12n
0750
(K12n
0750
)
A knot diagram
1
Linearized knot diagam
4 6 8 9 2 11 3 12 5 6 8 9
Solving Sequence
8,11
12
4,9
5 1 3 7 6 2 10
c
11
c
8
c
4
c
12
c
3
c
7
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
5
− 10u
4
− 15u
3
+ 13u
2
+ 5b + 45u + 19, −7u
5
− 25u
4
− 20u
3
+ 43u
2
+ 15a + 85u + 24,
u
6
+ 4u
5
+ 5u
4
− 4u
3
− 16u
2
− 12u − 3i
I
u
2
= h−2u
2
+ b + u + 2, a − u, u
3
− u
2
+ 1i
I
u
3
= h−2u
2
a − u
2
+ b + a + u, a
2
+ au − u
2
+ u − 1, u
3
− u
2
+ 1i
I
u
4
= h2u
3
− u
2
+ 3b − 1, u
3
+ 4u
2
+ 3a + 9u + 4, u
4
+ 3u
3
+ 5u
2
+ u − 1i
I
u
5
= hu
2
+ b − 3, −3u
3
+ 4u
2
+ 5a + 7u − 10, u
4
− 3u
3
+ u
2
+ 5u − 5i
I
u
6
= h−3au + 2b + 6a + u, 4a
2
+ 2au − 6a − 5u + 3, u
2
− u + 2i
I
u
7
= hb
2
+ b − 1, a + 1, u + 1i
I
v
1
= ha, b + v −2, v
2
− 3v + 1i
I
v
2
= ha, b − 1, v −1i
* 9 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software “Draw programme” developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1