12n
0750
(K12n
0750
)
A knot diagram
1
Linearized knot diagam
4 6 8 9 2 11 3 12 5 6 8 9
Solving Sequence
8,11
12
4,9
5 1 3 7 6 2 10
c
11
c
8
c
4
c
12
c
3
c
7
c
6
c
2
c
10
c
1
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−2u
5
10u
4
15u
3
+ 13u
2
+ 5b + 45u + 19, 7u
5
25u
4
20u
3
+ 43u
2
+ 15a + 85u + 24,
u
6
+ 4u
5
+ 5u
4
4u
3
16u
2
12u 3i
I
u
2
= h−2u
2
+ b + u + 2, a u, u
3
u
2
+ 1i
I
u
3
= h−2u
2
a u
2
+ b + a + u, a
2
+ au u
2
+ u 1, u
3
u
2
+ 1i
I
u
4
= h2u
3
u
2
+ 3b 1, u
3
+ 4u
2
+ 3a + 9u + 4, u
4
+ 3u
3
+ 5u
2
+ u 1i
I
u
5
= hu
2
+ b 3, 3u
3
+ 4u
2
+ 5a + 7u 10, u
4
3u
3
+ u
2
+ 5u 5i
I
u
6
= h−3au + 2b + 6a + u, 4a
2
+ 2au 6a 5u + 3, u
2
u + 2i
I
u
7
= hb
2
+ b 1, a + 1, u + 1i
I
v
1
= ha, b + v 2, v
2
3v + 1i
I
v
2
= ha, b 1, v 1i
* 9 irreducible components of dim
C
= 0, with total 32 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2u
5
10u
4
+ · · · + 5b + 19, 7u
5
25u
4
+ · · · + 15a + 24, u
6
+
4u
5
+ 5u
4
4u
3
16u
2
12u 3i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
7
15
u
5
+
5
3
u
4
+ ···
17
3
u
8
5
2
5
u
5
+ 2u
4
+ 3u
3
13
5
u
2
9u
19
5
a
9
=
u
u
3
+ u
a
5
=
13
15
u
5
+
8
3
u
4
+ ···
29
3
u
17
5
7
5
u
5
+ 4u
4
+ 2u
3
38
5
u
2
11u
19
5
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
7
15
u
5
+
5
3
u
4
+ ···
17
3
u
8
5
3
5
u
5
+ 2u
4
+ 2u
3
17
5
u
2
8u
16
5
a
7
=
4
15
u
5
2
3
u
4
+ ··· +
8
3
u +
6
5
1
5
u
5
u
4
u
3
+
9
5
u
2
+ 4u +
7
5
a
6
=
7
15
u
5
5
3
u
4
+ ··· +
20
3
u +
13
5
1
5
u
5
u
4
u
3
+
9
5
u
2
+ 4u +
7
5
a
2
=
4
15
u
5
+
2
3
u
4
+ ···
8
3
u
1
5
4
5
u
5
+ 2u
4
+ u
3
21
5
u
2
7u
13
5
a
10
=
2
15
u
5
+
1
3
u
4
+ ···
1
3
u +
7
5
2
5
u
5
u
4
+
8
5
u
2
+ 2u +
4
5
(ii) Obstruction class = 1
(iii) Cusp Shapes =
26
5
u
5
+ 18u
4
+ 16u
3
154
5
u
2
72u
192
5
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
u
6
2u
5
+ 5u
4
+ 2u
3
4u
2
2u 1
c
2
, c
5
, c
8
c
11
, c
12
u
6
+ 4u
5
+ 5u
4
4u
3
16u
2
12u 3
c
4
, c
9
u
6
+ 2u
5
u
4
2u
3
2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
6
+ 6y
5
+ 25y
4
54y
3
+ 14y
2
+ 4y + 1
c
2
, c
5
, c
8
c
11
, c
12
y
6
6y
5
+ 25y
4
86y
3
+ 130y
2
48y + 9
c
4
, c
9
y
6
6y
5
+ 9y
4
+ 6y
3
10y
2
4y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.510485 + 0.215723I
a = 0.602418 0.514537I
b = 0.055837 1.062600I
0.807577 + 0.909082I 9.16175 7.66066I
u = 0.510485 0.215723I
a = 0.602418 + 0.514537I
b = 0.055837 + 1.062600I
0.807577 0.909082I 9.16175 + 7.66066I
u = 1.52560
a = 0.702173
b = 1.21012
11.8129 22.6370
u = 1.70948
a = 0.469310
b = 0.240689
9.43829 7.45040
u = 1.39757 + 1.33871I
a = 1.188160 + 0.447062I
b = 3.21876 + 4.79537I
13.9006 + 10.5245I 7.79449 4.24029I
u = 1.39757 1.33871I
a = 1.188160 0.447062I
b = 3.21876 4.79537I
13.9006 10.5245I 7.79449 + 4.24029I
5
II. I
u
2
= h−2u
2
+ b + u + 2, a u, u
3
u
2
+ 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
u
2u
2
u 2
a
9
=
u
u
2
+ u + 1
a
5
=
1
0
a
1
=
u
2
+ 1
u
2
+ u + 1
a
3
=
u
u
2
u 1
a
7
=
u
2
1
u
2
a
6
=
1
u
2
a
2
=
0
u
a
10
=
u
2
+ 1
u
2
+ u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 12
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
3
u
2
+ 2u 1
c
2
, c
8
u
3
+ u
2
1
c
4
u
3
+ 3u
2
+ 2u 1
c
5
, c
11
, c
12
u
3
u
2
+ 1
c
7
, c
10
u
3
+ u
2
+ 2u + 1
c
9
u
3
3u
2
+ 2u + 1
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
3
+ 3y
2
+ 2y 1
c
2
, c
5
, c
8
c
11
, c
12
y
3
y
2
+ 2y 1
c
4
, c
9
y
3
5y
2
+ 10y 1
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 + 0.744862I
b = 2.44728 + 1.86942I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.877439 0.744862I
a = 0.877439 0.744862I
b = 2.44728 1.86942I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.754878
a = 0.754878
b = 0.105442
2.22691 18.0390
9
III. I
u
3
= h−2u
2
a u
2
+ b + a + u, a
2
+ au u
2
+ u 1, u
3
u
2
+ 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
a
2u
2
a + u
2
a u
a
9
=
u
u
2
+ u + 1
a
5
=
u
2
a au u
1
a
1
=
u
2
+ 1
u
2
+ u + 1
a
3
=
a
u
2
a + u
2
a u
a
7
=
u
2
a + u 1
au
a
6
=
u
2
a + au + u 1
au
a
2
=
u
2
+ u
u
2
a u
a
10
=
u
2
a + 2au u
2
+ u
u
2
a u
2
a + u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u 18
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1
c
2
, c
5
, c
8
c
11
, c
12
(u
3
u
2
+ 1)
2
c
4
, c
9
u
6
+ 3u
5
4u
3
+ 6u
2
+ 14u + 5
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
6
+ 3y
5
4y
4
22y
3
+ 12y
2
+ 4y + 1
c
2
, c
5
, c
8
c
11
, c
12
(y
3
y
2
+ 2y 1)
2
c
4
, c
9
y
6
9y
5
+ 36y
4
90y
3
+ 148y
2
136y + 25
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 1.26420 0.91095I
b = 2.43950 2.22359I
4.40332 5.65624I 10.98049 + 5.95889I
u = 0.877439 + 0.744862I
a = 0.386757 + 0.166085I
b = 1.31694 + 1.47873I
4.40332 5.65624I 10.98049 + 5.95889I
u = 0.877439 0.744862I
a = 1.26420 + 0.91095I
b = 2.43950 + 2.22359I
4.40332 + 5.65624I 10.98049 5.95889I
u = 0.877439 0.744862I
a = 0.386757 0.166085I
b = 1.31694 1.47873I
4.40332 + 5.65624I 10.98049 5.95889I
u = 0.754878
a = 1.19329
b = 1.15804
3.87184 24.0390
u = 0.754878
a = 1.94816
b = 1.59684
3.87184 24.0390
13
IV. I
u
4
= h2u
3
u
2
+ 3b 1, u
3
+ 4u
2
+ 3a + 9u + 4, u
4
+ 3u
3
+ 5u
2
+ u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
1
3
u
3
4
3
u
2
3u
4
3
2
3
u
3
+
1
3
u
2
+
1
3
a
9
=
u
u
3
+ u
a
5
=
u
3
3u
2
4u 1
4
3
u
3
+
4
3
u
2
+
1
3
a
1
=
u
2
+ 1
3u
3
+ 7u
2
+ u 1
a
3
=
1
3
u
3
4
3
u
2
3u
4
3
1
3
u
3
1
3
u
2
+
2
3
a
7
=
1
3
u
3
+
1
3
u
2
+ 2u +
4
3
1
3
u
3
+
4
3
u
2
+ u
2
3
a
6
=
2
3
u
3
+
5
3
u
2
+ 3u +
2
3
1
3
u
3
+
4
3
u
2
+ u
2
3
a
2
=
1
3
u
3
4
3
u
2
2u
1
3
1
3
u
3
+
4
3
u
2
+
1
3
a
10
=
u + 1
4
3
u
3
+
7
3
u
2
+ u
2
3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
u
4
+ 2u
3
+ 8u
2
+ 7u + 1
c
2
, c
5
, c
8
c
11
, c
12
u
4
+ 3u
3
+ 5u
2
+ u 1
c
4
, c
9
(u
2
u 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
4
+ 12y
3
+ 38y
2
33y + 1
c
2
, c
5
, c
8
c
11
, c
12
y
4
+ y
3
+ 17y
2
11y + 1
c
4
, c
9
(y
2
3y + 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.713039
a = 0.248726
b = 0.744493
1.31595 7.00000
u = 0.331073
a = 2.48479
b = 0.345677
1.31595 7.00000
u = 1.30902 + 1.58825I
a = 1.118030 0.606658I
b = 5.04508 4.15810I
14.4754 7.00000
u = 1.30902 1.58825I
a = 1.118030 + 0.606658I
b = 5.04508 + 4.15810I
14.4754 7.00000
17
V. I
u
5
= hu
2
+ b 3, 3u
3
+ 4u
2
+ 5a + 7u 10, u
4
3u
3
+ u
2
+ 5u 5i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
3
5
u
3
4
5
u
2
7
5
u + 2
u
2
+ 3
a
9
=
u
u
3
+ u
a
5
=
7
5
u
3
+
11
5
u
2
+
8
5
u 3
2u
3
+ 4u
2
+ 2u 7
a
1
=
u
2
+ 1
3u
3
+ 3u
2
+ 5u 5
a
3
=
3
5
u
3
4
5
u
2
7
5
u + 2
u
3
+ u
2
+ 2u 2
a
7
=
1
5
u
3
+
3
5
u
2
+
4
5
u 2
u
3
2u
2
u + 4
a
6
=
4
5
u
3
7
5
u
2
1
5
u + 2
u
3
2u
2
u + 4
a
2
=
1
5
u
3
2
5
u
2
+
4
5
u 1
u
3
+ 2u 1
a
10
=
6
5
u
3
+
8
5
u
2
+
9
5
u 3
2u
3
+ 3u
2
+ 3u 6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
u
4
+ 2u
3
+ 2u
2
+ u 1
c
2
, c
8
u
4
+ 3u
3
+ u
2
5u 5
c
4
(u
2
u 1)
2
c
5
, c
11
, c
12
u
4
3u
3
+ u
2
+ 5u 5
c
7
, c
10
u
4
2u
3
+ 2u
2
u 1
c
9
(u
2
+ u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
4
2y
2
5y + 1
c
2
, c
5
, c
8
c
11
, c
12
y
4
7y
3
+ 21y
2
35y + 25
c
4
, c
9
(y
2
3y + 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.31651
a = 1.08748
b = 1.26680
11.1856 7.00000
u = 1.30902 + 0.72287I
a = 0.670820 0.523074I
b = 1.80902 1.89250I
4.60582 7.00000
u = 1.30902 0.72287I
a = 0.670820 + 0.523074I
b = 1.80902 + 1.89250I
4.60582 7.00000
u = 1.69848
a = 0.254159
b = 0.115171
11.1856 7.00000
21
VI. I
u
6
= h−3au + 2b + 6a + u, 4a
2
+ 2au 6a 5u + 3, u
2
u + 2i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u 2
a
4
=
a
3
2
au 3a
1
2
u
a
9
=
u
2u + 2
a
5
=
1
2
au +
1
2
u + 1
3
2
au + a
1
2
u 4
a
1
=
u + 3
5u 6
a
3
=
a
1
2
au a
1
2
u
a
7
=
au + a +
1
2
u
5
2
1
2
au a
1
2
u + 2
a
6
=
1
2
au
1
2
1
2
au a
1
2
u + 2
a
2
=
1
2
u +
1
2
1
2
au + a +
3
2
u 1
a
10
=
a
1
2
u +
1
2
1
2
au + 3a +
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
u
4
3u
3
+ 8u
2
13u + 11
c
2
, c
5
, c
8
c
11
, c
12
(u
2
u + 2)
2
c
4
, c
9
(u
2
u 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
y
4
+ 7y
3
+ 8y
2
+ 7y + 121
c
2
, c
5
, c
8
c
11
, c
12
(y
2
+ 3y + 4)
2
c
4
, c
9
(y
2
3y + 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.50000 + 1.32288I
a = 0.213525 1.070230I
b = 2.35410 + 1.32288I
6.57974 7.00000
u = 0.50000 + 1.32288I
a = 1.46353 + 0.40879I
b = 4.35410 + 1.32288I
6.57974 7.00000
u = 0.50000 1.32288I
a = 0.213525 + 1.070230I
b = 2.35410 1.32288I
6.57974 7.00000
u = 0.50000 1.32288I
a = 1.46353 0.40879I
b = 4.35410 1.32288I
6.57974 7.00000
25
VII. I
u
7
= hb
2
+ b 1, a + 1, u + 1i
(i) Arc colorings
a
8
=
0
1
a
11
=
1
0
a
12
=
1
1
a
4
=
1
b
a
9
=
1
0
a
5
=
b 1
b
a
1
=
0
1
a
3
=
1
b + 1
a
7
=
1
b
a
6
=
b 1
b
a
2
=
1
b + 1
a
10
=
2b
b 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
8
(u 1)
2
c
2
, c
5
u
2
c
4
, c
6
u
2
u 1
c
7
, c
11
, c
12
(u + 1)
2
c
9
, c
10
u
2
+ u 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
7
c
8
, c
11
, c
12
(y 1)
2
c
2
, c
5
y
2
c
4
, c
6
, c
9
c
10
y
2
3y + 1
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.618034
3.28987 7.00000
u = 1.00000
a = 1.00000
b = 1.61803
3.28987 7.00000
29
VIII. I
v
1
= ha, b + v 2, v
2
3v + 1i
(i) Arc colorings
a
8
=
v
0
a
11
=
1
0
a
12
=
1
0
a
4
=
0
v + 2
a
9
=
v
0
a
5
=
2v + 1
v + 2
a
1
=
1
0
a
3
=
2v + 1
v + 2
a
7
=
2v + 1
1
a
6
=
2v
1
a
2
=
1
v + 3
a
10
=
2v + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
u
2
u 1
c
2
, c
6
(u 1)
2
c
5
, c
10
(u + 1)
2
c
7
, c
9
u
2
+ u 1
c
8
, c
11
, c
12
u
2
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
, c
9
y
2
3y + 1
c
2
, c
5
, c
6
c
10
(y 1)
2
c
8
, c
11
, c
12
y
2
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.381966
a = 0
b = 1.61803
3.28987 7.00000
v = 2.61803
a = 0
b = 0.618034
3.28987 7.00000
33
IX. I
v
2
= ha, b 1, v 1i
(i) Arc colorings
a
8
=
1
0
a
11
=
1
0
a
12
=
1
0
a
4
=
0
1
a
9
=
1
0
a
5
=
1
1
a
1
=
1
0
a
3
=
1
1
a
7
=
0
1
a
6
=
1
1
a
2
=
1
1
a
10
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
u + 1
c
2
, c
5
, c
8
c
11
, c
12
u
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
9
c
10
y 1
c
2
, c
5
, c
8
c
11
, c
12
y
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
37
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
((u 1)
2
)(u + 1)(u
2
u 1)(u
3
u
2
+ 2u 1)(u
4
3u
3
+ ··· 13u + 11)
· (u
4
+ 2u
3
+ 2u
2
+ u 1)(u
4
+ 2u
3
+ 8u
2
+ 7u + 1)
· (u
6
2u
5
+ ··· 2u 1)(u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1)
c
2
, c
8
u
3
(u 1)
2
(u
2
u + 2)
2
(u
3
u
2
+ 1)
2
(u
3
+ u
2
1)
· (u
4
+ 3u
3
+ u
2
5u 5)(u
4
+ 3u
3
+ 5u
2
+ u 1)
· (u
6
+ 4u
5
+ 5u
4
4u
3
16u
2
12u 3)
c
4
(u + 1)(u
2
u 1)
8
(u
3
+ 3u
2
+ 2u 1)(u
6
+ 2u
5
+ ··· 2u + 1)
· (u
6
+ 3u
5
4u
3
+ 6u
2
+ 14u + 5)
c
5
, c
11
, c
12
u
3
(u + 1)
2
(u
2
u + 2)
2
(u
3
u
2
+ 1)
3
(u
4
3u
3
+ u
2
+ 5u 5)
· (u
4
+ 3u
3
+ 5u
2
+ u 1)(u
6
+ 4u
5
+ 5u
4
4u
3
16u
2
12u 3)
c
7
, c
10
((u + 1)
3
)(u
2
+ u 1)(u
3
+ u
2
+ 2u + 1)(u
4
3u
3
+ ··· 13u + 11)
· (u
4
2u
3
+ 2u
2
u 1)(u
4
+ 2u
3
+ 8u
2
+ 7u + 1)
· (u
6
2u
5
+ ··· 2u 1)(u
6
+ u
5
+ 2u
4
4u
2
+ 2u 1)
c
9
(u + 1)(u
2
u 1)
4
(u
2
+ u 1)
4
(u
3
3u
2
+ 2u + 1)
· (u
6
+ 2u
5
u
4
2u
3
2u + 1)(u
6
+ 3u
5
4u
3
+ 6u
2
+ 14u + 5)
38
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
7
, c
10
(y 1)
3
(y
2
3y + 1)(y
3
+ 3y
2
+ 2y 1)(y
4
2y
2
5y + 1)
· (y
4
+ 7y
3
+ 8y
2
+ 7y + 121)(y
4
+ 12y
3
+ 38y
2
33y + 1)
· (y
6
+ 3y
5
4y
4
22y
3
+ 12y
2
+ 4y + 1)
· (y
6
+ 6y
5
+ 25y
4
54y
3
+ 14y
2
+ 4y + 1)
c
2
, c
5
, c
8
c
11
, c
12
y
3
(y 1)
2
(y
2
+ 3y + 4)
2
(y
3
y
2
+ 2y 1)
3
· (y
4
7y
3
+ 21y
2
35y + 25)(y
4
+ y
3
+ 17y
2
11y + 1)
· (y
6
6y
5
+ 25y
4
86y
3
+ 130y
2
48y + 9)
c
4
, c
9
(y 1)(y
2
3y + 1)
8
(y
3
5y
2
+ 10y 1)
· (y
6
9y
5
+ 36y
4
90y
3
+ 148y
2
136y + 25)
· (y
6
6y
5
+ 9y
4
+ 6y
3
10y
2
4y + 1)
39