12n
0747
(K12n
0747
)
A knot diagram
1
Linearized knot diagam
4 5 7 10 3 12 4 12 1 5 6 9
Solving Sequence
9,12 1,4
2 10 5 8 7 3 6 11
c
12
c
1
c
9
c
4
c
8
c
7
c
3
c
6
c
11
c
2
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.18510 × 10
87
u
63
+ 3.43048 × 10
87
u
62
+ ··· + 1.06222 × 10
86
b + 4.40024 × 10
87
,
1.30342 × 10
88
u
63
1.96828 × 10
88
u
62
+ ··· + 1.06222 × 10
86
a 2.56911 × 10
88
, u
64
2u
63
+ ··· 23u + 1i
I
u
2
= hu
5
u
4
3u
3
+ u
2
+ b + 2u + 1, 2u
9
2u
8
12u
7
+ 9u
6
+ 24u
5
11u
4
17u
3
+ a + 2u + 6,
u
10
u
9
6u
8
+ 4u
7
+ 13u
6
4u
5
11u
4
2u
3
+ 2u
2
+ 4u + 1i
I
u
3
= hb + a + u + 1, a
2
+ au + 3a + u + 1, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.19 × 10
87
u
63
+ 3.43 × 10
87
u
62
+ · · · + 1.06 × 10
86
b + 4.40 ×
10
87
, 1.30 × 10
88
u
63
1.97 × 10
88
u
62
+ · · · + 1.06 × 10
86
a 2.57 ×
10
88
, u
64
2u
63
+ · · · 23u + 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
122.708u
63
+ 185.299u
62
+ ··· 5249.53u + 241.862
20.5711u
63
32.2954u
62
+ ··· + 884.457u 41.4249
a
2
=
80.9216u
63
120.495u
62
+ ··· + 3818.05u 185.936
10.4054u
63
+ 15.9135u
62
+ ··· 498.812u + 22.3121
a
10
=
u
u
3
+ u
a
5
=
97.7534u
63
+ 145.797u
62
+ ··· 4117.81u + 187.718
42.6309u
63
64.8314u
62
+ ··· + 1801.77u 85.1621
a
8
=
u
u
a
7
=
44.4529u
63
+ 65.0075u
62
+ ··· 1944.92u + 88.7000
21.8652u
63
+ 33.1776u
62
+ ··· 951.044u + 46.6180
a
3
=
148.216u
63
219.442u
62
+ ··· + 6319.96u 310.655
26.4978u
63
+ 40.7839u
62
+ ··· 1214.82u + 58.2926
a
6
=
66.3181u
63
+ 98.1851u
62
+ ··· 2895.96u + 135.318
21.8652u
63
+ 33.1776u
62
+ ··· 951.044u + 46.6180
a
11
=
17.7302u
63
+ 25.0723u
62
+ ··· 616.299u + 35.7654
51.1592u
63
77.8247u
62
+ ··· + 2236.56u 107.971
(ii) Obstruction class = 1
(iii) Cusp Shapes = 812.905u
63
1227.04u
62
+ ··· + 34392.6u 1624.68
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
64
6u
63
+ ··· + 392u + 49
c
2
, c
5
u
64
2u
63
+ ··· + 14u + 1
c
3
, c
7
u
64
u
63
+ ··· 30u + 7
c
4
, c
10
u
64
2u
63
+ ··· 649u 23
c
6
, c
11
u
64
u
63
+ ··· + 16u + 1
c
8
, c
9
, c
12
u
64
2u
63
+ ··· 23u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
64
10y
63
+ ··· 254506y + 2401
c
2
, c
5
y
64
18y
63
+ ··· 60y + 1
c
3
, c
7
y
64
21y
63
+ ··· 3056y + 49
c
4
, c
10
y
64
28y
63
+ ··· 464395y + 529
c
6
, c
11
y
64
51y
63
+ ··· 312y + 1
c
8
, c
9
, c
12
y
64
58y
63
+ ··· + 39y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.145672 + 0.968068I
a = 0.158850 0.010710I
b = 0.509053 + 0.675145I
1.07637 + 4.19054I 0
u = 0.145672 0.968068I
a = 0.158850 + 0.010710I
b = 0.509053 0.675145I
1.07637 4.19054I 0
u = 0.317235 + 1.010710I
a = 0.0311390 + 0.0511144I
b = 1.146370 0.672425I
4.56279 10.69090I 0
u = 0.317235 1.010710I
a = 0.0311390 0.0511144I
b = 1.146370 + 0.672425I
4.56279 + 10.69090I 0
u = 0.317994 + 0.869749I
a = 0.0728894 + 0.0793513I
b = 1.254910 + 0.487312I
6.15152 3.00155I 0
u = 0.317994 0.869749I
a = 0.0728894 0.0793513I
b = 1.254910 0.487312I
6.15152 + 3.00155I 0
u = 0.950390 + 0.519722I
a = 0.594935 + 1.039960I
b = 0.623717 + 0.052076I
4.21641 1.93351I 0
u = 0.950390 0.519722I
a = 0.594935 1.039960I
b = 0.623717 0.052076I
4.21641 + 1.93351I 0
u = 0.017192 + 0.901588I
a = 0.068027 + 0.657514I
b = 1.070960 + 0.469701I
5.87061 + 3.95242I 0
u = 0.017192 0.901588I
a = 0.068027 0.657514I
b = 1.070960 0.469701I
5.87061 3.95242I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.076120 + 0.259760I
a = 0.82530 + 1.41539I
b = 0.22338 1.44415I
2.60826 + 0.73468I 0
u = 1.076120 0.259760I
a = 0.82530 1.41539I
b = 0.22338 + 1.44415I
2.60826 0.73468I 0
u = 0.045996 + 0.875054I
a = 0.201918 0.847332I
b = 1.087860 0.197488I
4.71214 3.22971I 0
u = 0.045996 0.875054I
a = 0.201918 + 0.847332I
b = 1.087860 + 0.197488I
4.71214 + 3.22971I 0
u = 1.149260 + 0.077977I
a = 0.74710 + 1.82542I
b = 1.69518 1.61779I
3.76038 + 0.86686I 0
u = 1.149260 0.077977I
a = 0.74710 1.82542I
b = 1.69518 + 1.61779I
3.76038 0.86686I 0
u = 1.16929
a = 0.910966
b = 0.966261
8.52254 0
u = 0.936704 + 0.797768I
a = 0.469421 0.560340I
b = 0.560431 0.288250I
2.68573 + 4.64400I 0
u = 0.936704 0.797768I
a = 0.469421 + 0.560340I
b = 0.560431 + 0.288250I
2.68573 4.64400I 0
u = 1.222740 + 0.203951I
a = 0.695120 0.912173I
b = 1.110160 + 0.648732I
1.76600 + 0.88415I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.222740 0.203951I
a = 0.695120 + 0.912173I
b = 1.110160 0.648732I
1.76600 0.88415I 0
u = 1.246660 + 0.059464I
a = 0.55090 1.49771I
b = 0.171764 + 0.903029I
5.22128 + 0.20023I 0
u = 1.246660 0.059464I
a = 0.55090 + 1.49771I
b = 0.171764 0.903029I
5.22128 0.20023I 0
u = 1.272690 + 0.032209I
a = 0.15479 2.26835I
b = 0.88983 + 1.50685I
3.53094 + 4.77456I 0
u = 1.272690 0.032209I
a = 0.15479 + 2.26835I
b = 0.88983 1.50685I
3.53094 4.77456I 0
u = 0.088214 + 0.702646I
a = 0.445527 + 0.157220I
b = 0.698844 0.817971I
0.19370 + 2.61233I 7.84382 3.48904I
u = 0.088214 0.702646I
a = 0.445527 0.157220I
b = 0.698844 + 0.817971I
0.19370 2.61233I 7.84382 + 3.48904I
u = 1.240250 + 0.395827I
a = 0.50755 1.33041I
b = 0.398132 + 0.148486I
1.02699 + 7.77383I 0
u = 1.240250 0.395827I
a = 0.50755 + 1.33041I
b = 0.398132 0.148486I
1.02699 7.77383I 0
u = 1.300310 + 0.106200I
a = 0.10878 + 2.07536I
b = 0.21246 1.86082I
4.03767 5.60876I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.300310 0.106200I
a = 0.10878 2.07536I
b = 0.21246 + 1.86082I
4.03767 + 5.60876I 0
u = 0.127283 + 0.672520I
a = 0.046765 + 0.488251I
b = 1.054710 0.369106I
1.43385 + 2.27144I 1.22544 3.26874I
u = 0.127283 0.672520I
a = 0.046765 0.488251I
b = 1.054710 + 0.369106I
1.43385 2.27144I 1.22544 + 3.26874I
u = 1.266290 + 0.418664I
a = 0.46184 1.34292I
b = 1.53300 + 1.08160I
1.99825 8.66191I 0
u = 1.266290 0.418664I
a = 0.46184 + 1.34292I
b = 1.53300 1.08160I
1.99825 + 8.66191I 0
u = 1.261270 + 0.461738I
a = 0.471642 0.784639I
b = 0.246549 + 0.646298I
4.61034 + 1.14842I 0
u = 1.261270 0.461738I
a = 0.471642 + 0.784639I
b = 0.246549 0.646298I
4.61034 1.14842I 0
u = 1.323370 + 0.315223I
a = 0.00992 + 1.87693I
b = 0.84124 1.24795I
4.22712 6.35841I 0
u = 1.323370 0.315223I
a = 0.00992 1.87693I
b = 0.84124 + 1.24795I
4.22712 + 6.35841I 0
u = 1.290860 + 0.454754I
a = 0.544269 + 0.810497I
b = 0.318363 + 0.015687I
1.80259 + 0.89192I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.290860 0.454754I
a = 0.544269 0.810497I
b = 0.318363 0.015687I
1.80259 0.89192I 0
u = 1.37057
a = 0.961744
b = 0.218443
8.24072 0
u = 1.306900 + 0.427782I
a = 0.534404 + 0.813965I
b = 1.58618 0.60287I
0.48910 1.44438I 0
u = 1.306900 0.427782I
a = 0.534404 0.813965I
b = 1.58618 + 0.60287I
0.48910 + 1.44438I 0
u = 1.366280 + 0.266791I
a = 0.53978 + 1.75105I
b = 0.88158 1.25458I
3.30380 5.68458I 0
u = 1.366280 0.266791I
a = 0.53978 1.75105I
b = 0.88158 + 1.25458I
3.30380 + 5.68458I 0
u = 1.38190 + 0.42110I
a = 0.02647 1.49795I
b = 0.78691 + 1.35385I
5.89179 9.11420I 0
u = 1.38190 0.42110I
a = 0.02647 + 1.49795I
b = 0.78691 1.35385I
5.89179 + 9.11420I 0
u = 0.553755
a = 1.04389
b = 0.735717
1.07870 9.45760
u = 0.517206
a = 1.23311
b = 0.969631
2.29968 3.88090
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.493387
a = 3.44102
b = 0.0313711
6.36082 23.1340
u = 0.490027
a = 3.42978
b = 1.25784
2.53719 23.9910
u = 1.49141 + 0.35489I
a = 0.78851 1.38211I
b = 1.63953 + 1.04123I
0.31770 + 7.46862I 0
u = 1.49141 0.35489I
a = 0.78851 + 1.38211I
b = 1.63953 1.04123I
0.31770 7.46862I 0
u = 1.47502 + 0.42826I
a = 0.46070 + 1.53329I
b = 1.42814 1.18260I
1.1028 + 15.8670I 0
u = 1.47502 0.42826I
a = 0.46070 1.53329I
b = 1.42814 + 1.18260I
1.1028 15.8670I 0
u = 1.54760
a = 0.228222
b = 1.16480
13.5060 0
u = 1.62930
a = 1.54611
b = 2.23107
10.1076 0
u = 1.64577
a = 1.16219
b = 1.38735
9.05367 0
u = 0.175687 + 0.165118I
a = 2.69632 1.12663I
b = 0.541818 0.646762I
1.211640 + 0.322145I 9.95422 2.34487I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.175687 0.165118I
a = 2.69632 + 1.12663I
b = 0.541818 + 0.646762I
1.211640 0.322145I 9.95422 + 2.34487I
u = 0.0579910 + 0.0764411I
a = 8.09290 + 2.32584I
b = 0.33102 1.44442I
0.33025 + 4.70984I 11.3417 11.5444I
u = 0.0579910 0.0764411I
a = 8.09290 2.32584I
b = 0.33102 + 1.44442I
0.33025 4.70984I 11.3417 + 11.5444I
u = 1.96691
a = 0.0504349
b = 0.170188
7.42639 0
11
II.
I
u
2
= hu
5
u
4
3u
3
+u
2
+b+2u+1, 2u
9
2u
8
+· · ·+a+6, u
10
u
9
+· · ·+4u+1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
2u
9
+ 2u
8
+ 12u
7
9u
6
24u
5
+ 11u
4
+ 17u
3
2u 6
u
5
+ u
4
+ 3u
3
u
2
2u 1
a
2
=
2u
8
5u
7
5u
6
+ 17u
5
+ u
4
14u
3
+ u
2
2u + 6
u
9
2u
8
4u
7
+ 8u
6
+ 5u
5
9u
4
3u
3
+ u
2
+ 2u + 1
a
10
=
u
u
3
+ u
a
5
=
u
9
+ 8u
7
2u
6
18u
5
+ 5u
4
+ 13u
3
u
2
5
u
8
u
7
4u
6
+ 2u
5
+ 5u
4
+ u
3
u
2
3u 1
a
8
=
u
u
a
7
=
2u
9
2u
8
14u
7
+ 12u
6
+ 32u
5
20u
4
27u
3
+ 4u
2
+ 4u + 11
u
9
u
8
5u
7
+ 3u
6
+ 9u
5
2u
4
6u
3
u
2
+ u + 1
a
3
=
2u
9
17u
7
+ 4u
6
+ 42u
5
11u
4
34u
3
+ 2u
2
+ u + 13
u
9
2u
8
4u
7
+ 8u
6
+ 5u
5
9u
4
2u
3
+ u
2
+ u + 1
a
6
=
3u
9
3u
8
19u
7
+ 15u
6
+ 41u
5
22u
4
33u
3
+ 3u
2
+ 5u + 12
u
9
u
8
5u
7
+ 3u
6
+ 9u
5
2u
4
6u
3
u
2
+ u + 1
a
11
=
3u
9
+ 5u
8
+ 15u
7
21u
6
28u
5
+ 26u
4
+ 22u
3
2u
2
7u 9
u
3
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
9
+ 12u
8
+ 30u
7
45u
6
46u
5
+ 43u
4
+ 32u
3
+ 10u
2
15u 6
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ u
9
+ u
8
+ 16u
7
+ 11u
6
+ 11u
5
+ 27u
4
+ 13u
3
+ 3u
2
1
c
2
u
10
+ u
9
3u
8
6u
7
2u
6
+ 7u
5
+ 9u
4
+ 3u
3
4u
2
4u 1
c
3
u
10
6u
9
+ 13u
8
11u
7
2u
6
+ 12u
5
7u
4
5u
3
+ 8u
2
5u + 1
c
4
u
10
3u
8
+ u
7
+ 2u
6
2u
5
+ u
4
+ u
3
2u
2
u + 1
c
5
u
10
u
9
3u
8
+ 6u
7
2u
6
7u
5
+ 9u
4
3u
3
4u
2
+ 4u 1
c
6
u
10
+ u
9
2u
8
u
7
+ u
6
+ 2u
5
+ 2u
4
u
3
3u
2
+ 1
c
7
u
10
+ 6u
9
+ 13u
8
+ 11u
7
2u
6
12u
5
7u
4
+ 5u
3
+ 8u
2
+ 5u + 1
c
8
, c
9
u
10
+ u
9
6u
8
4u
7
+ 13u
6
+ 4u
5
11u
4
+ 2u
3
+ 2u
2
4u + 1
c
10
u
10
3u
8
u
7
+ 2u
6
+ 2u
5
+ u
4
u
3
2u
2
+ u + 1
c
11
u
10
u
9
2u
8
+ u
7
+ u
6
2u
5
+ 2u
4
+ u
3
3u
2
+ 1
c
12
u
10
u
9
6u
8
+ 4u
7
+ 13u
6
4u
5
11u
4
2u
3
+ 2u
2
+ 4u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ y
9
+ ··· 6y + 1
c
2
, c
5
y
10
7y
9
+ ··· 8y + 1
c
3
, c
7
y
10
10y
9
+ 33y
8
43y
7
+ 42y
6
76y
5
+ 53y
4
21y
3
9y + 1
c
4
, c
10
y
10
6y
9
+ 13y
8
11y
7
2y
6
+ 12y
5
7y
4
5y
3
+ 8y
2
5y + 1
c
6
, c
11
y
10
5y
9
+ 8y
8
5y
7
7y
6
+ 12y
5
2y
4
11y
3
+ 13y
2
6y + 1
c
8
, c
9
, c
12
y
10
13y
9
+ ··· 12y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.118050 + 0.232448I
a = 0.159280 1.307010I
b = 0.630949 + 1.176290I
3.06671 + 1.14968I 12.41669 0.09656I
u = 1.118050 0.232448I
a = 0.159280 + 1.307010I
b = 0.630949 1.176290I
3.06671 1.14968I 12.41669 + 0.09656I
u = 1.27546
a = 1.36835
b = 0.278715
9.38465 20.1760
u = 1.333980 + 0.226517I
a = 0.35319 + 2.32281I
b = 0.92049 1.72482I
3.07640 6.89606I 7.33660 + 9.72380I
u = 1.333980 0.226517I
a = 0.35319 2.32281I
b = 0.92049 + 1.72482I
3.07640 + 6.89606I 7.33660 9.72380I
u = 0.227124 + 0.579101I
a = 0.242833 + 0.178690I
b = 0.488743 1.032260I
0.76904 + 4.14977I 4.72090 3.87430I
u = 0.227124 0.579101I
a = 0.242833 0.178690I
b = 0.488743 + 1.032260I
0.76904 4.14977I 4.72090 + 3.87430I
u = 1.55280
a = 0.492950
b = 1.50160
12.6171 9.76370
u = 0.288130
a = 5.71392
b = 0.569642
6.02399 1.25560
u = 1.89689
a = 0.298260
b = 0.472157
7.28432 12.6330
15
III. I
u
3
= hb + a + u + 1, a
2
+ au + 3a + u + 1, u
2
+ u 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u 1
a
4
=
a
a u 1
a
2
=
au + 2
au + a + 2u
a
10
=
u
u + 1
a
5
=
au + a u
au 2a 2
a
8
=
u
u
a
7
=
a u
a 1
a
3
=
u
u
a
6
=
u 1
a 1
a
11
=
au a u
au + a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6au 13a 2u + 14
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
4
+ 2u
3
2u
2
3u + 1
c
3
(u + 1)
4
c
4
, c
6
u
4
+ u
3
3u
2
u + 1
c
5
u
4
2u
3
2u
2
+ 3u + 1
c
7
(u 1)
4
c
8
, c
9
(u
2
u 1)
2
c
10
, c
11
u
4
u
3
3u
2
+ u + 1
c
12
(u
2
+ u 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
y
4
8y
3
+ 18y
2
13y + 1
c
3
, c
7
(y 1)
4
c
4
, c
6
, c
10
c
11
y
4
7y
3
+ 13y
2
7y + 1
c
8
, c
9
, c
12
(y
2
3y + 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.522740
b = 1.09529
2.63189 21.4980
u = 0.618034
a = 3.09529
b = 1.47726
2.63189 64.4810
u = 1.61803
a = 0.355674
b = 0.262360
10.5276 16.0650
u = 1.61803
a = 1.73764
b = 2.35567
10.5276 22.9560
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 2u
3
2u
2
3u + 1)
· (u
10
+ u
9
+ u
8
+ 16u
7
+ 11u
6
+ 11u
5
+ 27u
4
+ 13u
3
+ 3u
2
1)
· (u
64
6u
63
+ ··· + 392u + 49)
c
2
(u
4
+ 2u
3
2u
2
3u + 1)
· (u
10
+ u
9
3u
8
6u
7
2u
6
+ 7u
5
+ 9u
4
+ 3u
3
4u
2
4u 1)
· (u
64
2u
63
+ ··· + 14u + 1)
c
3
(u + 1)
4
· (u
10
6u
9
+ 13u
8
11u
7
2u
6
+ 12u
5
7u
4
5u
3
+ 8u
2
5u + 1)
· (u
64
u
63
+ ··· 30u + 7)
c
4
(u
4
+ u
3
3u
2
u + 1)(u
10
3u
8
+ ··· u + 1)
· (u
64
2u
63
+ ··· 649u 23)
c
5
(u
4
2u
3
2u
2
+ 3u + 1)
· (u
10
u
9
3u
8
+ 6u
7
2u
6
7u
5
+ 9u
4
3u
3
4u
2
+ 4u 1)
· (u
64
2u
63
+ ··· + 14u + 1)
c
6
(u
4
+ u
3
3u
2
u + 1)
· (u
10
+ u
9
2u
8
u
7
+ u
6
+ 2u
5
+ 2u
4
u
3
3u
2
+ 1)
· (u
64
u
63
+ ··· + 16u + 1)
c
7
(u 1)
4
· (u
10
+ 6u
9
+ 13u
8
+ 11u
7
2u
6
12u
5
7u
4
+ 5u
3
+ 8u
2
+ 5u + 1)
· (u
64
u
63
+ ··· 30u + 7)
c
8
, c
9
(u
2
u 1)
2
· (u
10
+ u
9
6u
8
4u
7
+ 13u
6
+ 4u
5
11u
4
+ 2u
3
+ 2u
2
4u + 1)
· (u
64
2u
63
+ ··· 23u + 1)
c
10
(u
4
u
3
3u
2
+ u + 1)(u
10
3u
8
+ ··· + u + 1)
· (u
64
2u
63
+ ··· 649u 23)
c
11
(u
4
u
3
3u
2
+ u + 1)
· (u
10
u
9
2u
8
+ u
7
+ u
6
2u
5
+ 2u
4
+ u
3
3u
2
+ 1)
· (u
64
u
63
+ ··· + 16u + 1)
c
12
(u
2
+ u 1)
2
· (u
10
u
9
6u
8
+ 4u
7
+ 13u
6
4u
5
11u
4
2u
3
+ 2u
2
+ 4u + 1)
· (u
64
2u
63
+ ··· 23u + 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
4
8y
3
+ 18y
2
13y + 1)(y
10
+ y
9
+ ··· 6y + 1)
· (y
64
10y
63
+ ··· 254506y + 2401)
c
2
, c
5
(y
4
8y
3
+ 18y
2
13y + 1)(y
10
7y
9
+ ··· 8y + 1)
· (y
64
18y
63
+ ··· 60y + 1)
c
3
, c
7
(y 1)
4
· (y
10
10y
9
+ 33y
8
43y
7
+ 42y
6
76y
5
+ 53y
4
21y
3
9y + 1)
· (y
64
21y
63
+ ··· 3056y + 49)
c
4
, c
10
(y
4
7y
3
+ 13y
2
7y + 1)
· (y
10
6y
9
+ 13y
8
11y
7
2y
6
+ 12y
5
7y
4
5y
3
+ 8y
2
5y + 1)
· (y
64
28y
63
+ ··· 464395y + 529)
c
6
, c
11
(y
4
7y
3
+ 13y
2
7y + 1)
· (y
10
5y
9
+ 8y
8
5y
7
7y
6
+ 12y
5
2y
4
11y
3
+ 13y
2
6y + 1)
· (y
64
51y
63
+ ··· 312y + 1)
c
8
, c
9
, c
12
((y
2
3y + 1)
2
)(y
10
13y
9
+ ··· 12y + 1)
· (y
64
58y
63
+ ··· + 39y + 1)
21