12n
0748
(K12n
0748
)
A knot diagram
1
Linearized knot diagam
4 6 7 9 2 11 4 12 5 6 8 9
Solving Sequence
4,9 2,5
6 10 1 12 8 7 3 11
c
4
c
5
c
9
c
1
c
12
c
8
c
7
c
3
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h5.55332 × 10
75
u
50
+ 2.14999 × 10
75
u
49
+ ··· + 1.63199 × 10
76
b 9.50449 × 10
76
,
1.00920 × 10
77
u
50
6.14195 × 10
76
u
49
+ ··· + 4.89597 × 10
76
a + 2.60239 × 10
78
, u
51
+ u
50
+ ··· + 9u 9i
I
u
2
= hu
11
+ 3u
10
6u
9
5u
8
+ 19u
7
14u
6
34u
5
+ 34u
4
+ 25u
3
24u
2
+ 5b + u + 8,
19u
11
+ 3u
10
+ 89u
9
75u
8
136u
7
+ 321u
6
+ 41u
5
531u
4
+ 80u
3
+ 341u
2
+ 5a 64u 47,
u
12
5u
10
+ 3u
9
+ 9u
8
16u
7
7u
6
+ 31u
5
+ 3u
4
24u
3
2u
2
+ 5u + 1i
* 2 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h5.55×10
75
u
50
+2.15×10
75
u
49
+· · ·+1.63×10
76
b9.50×10
76
, 1.01×
10
77
u
50
6.14×10
76
u
49
+· · ·+4.90×10
76
a+2.60×10
78
, u
51
+u
50
+· · ·+9u9i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
2.06129u
50
+ 1.25449u
49
+ ··· + 156.424u 53.1538
0.340279u
50
0.131740u
49
+ ··· 5.95216u + 5.82387
a
5
=
1
u
2
a
6
=
3.63256u
50
2.37017u
49
+ ··· 340.652u + 80.1409
0.228512u
50
0.176770u
49
+ ··· 38.9007u + 9.50612
a
10
=
u
u
3
+ u
a
1
=
1.72101u
50
+ 1.12275u
49
+ ··· + 150.472u 47.3299
0.340279u
50
0.131740u
49
+ ··· 5.95216u + 5.82387
a
12
=
1.72101u
50
+ 1.12275u
49
+ ··· + 150.472u 47.3299
0.570525u
50
0.285333u
49
+ ··· 26.8255u + 11.2082
a
8
=
3.13695u
50
+ 1.91795u
49
+ ··· + 298.052u 76.5104
0.639941u
50
+ 0.374469u
49
+ ··· + 59.0371u 16.4493
a
7
=
2.49701u
50
+ 1.54348u
49
+ ··· + 239.015u 60.0611
0.639941u
50
+ 0.374469u
49
+ ··· + 59.0371u 16.4493
a
3
=
3.39441u
50
1.99256u
49
+ ··· 330.150u + 85.1843
1.49048u
50
1.03131u
49
+ ··· 138.506u + 38.2645
a
11
=
2.02479u
50
1.32882u
49
+ ··· 189.222u + 38.3733
1.71640u
50
1.07355u
49
+ ··· 148.388u + 42.1932
(ii) Obstruction class = 1
(iii) Cusp Shapes = 23.5676u
50
+ 14.4075u
49
+ ··· + 1956.28u 544.212
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
51
2u
50
+ ··· 2798u 211
c
2
, c
5
u
51
+ 2u
50
+ ··· 10u + 1
c
3
, c
7
u
51
2u
50
+ ··· 110u 11
c
4
, c
9
u
51
+ u
50
+ ··· + 9u 9
c
6
, c
10
u
51
2u
50
+ ··· 17u + 1
c
8
, c
11
, c
12
u
51
18u
49
+ ··· + 13u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
51
+ 70y
50
+ ··· + 9533684y 44521
c
2
, c
5
y
51
10y
50
+ ··· + 26y 1
c
3
, c
7
y
51
40y
50
+ ··· + 12914y 121
c
4
, c
9
y
51
51y
50
+ ··· + 6489y 81
c
6
, c
10
y
51
8y
50
+ ··· + 181y 1
c
8
, c
11
, c
12
y
51
36y
50
+ ··· + 279y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.966312 + 0.028011I
a = 0.536822 0.279028I
b = 0.882354 0.296412I
3.13672 0.62690I 0
u = 0.966312 0.028011I
a = 0.536822 + 0.279028I
b = 0.882354 + 0.296412I
3.13672 + 0.62690I 0
u = 0.752807 + 0.539036I
a = 0.872796 + 0.719742I
b = 0.459364 0.125960I
2.93432 5.19831I 0. + 6.04454I
u = 0.752807 0.539036I
a = 0.872796 0.719742I
b = 0.459364 + 0.125960I
2.93432 + 5.19831I 0. 6.04454I
u = 1.08285
a = 0.166192
b = 1.36678
8.81786 0
u = 0.237795 + 0.803808I
a = 0.997700 + 0.304588I
b = 0.237661 + 0.548165I
1.59127 + 1.64954I 10.79264 4.97589I
u = 0.237795 0.803808I
a = 0.997700 0.304588I
b = 0.237661 0.548165I
1.59127 1.64954I 10.79264 + 4.97589I
u = 1.229440 + 0.096772I
a = 0.45337 + 1.83496I
b = 0.96203 1.87253I
3.25985 4.40630I 0
u = 1.229440 0.096772I
a = 0.45337 1.83496I
b = 0.96203 + 1.87253I
3.25985 + 4.40630I 0
u = 1.23712
a = 1.45818
b = 0.238614
3.66174 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.205562 + 0.732617I
a = 0.314612 0.527449I
b = 0.548118 0.948146I
3.85278 3.00372I 11.66965 + 6.00585I
u = 0.205562 0.732617I
a = 0.314612 + 0.527449I
b = 0.548118 + 0.948146I
3.85278 + 3.00372I 11.66965 6.00585I
u = 0.572928 + 1.104770I
a = 0.206310 0.298977I
b = 0.320739 0.725671I
0.44013 + 9.46101I 0
u = 0.572928 1.104770I
a = 0.206310 + 0.298977I
b = 0.320739 + 0.725671I
0.44013 9.46101I 0
u = 1.223810 + 0.312977I
a = 0.32338 + 1.52316I
b = 0.38353 2.16692I
1.53528 5.83376I 0
u = 1.223810 0.312977I
a = 0.32338 1.52316I
b = 0.38353 + 2.16692I
1.53528 + 5.83376I 0
u = 1.304010 + 0.126559I
a = 0.351078 0.800505I
b = 0.73472 + 1.28447I
3.37052 + 0.99994I 0
u = 1.304010 0.126559I
a = 0.351078 + 0.800505I
b = 0.73472 1.28447I
3.37052 0.99994I 0
u = 1.289750 + 0.452317I
a = 0.550918 0.357255I
b = 0.193129 + 0.814567I
1.04630 1.13129I 0
u = 1.289750 0.452317I
a = 0.550918 + 0.357255I
b = 0.193129 0.814567I
1.04630 + 1.13129I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.131606 + 0.597948I
a = 0.755619 + 0.012297I
b = 0.236259 + 0.347071I
0.317906 + 1.195420I 3.90544 5.43225I
u = 0.131606 0.597948I
a = 0.755619 0.012297I
b = 0.236259 0.347071I
0.317906 1.195420I 3.90544 + 5.43225I
u = 1.385030 + 0.283021I
a = 0.04231 1.92490I
b = 0.77123 + 2.30254I
1.21275 + 6.65866I 0
u = 1.385030 0.283021I
a = 0.04231 + 1.92490I
b = 0.77123 2.30254I
1.21275 6.65866I 0
u = 1.46412 + 0.01784I
a = 0.244361 1.204180I
b = 0.79728 + 1.66527I
5.76286 1.13846I 0
u = 1.46412 0.01784I
a = 0.244361 + 1.204180I
b = 0.79728 1.66527I
5.76286 + 1.13846I 0
u = 0.514876
a = 3.02685
b = 0.317888
10.7307 10.2750
u = 1.48372 + 0.08688I
a = 0.167132 1.009410I
b = 0.37784 + 1.38305I
4.37936 + 0.98278I 0
u = 1.48372 0.08688I
a = 0.167132 + 1.009410I
b = 0.37784 1.38305I
4.37936 0.98278I 0
u = 1.49336 + 0.11013I
a = 0.41151 1.40552I
b = 0.51248 + 1.86936I
7.35814 + 6.04698I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.49336 0.11013I
a = 0.41151 + 1.40552I
b = 0.51248 1.86936I
7.35814 6.04698I 0
u = 0.491947
a = 1.66651
b = 0.0705730
1.36137 6.25410
u = 0.399561 + 0.244629I
a = 2.11272 0.74059I
b = 0.615884 1.246730I
1.00696 4.56920I 3.90257 + 5.25320I
u = 0.399561 0.244629I
a = 2.11272 + 0.74059I
b = 0.615884 + 1.246730I
1.00696 + 4.56920I 3.90257 5.25320I
u = 1.50785 + 0.38384I
a = 0.017099 + 1.147920I
b = 0.35140 1.57334I
4.58888 5.41893I 0
u = 1.50785 0.38384I
a = 0.017099 1.147920I
b = 0.35140 + 1.57334I
4.58888 + 5.41893I 0
u = 1.57518 + 0.19913I
a = 0.200647 + 1.350350I
b = 0.06483 2.13765I
10.54910 + 8.09027I 0
u = 1.57518 0.19913I
a = 0.200647 1.350350I
b = 0.06483 + 2.13765I
10.54910 8.09027I 0
u = 0.407564
a = 1.19912
b = 1.34717
2.57791 9.00240
u = 1.61819 + 0.08048I
a = 0.265175 1.291110I
b = 0.19764 + 2.01735I
11.95830 0.22760I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61819 0.08048I
a = 0.265175 + 1.291110I
b = 0.19764 2.01735I
11.95830 + 0.22760I 0
u = 1.58168 + 0.38198I
a = 0.17902 1.40951I
b = 0.91256 + 2.00149I
6.4507 14.7902I 0
u = 1.58168 0.38198I
a = 0.17902 + 1.40951I
b = 0.91256 2.00149I
6.4507 + 14.7902I 0
u = 0.364492
a = 2.15420
b = 1.45022
6.63015 21.7480
u = 1.63613 + 0.31897I
a = 0.126349 + 1.180690I
b = 0.85837 1.71259I
7.91149 + 6.61409I 0
u = 1.63613 0.31897I
a = 0.126349 1.180690I
b = 0.85837 + 1.71259I
7.91149 6.61409I 0
u = 0.169849 + 0.057002I
a = 7.63550 0.35036I
b = 0.860446 0.474071I
0.100763 + 0.877365I 4.31516 3.77329I
u = 0.169849 0.057002I
a = 7.63550 + 0.35036I
b = 0.860446 + 0.474071I
0.100763 0.877365I 4.31516 + 3.77329I
u = 1.87867
a = 0.431311
b = 0.853122
1.07210 0
u = 0.19520 + 1.90391I
a = 0.0437236 + 0.0504691I
b = 0.097631 + 0.463019I
0.098440 0.706098I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.19520 1.90391I
a = 0.0437236 0.0504691I
b = 0.097631 0.463019I
0.098440 + 0.706098I 0
10
II. I
u
2
=
hu
11
+3u
10
+· · ·+5b+8, 19u
11
+3u
10
+· · ·+5a47, u
12
5u
10
+· · ·+5u+1i
(i) Arc colorings
a
4
=
1
0
a
9
=
0
u
a
2
=
19
5
u
11
3
5
u
10
+ ··· +
64
5
u +
47
5
1
5
u
11
3
5
u
10
+ ···
1
5
u
8
5
a
5
=
1
u
2
a
6
=
12
5
u
11
+
9
5
u
10
+ ···
97
5
u
51
5
2
5
u
11
6
5
u
10
+ ··· +
33
5
u +
14
5
a
10
=
u
u
3
+ u
a
1
=
18
5
u
11
6
5
u
10
+ ··· +
63
5
u +
39
5
1
5
u
11
3
5
u
10
+ ···
1
5
u
8
5
a
12
=
18
5
u
11
6
5
u
10
+ ··· +
63
5
u +
39
5
8
5
u
11
+
1
5
u
10
+ ···
13
5
u
14
5
a
8
=
11
5
u
11
2
5
u
10
+ ··· +
101
5
u +
33
5
2
5
u
11
6
5
u
10
+ ··· +
33
5
u +
9
5
a
7
=
13
5
u
11
+
4
5
u
10
+ ··· +
68
5
u +
24
5
2
5
u
11
6
5
u
10
+ ··· +
33
5
u +
9
5
a
3
=
17
5
u
11
6
5
u
10
+ ··· +
18
5
u
1
5
3
5
u
11
+
4
5
u
10
+ ···
7
5
u
1
5
a
11
=
22
5
u
11
+
9
5
u
10
+ ···
97
5
u
31
5
3
5
u
11
+
1
5
u
10
+ ···
13
5
u
14
5
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
1
5
u
11
33
5
u
10
9
5
u
9
+ 27u
8
74
5
u
7
216
5
u
6
+
439
5
u
5
+
176
5
u
4
135u
3
71
5
u
2
+
294
5
u
43
5
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
u
11
+ ··· + 6u 1
c
2
u
12
+ 3u
11
+ ··· + 2u 1
c
3
u
12
u
11
+ ··· + 15u
2
1
c
4
u
12
5u
10
+ ··· + 5u + 1
c
5
u
12
3u
11
+ ··· 2u 1
c
6
u
12
u
11
+ ··· + u 1
c
7
u
12
+ u
11
+ ··· + 15u
2
1
c
8
u
12
+ u
11
+ ··· 5u + 1
c
9
u
12
5u
10
+ ··· 5u + 1
c
10
u
12
+ u
11
+ ··· u 1
c
11
, c
12
u
12
u
11
+ ··· + 5u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 7y
11
+ ··· 4y + 1
c
2
, c
5
y
12
13y
11
+ ··· 6y + 1
c
3
, c
7
y
12
11y
11
+ ··· 30y + 1
c
4
, c
9
y
12
10y
11
+ ··· 29y + 1
c
6
, c
10
y
12
7y
11
+ ··· 13y + 1
c
8
, c
11
, c
12
y
12
15y
11
+ ··· 27y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21822
a = 1.79757
b = 0.601851
4.03710 18.0780
u = 1.27309
a = 0.277397
b = 1.16135
7.88309 1.62320
u = 1.268290 + 0.330427I
a = 0.58188 + 1.78206I
b = 0.09657 2.27913I
2.50992 6.48574I 1.33595 + 8.54705I
u = 1.268290 0.330427I
a = 0.58188 1.78206I
b = 0.09657 + 2.27913I
2.50992 + 6.48574I 1.33595 8.54705I
u = 1.320490 + 0.182645I
a = 0.416916 1.142720I
b = 1.12535 + 1.50126I
3.03542 + 2.75700I 4.31533 2.69611I
u = 1.320490 0.182645I
a = 0.416916 + 1.142720I
b = 1.12535 1.50126I
3.03542 2.75700I 4.31533 + 2.69611I
u = 0.638711
a = 0.671197
b = 1.41524
6.24905 0.243470
u = 1.48898
a = 0.537683
b = 0.370407
1.74863 2.66980
u = 0.72640 + 1.30991I
a = 0.191140 + 0.258916I
b = 0.005412 + 0.445100I
0.304228 + 0.769223I 12.9708 + 6.3200I
u = 0.72640 1.30991I
a = 0.191140 0.258916I
b = 0.005412 0.445100I
0.304228 0.769223I 12.9708 6.3200I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.411452
a = 3.50522
b = 0.610386
10.9545 25.9780
u = 0.240615
a = 2.94363
b = 1.23188
2.84629 21.6500
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
12
u
11
+ ··· + 6u 1)(u
51
2u
50
+ ··· 2798u 211)
c
2
(u
12
+ 3u
11
+ ··· + 2u 1)(u
51
+ 2u
50
+ ··· 10u + 1)
c
3
(u
12
u
11
+ ··· + 15u
2
1)(u
51
2u
50
+ ··· 110u 11)
c
4
(u
12
5u
10
+ ··· + 5u + 1)(u
51
+ u
50
+ ··· + 9u 9)
c
5
(u
12
3u
11
+ ··· 2u 1)(u
51
+ 2u
50
+ ··· 10u + 1)
c
6
(u
12
u
11
+ ··· + u 1)(u
51
2u
50
+ ··· 17u + 1)
c
7
(u
12
+ u
11
+ ··· + 15u
2
1)(u
51
2u
50
+ ··· 110u 11)
c
8
(u
12
+ u
11
+ ··· 5u + 1)(u
51
18u
49
+ ··· + 13u 1)
c
9
(u
12
5u
10
+ ··· 5u + 1)(u
51
+ u
50
+ ··· + 9u 9)
c
10
(u
12
+ u
11
+ ··· u 1)(u
51
2u
50
+ ··· 17u + 1)
c
11
, c
12
(u
12
u
11
+ ··· + 5u + 1)(u
51
18u
49
+ ··· + 13u 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
12
+ 7y
11
+ ··· 4y + 1)(y
51
+ 70y
50
+ ··· + 9533684y 44521)
c
2
, c
5
(y
12
13y
11
+ ··· 6y + 1)(y
51
10y
50
+ ··· + 26y 1)
c
3
, c
7
(y
12
11y
11
+ ··· 30y + 1)(y
51
40y
50
+ ··· + 12914y 121)
c
4
, c
9
(y
12
10y
11
+ ··· 29y + 1)(y
51
51y
50
+ ··· + 6489y 81)
c
6
, c
10
(y
12
7y
11
+ ··· 13y + 1)(y
51
8y
50
+ ··· + 181y 1)
c
8
, c
11
, c
12
(y
12
15y
11
+ ··· 27y + 1)(y
51
36y
50
+ ··· + 279y 1)
17