusp Shapes =
582961495882437832970
3024598968157486859593
u
27
7584312197379865856979
3024598968157486859593
u
26
+ ···
48717383677932330753372
3024598968157486859593
u +
53712721057335359768630
3024598968157486859593
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
21u
27
+ ··· 1076u + 85
c
2
, c
11
u
28
2u
27
+ ··· 2u + 1
c
3
, c
8
u
28
+ u
26
+ ··· + 5u + 1
c
4
, c
7
u
28
u
27
+ ··· u + 1
c
5
, c
12
u
28
16u
27
+ ··· 3584u + 256
c
6
, c
9
, c
10
u
28
+ 14u
27
+ ··· + 388u + 85
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
+ 5y
27
+ ··· + 88494y + 7225
c
2
, c
11
y
28
30y
27
+ ··· 14y + 1
c
3
, c
8
y
28
+ 2y
27
+ ··· y + 1
c
4
, c
7
y
28
+ 5y
27
+ ··· + y + 1
c
5
, c
12
y
28
+ 24y
27
+ ··· 65536y + 65536
c
6
, c
9
, c
10
y
28
+ 14y
27
+ ··· 10634y + 7225
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.086820 + 0.335626I
a = 0.377913 + 0.742585I
b = 1.086820 + 0.335626I
2.65449 3.26122I 2.78730 + 2.85719I
u = 1.086820 0.335626I
a = 0.377913 0.742585I
b = 1.086820 0.335626I
2.65449 + 3.26122I 2.78730 2.85719I
u = 1.291560 + 0.285093I
a = 0.764348 + 0.803904I
b = 1.291560 + 0.285093I
1.20504 + 9.37586I 5.06931 5.78305I
u = 1.291560 0.285093I
a = 0.764348 0.803904I
b = 1.291560 0.285093I
1.20504 9.37586I 5.06931 + 5.78305I
u = 0.521856 + 0.406646I
a = 1.15897 + 1.81439I
b = 0.521856 + 0.406646I
8.79310 0.90672I 1.94268 + 8.40913I
u = 0.521856 0.406646I
a = 1.15897 1.81439I
b = 0.521856 0.406646I
8.79310 + 0.90672I 1.94268 8.40913I
u = 1.361260 + 0.077580I
a = 0.583212 0.841707I
b = 1.361260 + 0.077580I
2.74957 + 4.57356I 4.51737 9.50673I
u = 1.361260 0.077580I
a = 0.583212 + 0.841707I
b = 1.361260 0.077580I
2.74957 4.57356I 4.51737 + 9.50673I
u = 1.43638 + 0.07970I
a = 0.790538 0.457604I
b = 1.43638 + 0.07970I
5.39731 + 4.50866I 8.58445 4.27811I
u = 1.43638 0.07970I
a = 0.790538 + 0.457604I
b = 1.43638 0.07970I
5.39731 4.50866I 8.58445 + 4.27811I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.537196 + 0.036679I
a = 0.23574 + 1.76134I
b = 0.537196 + 0.036679I
2.45068 2.83732I 4.31985 + 3.27002I
u = 0.537196 0.036679I
a = 0.23574 1.76134I
b = 0.537196 0.036679I
2.45068 + 2.83732I 4.31985 3.27002I
u = 0.071489 + 0.529570I
a = 1.14088 0.95443I
b = 0.071489 + 0.529570I
0.26010 + 1.93004I 3.61653 5.71528I
u = 0.071489 0.529570I
a = 1.14088 + 0.95443I
b = 0.071489 0.529570I
0.26010 1.93004I 3.61653 + 5.71528I
u = 1.43308 + 0.34927I
a = 0.591407 0.524106I
b = 1.43308 + 0.34927I
1.87639 + 2.56909I 2.67930 + 1.43996I
u = 1.43308 0.34927I
a = 0.591407 + 0.524106I
b = 1.43308 0.34927I
1.87639 2.56909I 2.67930 1.43996I
u = 0.282745 + 0.391125I
a = 0.483464 0.962937I
b = 0.282745 + 0.391125I
1.155910 + 0.293260I 10.43664 2.43272I
u = 0.282745 0.391125I
a = 0.483464 + 0.962937I
b = 0.282745 0.391125I
1.155910 0.293260I 10.43664 + 2.43272I
u = 1.42876 + 0.51566I
a = 0.703819 0.195243I
b = 1.42876 + 0.51566I
4.50289 + 1.59330I 8.77713 + 1.98299I
u = 1.42876 0.51566I
a = 0.703819 + 0.195243I
b = 1.42876 0.51566I
4.50289 1.59330I 8.77713 1.98299I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.50305 + 0.53936I
a = 0.767624 0.498981I
b = 1.50305 + 0.53936I
3.99815 11.69660I 6.00000 + 8.56335I
u = 1.50305 0.53936I
a = 0.767624 + 0.498981I
b = 1.50305 0.53936I
3.99815 + 11.69660I 6.00000 8.56335I
u = 0.308666 + 0.171864I
a = 2.41196 4.47005I
b = 0.308666 + 0.171864I
11.73900 4.61344I 11.46925 5.36985I
u = 0.308666 0.171864I
a = 2.41196 + 4.47005I
b = 0.308666 0.171864I
11.73900 + 4.61344I 11.46925 + 5.36985I
u = 1.43159 + 0.87843I
a = 0.704219 0.264488I
b = 1.43159 + 0.87843I
3.41771 8.95629I 0. + 7.40222I
u = 1.43159 0.87843I
a = 0.704219 + 0.264488I
b = 1.43159 0.87843I
3.41771 + 8.95629I 0. 7.40222I
u = 1.48231 + 0.90624I
a = 0.815172 0.278277I
b = 1.48231 + 0.90624I
2.3195 + 17.0944I 6.00000 8.92147I
u = 1.48231 0.90624I
a = 0.815172 + 0.278277I
b = 1.48231 0.90624I
2.3195 17.0944I 6.00000 + 8.92147I
7
II. I
u
2
= h−4.39 × 10
21
u
23
6.05 × 10
21
u
22
+ · · · + 9.75 × 10
20
b + 2.67 ×
10
23
, 1.59 × 10
23
u
23
2.16 × 10
23
u
22
+ · · · + 2.24 × 10
22
a + 9.92 ×
10
24
, u
24
+ u
23
+ · · · 230u + 23i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
7.08586u
23
+ 9.63395u
22
+ ··· + 3246.32u 442.474
4.50103u
23
+ 6.21044u
22
+ ··· + 2010.44u 273.715
a
7
=
6.11064u
23
8.32729u
22
+ ··· 2798.51u + 378.851
0.415380u
23
0.860716u
22
+ ··· + 46.1813u 25.3055
a
4
=
3.27955u
23
+ 4.32985u
22
+ ··· + 1628.19u 235.525
5.50322u
23
+ 7.44656u
22
+ ··· + 2558.40u 349.287
a
11
=
7.08586u
23
+ 9.63395u
22
+ ··· + 3246.32u 442.474
3.60153u
23
+ 5.01071u
22
+ ··· + 1587.36u 215.109
a
12
=
11.5869u
23
+ 15.8444u
22
+ ··· + 5256.76u 716.189
2.94846u
23
+ 4.11075u
22
+ ··· + 1297.72u 175.792
a
1
=
8.69992u
23
11.2039u
22
+ ··· 4497.49u + 658.430
10.2679u
23
13.8814u
22
+ ··· 4772.27u + 653.807
a
5
=
2.84349u
23
+ 4.59701u
22
+ ··· + 726.192u 47.7595
4.55216u
23
5.85791u
22
+ ··· 2364.05u + 346.117
a
9
=
9.11922u
23
+ 12.4058u
22
+ ··· + 4166.18u 565.621
3.66715u
23
+ 5.27000u
22
+ ··· + 1460.26u 183.205
a
8
=
12.7864u
23
+ 17.6758u
22
+ ··· + 5626.44u 748.827
3.66715u
23
+ 5.27000u
22
+ ··· + 1460.26u 183.205
(ii) Obstruction class = 1
(iii) Cusp Shapes =
5311543016724665509336
88593237130145253275
u
23
+
7107141086263947951916
88593237130145253275
u
22
+ ··· +
506145016549541819876372
17718647426029050655
u
351874446634871455526646
88593237130145253275
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ u
3
+ u
2
u + 1)
6
c
2
, c
11
u
24
+ u
23
+ ··· 230u + 23
c
3
, c
8
u
24
2u
23
+ ··· + 222u + 59
c
4
, c
7
u
24
u
23
+ ··· + 30u + 25
c
5
, c
12
(u
3
+ u
2
+ 2u + 1)
8
c
6
, c
9
, c
10
(u
4
u
3
+ u
2
+ u + 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
(y
4
+ y
3
+ 5y
2
+ y + 1)
6
c
2
, c
11
y
24
5y
23
+ ··· 17894y + 529
c
3
, c
8
y
24
4y
23
+ ··· + 71902y + 3481
c
4
, c
7
y
24
+ 7y
23
+ ··· + 8450y + 625
c
5
, c
12
(y
3
+ 3y
2
+ 2y 1)
8
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.871397 + 0.215536I
a = 0.70645 1.47436I
b = 1.288690 + 0.118319I
0.78305 1.85791I 3.78084 + 7.29993I
u = 0.871397 0.215536I
a = 0.70645 + 1.47436I
b = 1.288690 0.118319I
0.78305 + 1.85791I 3.78084 7.29993I
u = 0.481220 + 1.117750I
a = 0.537698 + 0.156233I
b = 1.45439 + 0.43085I
5.26521 1.85791I 1.19965 + 7.29993I
u = 0.481220 1.117750I
a = 0.537698 0.156233I
b = 1.45439 0.43085I
5.26521 + 1.85791I 1.19965 7.29993I
u = 1.259050 + 0.270524I
a = 0.893362 + 0.707527I
b = 1.32599 0.61457I
3.35454 4.68603I 10.3101 + 10.2794I
u = 1.259050 0.270524I
a = 0.893362 0.707527I
b = 1.32599 + 0.61457I
3.35454 + 4.68603I 10.3101 10.2794I
u = 1.288690 + 0.118319I
a = 0.798244 + 0.805500I
b = 0.871397 + 0.215536I
0.78305 1.85791I 3.78084 + 7.29993I
u = 1.288690 0.118319I
a = 0.798244 0.805500I
b = 0.871397 0.215536I
0.78305 + 1.85791I 3.78084 7.29993I
u = 1.32599 + 0.61457I
a = 0.905290 + 0.434484I
b = 1.259050 0.270524I
3.35454 + 4.68603I 10.3101 10.2794I
u = 1.32599 0.61457I
a = 0.905290 0.434484I
b = 1.259050 + 0.270524I
3.35454 4.68603I 10.3101 + 10.2794I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.03872 + 1.51471I
a = 0.339611 + 0.294797I
b = 0.349222 + 0.081162I
1.12763 + 4.68603I 7.72892 10.27938I
u = 0.03872 1.51471I
a = 0.339611 0.294797I
b = 0.349222 0.081162I
1.12763 4.68603I 7.72892 + 10.27938I
u = 1.45439 + 0.43085I
a = 0.372404 0.251224I
b = 0.481220 + 1.117750I
5.26521 1.85791I 1.19965 + 7.29993I
u = 1.45439 0.43085I
a = 0.372404 + 0.251224I
b = 0.481220 1.117750I
5.26521 + 1.85791I 1.19965 7.29993I
u = 1.49772 + 0.63712I
a = 0.800074 + 0.415791I
b = 1.23605 1.10308I
0.78305 + 7.51416I 3.78084 13.25883I
u = 1.49772 0.63712I
a = 0.800074 0.415791I
b = 1.23605 + 1.10308I
0.78305 7.51416I 3.78084 + 13.25883I
u = 0.349222 + 0.081162I
a = 1.50940 1.15491I
b = 0.03872 + 1.51471I
1.12763 + 4.68603I 7.72892 10.27938I
u = 0.349222 0.081162I
a = 1.50940 + 1.15491I
b = 0.03872 1.51471I
1.12763 4.68603I 7.72892 + 10.27938I
u = 0.352036 + 0.040102I
a = 1.04733 + 1.61298I
b = 0.86175 + 2.12125I
5.26521 7.51416I 1.19965 + 13.25883I
u = 0.352036 0.040102I
a = 1.04733 1.61298I
b = 0.86175 2.12125I
5.26521 + 7.51416I 1.19965 13.25883I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.23605 + 1.10308I
a = 0.875509 + 0.134887I
b = 1.49772 0.63712I
0.78305 7.51416I 3.78084 + 13.25883I
u = 1.23605 1.10308I
a = 0.875509 0.134887I
b = 1.49772 + 0.63712I
0.78305 + 7.51416I 3.78084 13.25883I
u = 0.86175 + 2.12125I
a = 0.141530 + 0.261800I
b = 0.352036 + 0.040102I
5.26521 7.51416I 0
u = 0.86175 2.12125I
a = 0.141530 0.261800I
b = 0.352036 0.040102I
5.26521 + 7.51416I 0
13
III. I
u
3
= hb + u, 9.97 × 10
10
u
19
+ 2.28 × 10
10
u
18
+ · · · + 7.37 × 10
10
a
2.87 × 10
11
, u
20
u
19
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
1.35297u
19
0.309748u
18
+ ··· + 5.01927u + 3.89398
u
a
7
=
3.05617u
19
3.31440u
18
+ ··· + 26.4727u 6.68081
0.0448430u
19
+ 0.229731u
18
+ ··· + 0.266527u + 1.04322
a
4
=
3.73189u
19
2.90830u
18
+ ··· + 22.5207u + 2.75146
0.0798962u
19
+ 0.122919u
18
+ ··· 1.56402u + 0.709081
a
11
=
1.35297u
19
0.309748u
18
+ ··· + 5.01927u + 3.89398
0.0448430u
19
+ 0.229731u
18
+ ··· 1.73347u + 1.04322
a
12
=
1.35297u
19
0.309748u
18
+ ··· + 4.01927u + 3.89398
0.0448430u
19
+ 0.229731u
18
+ ··· 1.73347u + 1.04322
a
1
=
2.24854u
19
+ 0.516651u
18
+ ··· 4.37312u 7.02363
0.0516704u
19
0.300485u
18
+ ··· + 2.04578u 0.397752
a
5
=
3.14585u
19
+ 2.85493u
18
+ ··· 25.0058u + 4.59437
0.124739u
19
0.106813u
18
+ ··· 0.830543u 1.33414
a
9
=
2.83500u
19
+ 1.12947u
18
+ ··· 12.5781u 7.07266
0.266234u
19
0.515357u
18
+ ··· + 3.30610u 1.30145
a
8
=
2.56877u
19
+ 0.614111u
18
+ ··· 9.27198u 8.37411
0.266234u
19
0.515357u
18
+ ··· + 3.30610u 1.30145
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
456675119914
73658938123
u
19
+
414145420365
73658938123
u
18
+ ···
3019589803806
73658938123
u
62318108709
73658938123
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
8u
19
+ ··· + 3u
2
+ 1
c
2
, c
11
u
20
u
19
+ ··· 2u + 1
c
3
, c
8
u
20
+ u
19
+ ··· + 3u + 13
c
4
, c
7
u
20
+ 4u
18
+ ··· u + 1
c
5
u
20
+ 12u
18
+ ··· u + 3
c
6
u
20
+ 7u
19
+ ··· + 7u
2
+ 1
c
9
, c
10
u
20
7u
19
+ ··· + 7u
2
+ 1
c
12
u
20
+ 12u
18
+ ··· + u + 3
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 4y
19
+ ··· + 6y + 1
c
2
, c
11
y
20
7y
19
+ ··· + 14y + 1
c
3
, c
8
y
20
+ y
19
+ ··· 425y + 169
c
4
, c
7
y
20
+ 8y
19
+ ··· + 5y + 1
c
5
, c
12
y
20
+ 24y
19
+ ··· + 5y + 9
c
6
, c
9
, c
10
y
20
+ 13y
19
+ ··· + 14y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.206860 + 0.912738I
a = 0.595089 + 0.399266I
b = 0.206860 0.912738I
1.87110 4.11491I 1.55747 + 5.09443I
u = 0.206860 0.912738I
a = 0.595089 0.399266I
b = 0.206860 + 0.912738I
1.87110 + 4.11491I 1.55747 5.09443I
u = 1.146640 + 0.158956I
a = 0.833442 0.963122I
b = 1.146640 0.158956I
0.308612 0.887866I 7.01392 + 0.89869I
u = 1.146640 0.158956I
a = 0.833442 + 0.963122I
b = 1.146640 + 0.158956I
0.308612 + 0.887866I 7.01392 0.89869I
u = 0.764508 + 1.012020I
a = 0.039227 + 0.271965I
b = 0.764508 1.012020I
5.47737 + 6.62738I 0.42430 3.51997I
u = 0.764508 1.012020I
a = 0.039227 0.271965I
b = 0.764508 + 1.012020I
5.47737 6.62738I 0.42430 + 3.51997I
u = 0.331623 + 0.638727I
a = 1.26938 + 0.62846I
b = 0.331623 0.638727I
3.79735 3.38074I 3.18735 + 5.13211I
u = 0.331623 0.638727I
a = 1.26938 0.62846I
b = 0.331623 + 0.638727I
3.79735 + 3.38074I 3.18735 5.13211I
u = 0.411689 + 0.583746I
a = 1.48118 1.12864I
b = 0.411689 0.583746I
9.13088 + 0.23260I 5.20121 + 0.99282I
u = 0.411689 0.583746I
a = 1.48118 + 1.12864I
b = 0.411689 + 0.583746I
9.13088 0.23260I 5.20121 0.99282I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.277620 + 0.235723I
a = 0.755026 + 0.731922I
b = 1.277620 0.235723I
2.53448 3.53693I 4.49394 + 2.65444I
u = 1.277620 0.235723I
a = 0.755026 0.731922I
b = 1.277620 + 0.235723I
2.53448 + 3.53693I 4.49394 2.65444I
u = 0.896773 + 0.960875I
a = 0.339283 + 0.184359I
b = 0.896773 0.960875I
5.79310 + 1.03199I 4.20712 0.39355I
u = 0.896773 0.960875I
a = 0.339283 0.184359I
b = 0.896773 + 0.960875I
5.79310 1.03199I 4.20712 + 0.39355I
u = 1.259400 + 0.425629I
a = 0.881755 + 0.330751I
b = 1.259400 0.425629I
3.54204 2.99255I 6.08654 + 3.89052I
u = 1.259400 0.425629I
a = 0.881755 0.330751I
b = 1.259400 + 0.425629I
3.54204 + 2.99255I 6.08654 3.89052I
u = 0.095406 + 0.374240I
a = 4.30822 + 1.24073I
b = 0.095406 0.374240I
11.97380 + 4.82580I 7.61339 11.34574I
u = 0.095406 0.374240I
a = 4.30822 1.24073I
b = 0.095406 + 0.374240I
11.97380 4.82580I 7.61339 + 11.34574I
u = 1.37578 + 0.84536I
a = 0.850537 + 0.232509I
b = 1.37578 0.84536I
0.62299 + 6.60843I 4.59643 3.39212I
u = 1.37578 0.84536I
a = 0.850537 0.232509I
b = 1.37578 + 0.84536I
0.62299 6.60843I 4.59643 + 3.39212I
18
IV. I
u
4
= h−3.67 × 10
26
u
23
+ 3.11 × 10
26
u
22
+ · · · + 9.53 × 10
27
b 4.94 ×
10
28
, 7.82 × 10
27
u
23
+ 8.56 × 10
27
u
22
+ · · · + 4.10 × 10
29
a 2.28 ×
10
30
, u
24
8u
22
+ · · · + 242u + 43i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
0.0190796u
23
0.0208895u
22
+ ··· + 23.9335u + 5.57336
0.0384689u
23
0.0326006u
22
+ ··· + 20.6673u + 5.18569
a
7
=
0.0308549u
23
0.0309852u
22
+ ··· + 13.1028u + 4.24203
0.00630508u
23
+ 0.0121205u
22
+ ··· 4.93815u + 0.374359
a
4
=
0.00429981u
23
+ 0.00889826u
22
+ ··· + 1.52545u + 4.03528
0.0208895u
23
+ 0.0219619u
22
+ ··· 0.956087u + 1.82042
a
11
=
0.0190796u
23
0.0208895u
22
+ ··· + 23.9335u + 5.57336
0.0604308u
23
0.0273914u
22
+ ··· + 16.4324u + 4.28744
a
12
=
0.0575485u
23
0.0534901u
22
+ ··· + 44.6007u + 10.7591
0.0568322u
23
0.00741976u
22
+ ··· + 10.1972u + 2.88562
a
1
=
0.0301588u
23
+ 0.0179193u
22
+ ··· 26.1094u 9.14299
0.0107939u
23
0.00843626u
22
+ ··· 9.79673u 3.96761
a
5
=
0.00413390u
23
0.0355708u
22
+ ··· + 10.5611u 4.01184
0.0204326u
23
0.0402020u
22
+ ··· + 10.2954u 0.924994
a
9
=
0.0534723u
23
0.0588566u
22
+ ··· + 26.2658u + 4.41066
0.0352500u
23
+ 0.00717673u
22
+ ··· + 2.95256u + 1.45494
a
8
=
0.0182223u
23
0.0516798u
22
+ ··· + 29.2184u + 5.86560
0.0352500u
23
+ 0.00717673u
22
+ ··· + 2.95256u + 1.45494
(ii) Obstruction class = 1
(iii) Cusp Shapes =
535804160101971736815030556
9533118023002544093158027727
u
23
629721383815858353997296608
9533118023002544093158027727
u
22
+
··· +
122994948289871385854632596364
9533118023002544093158027727
u
47116154343604428037295209270
9533118023002544093158027727
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
6
c
2
, c
11
u
24
8u
22
+ ··· + 242u + 43
c
3
, c
8
u
24
+ u
23
+ ··· 36u + 19
c
4
, c
7
u
24
+ 4u
22
+ ··· + 8u + 7
c
5
, c
12
(u
3
+ u
2
+ 2u + 1)
8
c
6
, c
9
, c
10
(u
4
2u
3
+ 2u
2
u + 1)
6
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
(y
4
+ 2y
2
+ 3y + 1)
6
c
2
, c
11
y
24
16y
23
+ ··· 29238y + 1849
c
3
, c
8
y
24
+ 7y
23
+ ··· + 3682y + 361
c
4
, c
7
y
24
+ 8y
23
+ ··· + 902y + 49
c
5
, c
12
(y
3
+ 3y
2
+ 2y 1)
8
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.948525 + 0.024117I
a = 1.107750 0.828086I
b = 1.36937 0.54334I
0.367792 + 0.232734I 10.02977 2.06053I
u = 0.948525 0.024117I
a = 1.107750 + 0.828086I
b = 1.36937 + 0.54334I
0.367792 0.232734I 10.02977 + 2.06053I
u = 0.372920 + 1.033560I
a = 0.627711 + 0.294886I
b = 0.803726 + 0.192944I
2.27847 + 2.59539I 1.47999 0.91892I
u = 0.372920 1.033560I
a = 0.627711 0.294886I
b = 0.803726 0.192944I
2.27847 2.59539I 1.47999 + 0.91892I
u = 0.141566 + 1.107020I
a = 0.666328 + 0.149071I
b = 1.85255 0.10648I
6.41605 5.42351I 5.04928 + 3.89837I
u = 0.141566 1.107020I
a = 0.666328 0.149071I
b = 1.85255 + 0.10648I
6.41605 + 5.42351I 5.04928 3.89837I
u = 1.112460 + 0.319626I
a = 1.070090 + 0.374592I
b = 1.54326 0.23864I
4.50538 2.59539I 16.5590 + 0.9189I
u = 1.112460 0.319626I
a = 1.070090 0.374592I
b = 1.54326 + 0.23864I
4.50538 + 2.59539I 16.5590 0.9189I
u = 0.803726 + 0.192944I
a = 0.297446 0.872629I
b = 0.372920 + 1.033560I
2.27847 + 2.59539I 1.47999 0.91892I
u = 0.803726 0.192944I
a = 0.297446 + 0.872629I
b = 0.372920 1.033560I
2.27847 2.59539I 1.47999 + 0.91892I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.103880 + 0.609859I
a = 1.034060 + 0.116061I
b = 1.68454 0.94082I
0.36779 + 5.42351I 10.02977 3.89837I
u = 1.103880 0.609859I
a = 1.034060 0.116061I
b = 1.68454 + 0.94082I
0.36779 5.42351I 10.02977 + 3.89837I
u = 1.36937 + 0.54334I
a = 0.485592 0.746758I
b = 0.948525 0.024117I
0.367792 0.232734I 10.02977 + 2.06053I
u = 1.36937 0.54334I
a = 0.485592 + 0.746758I
b = 0.948525 + 0.024117I
0.367792 + 0.232734I 10.02977 2.06053I
u = 1.54326 + 0.23864I
a = 0.751836 + 0.375390I
b = 1.112460 0.319626I
4.50538 + 2.59539I 16.5590 0.9189I
u = 1.54326 0.23864I
a = 0.751836 0.375390I
b = 1.112460 + 0.319626I
4.50538 2.59539I 16.5590 + 0.9189I
u = 0.284414 + 0.156586I
a = 0.93636 + 2.15223I
b = 0.42506 + 1.69414I
6.41605 + 0.23273I 5.04928 2.06053I
u = 0.284414 0.156586I
a = 0.93636 2.15223I
b = 0.42506 1.69414I
6.41605 0.23273I 5.04928 + 2.06053I
u = 0.42506 + 1.69414I
a = 0.411490 + 0.144974I
b = 0.284414 + 0.156586I
6.41605 + 0.23273I 5.04928 2.06053I
u = 0.42506 1.69414I
a = 0.411490 0.144974I
b = 0.284414 0.156586I
6.41605 0.23273I 5.04928 + 2.06053I
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.85255 + 0.10648I
a = 0.014573 + 0.410406I
b = 0.141566 1.107020I
6.41605 + 5.42351I 5.04928 3.89837I
u = 1.85255 0.10648I
a = 0.014573 0.410406I
b = 0.141566 + 1.107020I
6.41605 5.42351I 5.04928 + 3.89837I
u = 1.68454 + 0.94082I
a = 0.676227 + 0.072743I
b = 1.103880 0.609859I
0.36779 5.42351I 10.02977 + 3.89837I
u = 1.68454 0.94082I
a = 0.676227 0.072743I
b = 1.103880 + 0.609859I
0.36779 + 5.42351I 10.02977 3.89837I
24
V. I
u
5
= hb u, a, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
0
u
a
7
=
0
u
a
4
=
1
0
a
11
=
0
u
a
12
=
u
u
2
+ u 1
a
1
=
1
0
a
5
=
u
2
1
u
2
a
9
=
0
u
a
8
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 6
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
9
c
10
u
3
c
2
, c
3
, c
4
c
7
, c
8
, c
11
u
3
+ u
2
1
c
5
, c
12
u
3
u
2
+ 2u 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
9
c
10
y
3
c
2
, c
3
, c
4
c
7
, c
8
, c
11
y
3
y
2
+ 2y 1
c
5
, c
12
y
3
+ 3y
2
+ 2y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0
b = 0.877439 + 0.744862I
3.02413 2.82812I 2.49024 + 2.97945I
u = 0.877439 0.744862I
a = 0
b = 0.877439 0.744862I
3.02413 + 2.82812I 2.49024 2.97945I
u = 0.754878
a = 0
b = 0.754878
1.11345 9.01950
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
3
(u
4
+ u
3
+ u
2
u + 1)
6
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
6
· (u
20
8u
19
+ ··· + 3u
2
+ 1)(u
28
21u
27
+ ··· 1076u + 85)
c
2
, c
11
(u
3
+ u
2
1)(u
20
u
19
+ ··· 2u + 1)(u
24
8u
22
+ ··· + 242u + 43)
· (u
24
+ u
23
+ ··· 230u + 23)(u
28
2u
27
+ ··· 2u + 1)
c
3
, c
8
(u
3
+ u
2
1)(u
20
+ u
19
+ ··· + 3u + 13)(u
24
2u
23
+ ··· + 222u + 59)
· (u
24
+ u
23
+ ··· 36u + 19)(u
28
+ u
26
+ ··· + 5u + 1)
c
4
, c
7
(u
3
+ u
2
1)(u
20
+ 4u
18
+ ··· u + 1)(u
24
+ 4u
22
+ ··· + 8u + 7)
· (u
24
u
23
+ ··· + 30u + 25)(u
28
u
27
+ ··· u + 1)
c
5
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
16
(u
20
+ 12u
18
+ ··· u + 3)
· (u
28
16u
27
+ ··· 3584u + 256)
c
6
u
3
(u
4
2u
3
+ 2u
2
u + 1)
6
(u
4
u
3
+ u
2
+ u + 1)
6
· (u
20
+ 7u
19
+ ··· + 7u
2
+ 1)(u
28
+ 14u
27
+ ··· + 388u + 85)
c
9
, c
10
u
3
(u
4
2u
3
+ 2u
2
u + 1)
6
(u
4
u
3
+ u
2
+ u + 1)
6
· (u
20
7u
19
+ ··· + 7u
2
+ 1)(u
28
+ 14u
27
+ ··· + 388u + 85)
c
12
(u
3
u
2
+ 2u 1)(u
3
+ u
2
+ 2u + 1)
16
(u
20
+ 12u
18
+ ··· + u + 3)
· (u
28
16u
27
+ ··· 3584u + 256)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
3
(y
4
+ 2y
2
+ 3y + 1)
6
(y
4
+ y
3
+ 5y
2
+ y + 1)
6
· (y
20
+ 4y
19
+ ··· + 6y + 1)(y
28
+ 5y
27
+ ··· + 88494y + 7225)
c
2
, c
11
(y
3
y
2
+ 2y 1)(y
20
7y
19
+ ··· + 14y + 1)
· (y
24
16y
23
+ ··· 29238y + 1849)
· (y
24
5y
23
+ ··· 17894y + 529)(y
28
30y
27
+ ··· 14y + 1)
c
3
, c
8
(y
3
y
2
+ 2y 1)(y
20
+ y
19
+ ··· 425y + 169)
· (y
24
4y
23
+ ··· + 71902y + 3481)(y
24
+ 7y
23
+ ··· + 3682y + 361)
· (y
28
+ 2y
27
+ ··· y + 1)
c
4
, c
7
(y
3
y
2
+ 2y 1)(y
20
+ 8y
19
+ ··· + 5y + 1)
· (y
24
+ 7y
23
+ ··· + 8450y + 625)(y
24
+ 8y
23
+ ··· + 902y + 49)
· (y
28
+ 5y
27
+ ··· + y + 1)
c
5
, c
12
((y
3
+ 3y
2
+ 2y 1)
17
)(y
20
+ 24y
19
+ ··· + 5y + 9)
· (y
28
+ 24y
27
+ ··· 65536y + 65536)
c
6
, c
9
, c
10
y
3
(y
4
+ 2y
2
+ 3y + 1)
6
(y
4
+ y
3
+ 5y
2
+ y + 1)
6
· (y
20
+ 13y
19
+ ··· + 14y + 1)(y
28
+ 14y
27
+ ··· 10634y + 7225)
30