12n
0756
(K12n
0756
)
A knot diagram
1
Linearized knot diagam
4 6 8 10 3 10 2 1 12 6 5 9
Solving Sequence
2,6 3,10
7 8 11 5 12 4 1 9
c
2
c
6
c
7
c
10
c
5
c
11
c
4
c
1
c
9
c
3
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h483881179968216u
33
+ 5103340955384197u
32
+ ··· + 272258240478733b + 3934858860404144,
3.93486 × 10
15
u
33
+ 3.89285 × 10
16
u
32
+ ··· + 2.45032 × 10
15
a + 2.14442 × 10
16
, u
34
+ 11u
33
+ ··· + 21u + 9i
I
u
2
= h−u
15
+ 7u
14
24u
13
+ 49u
12
62u
11
+ 42u
10
29u
8
+ 26u
7
10u
6
2u
4
+ 4u
3
au 4u
2
+ b 1,
u
15
a + u
15
+ ··· + a
2
+ 4, u
16
7u
15
+ ··· + 4u
2
+ 1i
I
u
3
= h−u
17
+ 9u
16
+ ··· + b + 4, 4u
17
+ 31u
16
+ ··· + a + 2, u
18
8u
17
+ ··· 5u + 1i
I
v
1
= ha, b 1, v 1i
* 4 irreducible components of dim
C
= 0, with total 85 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.84×10
14
u
33
+5.10×10
15
u
32
+· · ·+2.72×10
14
b+3.93×10
15
, 3.93×10
15
u
33
+
3.89 × 10
16
u
32
+ · · · + 2.45 × 10
15
a + 2.14 × 10
16
, u
34
+ 11u
33
+ · · · + 21u + 9i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
1.60585u
33
15.8871u
32
+ ··· 20.0006u 8.75159
1.77729u
33
18.7445u
32
+ ··· 24.9713u 14.4527
a
7
=
4.02250u
33
42.8304u
32
+ ··· 54.3967u 24.3343
1.41713u
33
19.9565u
32
+ ··· 59.1382u 36.2025
a
8
=
2.60537u
33
22.8739u
32
+ ··· + 4.74153u + 11.8682
1.41713u
33
19.9565u
32
+ ··· 59.1382u 36.2025
a
11
=
1.60585u
33
15.8871u
32
+ ··· 20.0006u 8.75159
2.58296u
33
29.2341u
32
+ ··· 47.8417u 30.4483
a
5
=
u
u
3
+ u
a
12
=
0.827038u
33
+ 7.98095u
32
+ ··· + 1.94620u 0.00708657
1.35433u
33
+ 13.1869u
32
+ ··· + 12.9779u + 4.34003
a
4
=
1.76268u
33
+ 15.3291u
32
+ ··· + 13.1843u 0.885994
4.06037u
33
+ 40.2803u
32
+ ··· + 38.9023u + 15.8641
a
1
=
1.89598u
33
+ 17.9294u
32
+ ··· + 0.703240u 0.0246888
0.323409u
33
+ 7.21616u
32
+ ··· + 30.5012u + 20.6792
a
9
=
0.143799u
33
+ 0.732780u
32
+ ··· + 18.1991u + 8.87919
0.768908u
33
8.48694u
32
+ ··· 11.1369u 6.67054
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
146229071976183
272258240478733
u
33
3883424336090664
272258240478733
u
32
+ ···
16335126702306561
272258240478733
u
14196656353437762
272258240478733
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
34
u
33
+ ··· 14u + 1
c
2
, c
5
u
34
11u
33
+ ··· 21u + 9
c
4
u
34
2u
33
+ ··· 298u + 241
c
6
, c
10
u
34
20u
32
+ ··· 6u
2
+ 1
c
7
u
34
+ 29u
33
+ ··· + 786432u + 65536
c
8
, c
9
, c
12
u
34
+ 8u
33
+ ··· + 96u + 9
c
11
u
34
u
33
+ ··· 146u + 538
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
34
21y
33
+ ··· 30y + 1
c
2
, c
5
y
34
+ 11y
33
+ ··· + 657y + 81
c
4
y
34
+ 26y
33
+ ··· + 316558y + 58081
c
6
, c
10
y
34
40y
33
+ ··· 12y + 1
c
7
y
34
+ y
33
+ ··· 8589934592y + 4294967296
c
8
, c
9
, c
12
y
34
+ 36y
33
+ ··· + 1764y + 81
c
11
y
34
+ 33y
33
+ ··· + 1472172y + 289444
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.617972 + 0.761093I
a = 0.484846 + 0.412540I
b = 0.014360 0.623951I
5.56320 2.89554I 3.61991 + 4.02356I
u = 0.617972 0.761093I
a = 0.484846 0.412540I
b = 0.014360 + 0.623951I
5.56320 + 2.89554I 3.61991 4.02356I
u = 0.038145 + 1.165360I
a = 0.381274 + 0.286643I
b = 0.348587 + 0.433388I
1.75955 1.35815I 1.81191 + 5.60161I
u = 0.038145 1.165360I
a = 0.381274 0.286643I
b = 0.348587 0.433388I
1.75955 + 1.35815I 1.81191 5.60161I
u = 0.786577 + 0.094576I
a = 0.448211 0.707202I
b = 0.419437 + 0.513879I
7.08614 + 0.56989I 6.88337 1.97676I
u = 0.786577 0.094576I
a = 0.448211 + 0.707202I
b = 0.419437 0.513879I
7.08614 0.56989I 6.88337 + 1.97676I
u = 0.987179 + 0.772832I
a = 1.38314 0.38450I
b = 1.66256 + 0.68936I
12.90960 + 1.80005I 9.74318 1.73892I
u = 0.987179 0.772832I
a = 1.38314 + 0.38450I
b = 1.66256 0.68936I
12.90960 1.80005I 9.74318 + 1.73892I
u = 0.864073 + 0.947878I
a = 0.781162 + 0.983524I
b = 1.60724 + 0.10939I
5.54695 + 0.38370I 5.58940 + 0.I
u = 0.864073 0.947878I
a = 0.781162 0.983524I
b = 1.60724 0.10939I
5.54695 0.38370I 5.58940 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.895563 + 0.939492I
a = 1.30517 + 0.59397I
b = 1.72689 0.69426I
5.59448 + 6.17261I 5.46977 4.89495I
u = 0.895563 0.939492I
a = 1.30517 0.59397I
b = 1.72689 + 0.69426I
5.59448 6.17261I 5.46977 + 4.89495I
u = 1.029620 + 0.852087I
a = 0.867778 0.816243I
b = 1.58899 0.10100I
6.37716 4.69861I 0
u = 1.029620 0.852087I
a = 0.867778 + 0.816243I
b = 1.58899 + 0.10100I
6.37716 + 4.69861I 0
u = 0.057536 + 0.646281I
a = 1.089740 0.207466I
b = 0.071382 + 0.716216I
1.02980 1.33350I 1.03223 + 2.72223I
u = 0.057536 0.646281I
a = 1.089740 + 0.207466I
b = 0.071382 0.716216I
1.02980 + 1.33350I 1.03223 2.72223I
u = 0.408705 + 0.478881I
a = 1.90923 + 0.05986I
b = 0.808975 0.889829I
0.23675 + 2.91229I 7.01197 0.68590I
u = 0.408705 0.478881I
a = 1.90923 0.05986I
b = 0.808975 + 0.889829I
0.23675 2.91229I 7.01197 + 0.68590I
u = 0.820293 + 1.120390I
a = 0.568921 0.975842I
b = 1.56001 0.16306I
11.78150 + 4.90128I 0
u = 0.820293 1.120390I
a = 0.568921 + 0.975842I
b = 1.56001 + 0.16306I
11.78150 4.90128I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.604289 + 0.013218I
a = 0.378817 0.481577I
b = 0.222550 + 0.296019I
1.274770 0.384208I 8.74964 + 1.21480I
u = 0.604289 0.013218I
a = 0.378817 + 0.481577I
b = 0.222550 0.296019I
1.274770 + 0.384208I 8.74964 1.21480I
u = 0.179208 + 1.386880I
a = 0.004281 0.231777I
b = 0.320681 + 0.047473I
3.60390 3.49818I 0
u = 0.179208 1.386880I
a = 0.004281 + 0.231777I
b = 0.320681 0.047473I
3.60390 + 3.49818I 0
u = 0.921912 + 1.064770I
a = 1.164080 0.612631I
b = 1.72549 + 0.67468I
5.70649 + 11.80860I 0
u = 0.921912 1.064770I
a = 1.164080 + 0.612631I
b = 1.72549 0.67468I
5.70649 11.80860I 0
u = 1.18586 + 0.88378I
a = 0.828149 + 0.702104I
b = 1.60257 + 0.10069I
13.6579 8.0903I 0
u = 1.18586 0.88378I
a = 0.828149 0.702104I
b = 1.60257 0.10069I
13.6579 + 8.0903I 0
u = 0.015596 + 0.513842I
a = 0.46506 2.17864I
b = 1.112220 + 0.272947I
6.30723 0.15068I 5.27928 0.30128I
u = 0.015596 0.513842I
a = 0.46506 + 2.17864I
b = 1.112220 0.272947I
6.30723 + 0.15068I 5.27928 + 0.30128I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.98134 + 1.14252I
a = 1.086540 + 0.575543I
b = 1.72383 0.67659I
12.7634 + 15.8697I 0
u = 0.98134 1.14252I
a = 1.086540 0.575543I
b = 1.72383 + 0.67659I
12.7634 15.8697I 0
u = 0.29522 + 1.50720I
a = 0.126447 + 0.293981I
b = 0.405758 0.277368I
2.05904 5.25800I 0
u = 0.29522 1.50720I
a = 0.126447 0.293981I
b = 0.405758 + 0.277368I
2.05904 + 5.25800I 0
8
II. I
u
2
=
h−u
15
+7u
14
+· · · +b1, u
15
a+u
15
+· · · +a
2
+4, u
16
7u
15
+· · · +4u
2
+1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
a
u
15
7u
14
+ ··· + au + 1
a
7
=
u
15
a + u
15
+ ··· + a 1
1
a
8
=
u
15
a + u
15
+ ··· + a + 4u
1
a
11
=
a
u
15
7u
14
+ ··· + au + 1
a
5
=
u
u
3
+ u
a
12
=
u
15
+ 7u
14
+ ··· + a u
2u
12
11u
11
+ ··· + au + 1
a
4
=
u
15
7u
14
+ ··· + a + 5u
u
15
a + 7u
14
a + ··· u + 1
a
1
=
u
15
7u
14
+ ··· a + 3u
u
13
a + 5u
12
a + ··· au 1
a
9
=
u
15
7u
14
+ ··· + a + 2u
u
9
a 3u
8
a + ··· + au 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
15
20u
14
+ 44u
13
28u
12
80u
11
+ 252u
10
360u
9
+
348u
8
260u
7
+ 192u
6
136u
5
+ 116u
4
72u
3
+ 48u
2
16u + 14
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
32
u
31
+ ··· 3u + 22
c
2
, c
5
(u
16
+ 7u
15
+ ··· + 4u
2
+ 1)
2
c
4
u
32
+ u
31
+ ··· 6241u + 2648
c
6
, c
10
u
32
u
31
+ ··· 935u + 566
c
7
(u 1)
32
c
8
, c
9
, c
12
(u
16
3u
15
+ ··· + 4u
2
+ 1)
2
c
11
u
32
u
31
+ ··· 7126u + 521
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
32
+ 3y
31
+ ··· 8501y + 484
c
2
, c
5
(y
16
+ y
15
+ ··· + 8y + 1)
2
c
4
y
32
+ 27y
31
+ ··· 50744273y + 7011904
c
6
, c
10
y
32
21y
31
+ ··· + 1943323y + 320356
c
7
(y 1)
32
c
8
, c
9
, c
12
(y
16
+ 17y
15
+ ··· + 8y + 1)
2
c
11
y
32
+ 31y
31
+ ··· 10138750y + 271441
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.169969 + 0.896844I
a = 1.167190 0.569541I
b = 1.196600 0.338289I
4.54212 5.27528I 2.32627 + 5.08255I
u = 0.169969 + 0.896844I
a = 0.120024 + 1.356990I
b = 0.709175 0.949980I
4.54212 5.27528I 2.32627 + 5.08255I
u = 0.169969 0.896844I
a = 1.167190 + 0.569541I
b = 1.196600 + 0.338289I
4.54212 + 5.27528I 2.32627 5.08255I
u = 0.169969 0.896844I
a = 0.120024 1.356990I
b = 0.709175 + 0.949980I
4.54212 + 5.27528I 2.32627 5.08255I
u = 0.994597 + 0.824777I
a = 0.903954 0.390401I
b = 1.68673 + 0.18194I
4.64054 2.72058I 11.67920 0.63367I
u = 0.994597 + 0.824777I
a = 1.094760 + 0.724905I
b = 1.221060 0.357269I
4.64054 2.72058I 11.67920 0.63367I
u = 0.994597 0.824777I
a = 0.903954 + 0.390401I
b = 1.68673 0.18194I
4.64054 + 2.72058I 11.67920 + 0.63367I
u = 0.994597 0.824777I
a = 1.094760 0.724905I
b = 1.221060 + 0.357269I
4.64054 + 2.72058I 11.67920 + 0.63367I
u = 0.533203 + 0.423490I
a = 0.456982 + 0.102875I
b = 0.11581 + 1.97266I
6.78417 + 7.00115I 9.7078 10.6678I
u = 0.533203 + 0.423490I
a = 1.93498 + 2.16281I
b = 0.200098 + 0.248380I
6.78417 + 7.00115I 9.7078 10.6678I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.533203 0.423490I
a = 0.456982 0.102875I
b = 0.11581 1.97266I
6.78417 7.00115I 9.7078 + 10.6678I
u = 0.533203 0.423490I
a = 1.93498 2.16281I
b = 0.200098 0.248380I
6.78417 7.00115I 9.7078 + 10.6678I
u = 0.060033 + 0.625164I
a = 1.305950 + 0.474680I
b = 0.963080 + 0.863595I
1.16901 1.70911I 6.35818 + 0.41032I
u = 0.060033 + 0.625164I
a = 1.51535 1.39501I
b = 0.218353 + 0.844927I
1.16901 1.70911I 6.35818 + 0.41032I
u = 0.060033 0.625164I
a = 1.305950 0.474680I
b = 0.963080 0.863595I
1.16901 + 1.70911I 6.35818 0.41032I
u = 0.060033 0.625164I
a = 1.51535 + 1.39501I
b = 0.218353 0.844927I
1.16901 + 1.70911I 6.35818 0.41032I
u = 0.325762 + 0.486223I
a = 0.810374 0.142795I
b = 0.35796 1.68857I
0.44082 + 3.30359I 0.44501 13.24031I
u = 0.325762 + 0.486223I
a = 2.73734 1.09777I
b = 0.194559 0.440540I
0.44082 + 3.30359I 0.44501 13.24031I
u = 0.325762 0.486223I
a = 0.810374 + 0.142795I
b = 0.35796 + 1.68857I
0.44082 3.30359I 0.44501 + 13.24031I
u = 0.325762 0.486223I
a = 2.73734 + 1.09777I
b = 0.194559 + 0.440540I
0.44082 3.30359I 0.44501 + 13.24031I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.94150 + 1.08351I
a = 0.744681 0.655376I
b = 1.45275 + 0.57236I
3.86336 4.39205I 4.86684 + 12.44765I
u = 0.94150 + 1.08351I
a = 0.964817 + 0.502417I
b = 1.41122 0.18983I
3.86336 4.39205I 4.86684 + 12.44765I
u = 0.94150 1.08351I
a = 0.744681 + 0.655376I
b = 1.45275 0.57236I
3.86336 + 4.39205I 4.86684 12.44765I
u = 0.94150 1.08351I
a = 0.964817 0.502417I
b = 1.41122 + 0.18983I
3.86336 + 4.39205I 4.86684 12.44765I
u = 1.28188 + 0.69445I
a = 0.802703 + 0.270845I
b = 1.91630 0.23956I
11.46350 2.54285I 14.4747 + 1.8243I
u = 1.28188 + 0.69445I
a = 1.234000 0.481628I
b = 1.217060 + 0.210244I
11.46350 2.54285I 14.4747 + 1.8243I
u = 1.28188 0.69445I
a = 0.802703 0.270845I
b = 1.91630 + 0.23956I
11.46350 + 2.54285I 14.4747 1.8243I
u = 1.28188 0.69445I
a = 1.234000 + 0.481628I
b = 1.217060 0.210244I
11.46350 + 2.54285I 14.4747 1.8243I
u = 1.03105 + 1.24797I
a = 0.973554 0.495334I
b = 1.334690 + 0.189904I
9.79453 5.66478I 10.85832 + 7.61626I
u = 1.03105 + 1.24797I
a = 0.615581 + 0.560905I
b = 1.62195 0.70425I
9.79453 5.66478I 10.85832 + 7.61626I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.03105 1.24797I
a = 0.973554 + 0.495334I
b = 1.334690 0.189904I
9.79453 + 5.66478I 10.85832 7.61626I
u = 1.03105 1.24797I
a = 0.615581 0.560905I
b = 1.62195 + 0.70425I
9.79453 + 5.66478I 10.85832 7.61626I
15
III. I
u
3
=
h−u
17
+9u
16
+· · ·+b +4, 4u
17
+31u
16
+· · ·+a +2, u
18
8u
17
+· · ·5u +1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
10
=
4u
17
31u
16
+ ··· + 19u 2
u
17
9u
16
+ ··· + 18u 4
a
7
=
u
15
+ 7u
14
+ ··· 17u + 3
u
16
+ 7u
15
+ ··· 17u
2
+ 4u
a
8
=
u
16
8u
15
+ ··· 21u + 3
u
16
+ 7u
15
+ ··· 17u
2
+ 4u
a
11
=
4u
17
31u
16
+ ··· + 19u 2
2u
16
+ 15u
15
+ ··· + 19u 5
a
5
=
u
u
3
+ u
a
12
=
4u
17
30u
16
+ ··· 49u
2
+ 12u
u
17
9u
16
+ ··· + 17u 4
a
4
=
u
17
+ 8u
16
+ ··· 19u + 3
u
2
u + 1
a
1
=
u
17
8u
16
+ ··· + 16u 1
u
4
+ 2u
3
3u
2
+ 2u 1
a
9
=
u
15
+ 7u
14
+ ··· + 15u
2
5u
u
16
+ 7u
15
+ ··· 9u
2
+ 2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 10u
17
72u
16
+ 309u
15
928u
14
+ 2167u
13
4048u
12
+ 6223u
11
7893u
10
+ 8322u
9
7192u
8
+ 5096u
7
2875u
6
+ 1341u
5
497u
4
+ 196u
3
32u
2
4u + 1
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
18
+ u
16
+ ··· 4u + 1
c
2
u
18
8u
17
+ ··· 5u + 1
c
4
u
18
u
17
+ ··· + u
2
+ 1
c
5
u
18
+ 8u
17
+ ··· + 5u + 1
c
6
u
18
+ u
17
+ ··· + 6u
2
+ 1
c
7
u
18
+ 3u
17
+ ··· 8u + 8
c
8
, c
9
u
18
+ 5u
17
+ ··· 6u
2
+ 1
c
10
u
18
u
17
+ ··· + 6u
2
+ 1
c
11
u
18
+ 6u
16
+ ··· + 16u + 8
c
12
u
18
5u
17
+ ··· 6u
2
+ 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
18
+ 2y
17
+ ··· 6y + 1
c
2
, c
5
y
18
+ 10y
17
+ ··· + 17y + 1
c
4
y
18
+ 13y
17
+ ··· + 2y + 1
c
6
, c
10
y
18
5y
17
+ ··· + 12y + 1
c
7
y
18
+ y
17
+ ··· 416y + 64
c
8
, c
9
, c
12
y
18
+ 19y
17
+ ··· 12y + 1
c
11
y
18
+ 12y
17
+ ··· 96y + 64
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.261420 + 1.172120I
a = 0.379841 + 0.478807I
b = 0.461922 + 0.570389I
1.70214 0.21758I 3.00572 + 0.40055I
u = 0.261420 1.172120I
a = 0.379841 0.478807I
b = 0.461922 0.570389I
1.70214 + 0.21758I 3.00572 0.40055I
u = 0.516070 + 0.482572I
a = 1.70648 0.28542I
b = 0.742931 0.970796I
0.60489 2.99568I 13.9248 + 5.1291I
u = 0.516070 0.482572I
a = 1.70648 + 0.28542I
b = 0.742931 + 0.970796I
0.60489 + 2.99568I 13.9248 5.1291I
u = 0.143682 + 1.295940I
a = 0.350539 + 0.023495I
b = 0.080814 0.450902I
4.02945 3.56902I 8.87570 + 5.68054I
u = 0.143682 1.295940I
a = 0.350539 0.023495I
b = 0.080814 + 0.450902I
4.02945 + 3.56902I 8.87570 5.68054I
u = 0.972474 + 0.968007I
a = 0.940135 + 0.571481I
b = 1.46745 0.35431I
4.05551 3.55831I 5.61870 + 2.86845I
u = 0.972474 0.968007I
a = 0.940135 0.571481I
b = 1.46745 + 0.35431I
4.05551 + 3.55831I 5.61870 2.86845I
u = 1.170870 + 0.744940I
a = 0.972765 0.320087I
b = 1.37742 + 0.34987I
10.09670 2.78092I 6.47448 + 2.85890I
u = 1.170870 0.744940I
a = 0.972765 + 0.320087I
b = 1.37742 0.34987I
10.09670 + 2.78092I 6.47448 2.85890I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.11352 + 1.42465I
a = 0.375608 0.236602I
b = 0.379711 + 0.508250I
1.61059 6.04596I 0.58045 + 7.39747I
u = 0.11352 1.42465I
a = 0.375608 + 0.236602I
b = 0.379711 0.508250I
1.61059 + 6.04596I 0.58045 7.39747I
u = 0.217488 + 0.441352I
a = 1.94133 + 1.20767I
b = 0.110795 1.119460I
6.05328 + 6.37936I 2.68320 4.69289I
u = 0.217488 0.441352I
a = 1.94133 1.20767I
b = 0.110795 + 1.119460I
6.05328 6.37936I 2.68320 + 4.69289I
u = 0.93840 + 1.19736I
a = 0.718907 0.611414I
b = 1.40670 + 0.28704I
8.67996 4.80406I 5.16961 + 2.57260I
u = 0.93840 1.19736I
a = 0.718907 + 0.611414I
b = 1.40670 0.28704I
8.67996 + 4.80406I 5.16961 2.57260I
u = 0.101058 + 0.432072I
a = 2.49136 + 0.11964I
b = 0.200080 + 1.088540I
0.69529 + 2.31097I 2.41878 7.12817I
u = 0.101058 0.432072I
a = 2.49136 0.11964I
b = 0.200080 1.088540I
0.69529 2.31097I 2.41878 + 7.12817I
20
IV. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
1
0
a
3
=
1
0
a
10
=
0
1
a
7
=
1
1
a
8
=
0
1
a
11
=
1
1
a
5
=
1
0
a
12
=
0
1
a
4
=
1
1
a
1
=
0
1
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
10
c
11
u + 1
c
2
, c
5
, c
8
c
9
, c
12
u
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
7
, c
10
c
11
y 1
c
2
, c
5
, c
8
c
9
, c
12
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
24
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
3
(u + 1)(u
18
+ u
16
+ ··· 4u + 1)(u
32
u
31
+ ··· 3u + 22)
· (u
34
u
33
+ ··· 14u + 1)
c
2
u(u
16
+ 7u
15
+ ··· + 4u
2
+ 1)
2
(u
18
8u
17
+ ··· 5u + 1)
· (u
34
11u
33
+ ··· 21u + 9)
c
4
(u + 1)(u
18
u
17
+ ··· + u
2
+ 1)(u
32
+ u
31
+ ··· 6241u + 2648)
· (u
34
2u
33
+ ··· 298u + 241)
c
5
u(u
16
+ 7u
15
+ ··· + 4u
2
+ 1)
2
(u
18
+ 8u
17
+ ··· + 5u + 1)
· (u
34
11u
33
+ ··· 21u + 9)
c
6
(u + 1)(u
18
+ u
17
+ ··· + 6u
2
+ 1)(u
32
u
31
+ ··· 935u + 566)
· (u
34
20u
32
+ ··· 6u
2
+ 1)
c
7
((u 1)
32
)(u + 1)(u
18
+ 3u
17
+ ··· 8u + 8)
· (u
34
+ 29u
33
+ ··· + 786432u + 65536)
c
8
, c
9
u(u
16
3u
15
+ ··· + 4u
2
+ 1)
2
(u
18
+ 5u
17
+ ··· 6u
2
+ 1)
· (u
34
+ 8u
33
+ ··· + 96u + 9)
c
10
(u + 1)(u
18
u
17
+ ··· + 6u
2
+ 1)(u
32
u
31
+ ··· 935u + 566)
· (u
34
20u
32
+ ··· 6u
2
+ 1)
c
11
(u + 1)(u
18
+ 6u
16
+ ··· + 16u + 8)(u
32
u
31
+ ··· 7126u + 521)
· (u
34
u
33
+ ··· 146u + 538)
c
12
u(u
16
3u
15
+ ··· + 4u
2
+ 1)
2
(u
18
5u
17
+ ··· 6u
2
+ 1)
· (u
34
+ 8u
33
+ ··· + 96u + 9)
25
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
(y 1)(y
18
+ 2y
17
+ ··· 6y + 1)(y
32
+ 3y
31
+ ··· 8501y + 484)
· (y
34
21y
33
+ ··· 30y + 1)
c
2
, c
5
y(y
16
+ y
15
+ ··· + 8y + 1)
2
(y
18
+ 10y
17
+ ··· + 17y + 1)
· (y
34
+ 11y
33
+ ··· + 657y + 81)
c
4
(y 1)(y
18
+ 13y
17
+ ··· + 2y + 1)
· (y
32
+ 27y
31
+ ··· 50744273y + 7011904)
· (y
34
+ 26y
33
+ ··· + 316558y + 58081)
c
6
, c
10
(y 1)(y
18
5y
17
+ ··· + 12y + 1)
· (y
32
21y
31
+ ··· + 1943323y + 320356)
· (y
34
40y
33
+ ··· 12y + 1)
c
7
((y 1)
33
)(y
18
+ y
17
+ ··· 416y + 64)
· (y
34
+ y
33
+ ··· 8589934592y + 4294967296)
c
8
, c
9
, c
12
y(y
16
+ 17y
15
+ ··· + 8y + 1)
2
(y
18
+ 19y
17
+ ··· 12y + 1)
· (y
34
+ 36y
33
+ ··· + 1764y + 81)
c
11
(y 1)(y
18
+ 12y
17
+ ··· 96y + 64)
· (y
32
+ 31y
31
+ ··· 10138750y + 271441)
· (y
34
+ 33y
33
+ ··· + 1472172y + 289444)
26