12n
0759
(K12n
0759
)
A knot diagram
1
Linearized knot diagam
4 12 8 1 12 2 11 5 2 8 7 9
Solving Sequence
8,11
7
2,12
3 4 1 6 5 10 9
c
7
c
11
c
2
c
3
c
1
c
6
c
5
c
10
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h471524796u
36
5108104574u
35
+ ··· + 1495255511b + 27229387303,
12296434297u
36
69707922846u
35
+ ··· + 14952555110a 105681891942,
u
37
8u
36
+ ··· + 54u 10i
I
u
2
= h−u
17
a u
17
+ ··· + b + a, u
16
a + 2u
17
+ ··· + a + 5, u
18
+ 5u
17
+ ··· + 3u 1i
I
u
3
= hu
16
+ 5u
15
+ ··· + b + 3, 3u
17
17u
16
+ ··· + 2a 11, u
18
+ 5u
17
+ ··· + 13u + 2i
* 3 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h4.72×10
8
u
36
5.11×10
9
u
35
+· · · +1.50×10
9
b+2.72×10
10
, 1.23×10
10
u
36
6.97 × 10
10
u
35
+ · · · + 1.50 × 10
10
a 1.06 × 10
11
, u
37
8u
36
+ · · · + 54u 10i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
2
=
0.822363u
36
+ 4.66194u
35
+ ··· 40.6849u + 7.06781
0.315347u
36
+ 3.41621u
35
+ ··· + 84.0045u 18.2105
a
12
=
u
u
3
+ u
a
3
=
1.82105u
36
14.2531u
35
+ ··· 80.8722u + 14.3323
1.02354u
36
7.91667u
35
+ ··· 50.2937u + 11.3771
a
4
=
0.797516u
36
6.33640u
35
+ ··· 30.5786u + 2.95520
1.02354u
36
7.91667u
35
+ ··· 50.2937u + 11.3771
a
1
=
1.17552u
36
8.86307u
35
+ ··· 58.6629u + 12.1412
0.968604u
36
9.68456u
35
+ ··· 102.310u + 21.5655
a
6
=
4.28726u
36
34.0282u
35
+ ··· 123.485u + 23.2929
2.54465u
36
+ 18.9069u
35
+ ··· + 0.613399u + 3.92450
a
5
=
0.392450u
36
+ 5.68425u
35
+ ··· + 113.422u 20.8057
1.18047u
36
6.84211u
35
+ ··· + 67.8836u 17.4261
a
10
=
u
u
a
9
=
2.92308u
36
21.9635u
35
+ ··· 55.9879u + 8.79131
2.66058u
36
+ 17.9266u
35
+ ··· + 21.3706u 3.21429
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
12741675491
1495255511
u
36
+
101934190202
1495255511
u
35
+ ··· +
510036125358
1495255511
u
91985646542
1495255511
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
37
11u
36
+ ··· 158u + 10
c
2
, c
6
u
37
+ 20u
35
+ ··· + 4u + 1
c
3
, c
9
u
37
u
36
+ ··· + 286u + 121
c
5
u
37
32u
36
+ ··· 3538944u + 262144
c
7
, c
10
, c
11
u
37
+ 8u
36
+ ··· + 54u + 10
c
8
, c
12
u
37
+ u
36
+ ··· + 5u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
37
+ 23y
36
+ ··· + 1464y 100
c
2
, c
6
y
37
+ 40y
36
+ ··· 24y 1
c
3
, c
9
y
37
+ 19y
36
+ ··· 31218y 14641
c
5
y
37
6y
36
+ ··· + 51539607552y 68719476736
c
7
, c
10
, c
11
y
37
+ 32y
36
+ ··· + 1176y 100
c
8
, c
12
y
37
+ 21y
36
+ ··· + y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.139810 + 0.947636I
a = 1.72762 0.66054I
b = 1.14617 0.94052I
2.14502 0.46485I 1.94282 0.92392I
u = 0.139810 0.947636I
a = 1.72762 + 0.66054I
b = 1.14617 + 0.94052I
2.14502 + 0.46485I 1.94282 + 0.92392I
u = 1.039010 + 0.115439I
a = 0.192987 + 0.037881I
b = 0.62037 + 1.63193I
10.1014 + 11.1664I 0. 6.23795I
u = 1.039010 0.115439I
a = 0.192987 0.037881I
b = 0.62037 1.63193I
10.1014 11.1664I 0. + 6.23795I
u = 0.916293 + 0.067951I
a = 0.097764 + 0.172517I
b = 0.46237 1.48507I
5.40488 + 5.68156I 1.59495 5.13236I
u = 0.916293 0.067951I
a = 0.097764 0.172517I
b = 0.46237 + 1.48507I
5.40488 5.68156I 1.59495 + 5.13236I
u = 0.885871 + 0.114565I
a = 0.281357 + 0.113956I
b = 0.25335 1.47096I
9.31086 + 0.52432I 3.94650 0.50356I
u = 0.885871 0.114565I
a = 0.281357 0.113956I
b = 0.25335 + 1.47096I
9.31086 0.52432I 3.94650 + 0.50356I
u = 0.056118 + 1.111250I
a = 1.50526 + 0.77231I
b = 1.324570 + 0.077249I
0.897651 + 0.070840I 4.00000 + 0.I
u = 0.056118 1.111250I
a = 1.50526 0.77231I
b = 1.324570 0.077249I
0.897651 0.070840I 4.00000 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.609754 + 0.620108I
a = 0.782999 + 0.288087I
b = 0.627363 0.626705I
2.48681 2.57040I 2.36259 + 3.28826I
u = 0.609754 0.620108I
a = 0.782999 0.288087I
b = 0.627363 + 0.626705I
2.48681 + 2.57040I 2.36259 3.28826I
u = 0.086875 + 1.167150I
a = 1.63975 + 0.44424I
b = 1.11741 0.88125I
4.39474 + 1.30377I 15.9395 + 0.I
u = 0.086875 1.167150I
a = 1.63975 0.44424I
b = 1.11741 + 0.88125I
4.39474 1.30377I 15.9395 + 0.I
u = 0.245173 + 1.209770I
a = 0.978004 0.158481I
b = 0.640982 + 1.102120I
0.79010 3.56350I 0
u = 0.245173 1.209770I
a = 0.978004 + 0.158481I
b = 0.640982 1.102120I
0.79010 + 3.56350I 0
u = 0.443655 + 1.201050I
a = 1.79320 + 0.50024I
b = 0.819804 0.963504I
5.97221 + 4.23436I 0
u = 0.443655 1.201050I
a = 1.79320 0.50024I
b = 0.819804 + 0.963504I
5.97221 4.23436I 0
u = 0.435560 + 1.215640I
a = 1.06951 + 0.99559I
b = 0.263581 1.008440I
1.85513 0.84698I 0
u = 0.435560 1.215640I
a = 1.06951 0.99559I
b = 0.263581 + 1.008440I
1.85513 + 0.84698I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.295335 + 0.570556I
a = 0.576122 + 0.317004I
b = 0.130785 + 0.394729I
0.109537 1.239830I 1.37448 + 5.92241I
u = 0.295335 0.570556I
a = 0.576122 0.317004I
b = 0.130785 0.394729I
0.109537 + 1.239830I 1.37448 5.92241I
u = 0.614437 + 1.236310I
a = 0.902398 0.941361I
b = 0.392590 + 1.064250I
6.68893 5.37975I 0
u = 0.614437 1.236310I
a = 0.902398 + 0.941361I
b = 0.392590 1.064250I
6.68893 + 5.37975I 0
u = 0.434151 + 1.339220I
a = 1.76152 0.74711I
b = 1.14193 + 1.58433I
1.00539 + 10.52360I 0
u = 0.434151 1.339220I
a = 1.76152 + 0.74711I
b = 1.14193 1.58433I
1.00539 10.52360I 0
u = 0.38979 + 1.37969I
a = 0.93958 1.24376I
b = 0.37436 + 1.70929I
4.58667 + 5.11314I 0
u = 0.38979 1.37969I
a = 0.93958 + 1.24376I
b = 0.37436 1.70929I
4.58667 5.11314I 0
u = 0.48491 + 1.39397I
a = 1.66833 + 0.76934I
b = 1.01582 1.92652I
5.3737 + 16.5878I 0
u = 0.48491 1.39397I
a = 1.66833 0.76934I
b = 1.01582 + 1.92652I
5.3737 16.5878I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.456996 + 0.144661I
a = 0.60975 1.37109I
b = 0.583726 0.575126I
3.13815 0.83302I 1.02036 + 3.40722I
u = 0.456996 0.144661I
a = 0.60975 + 1.37109I
b = 0.583726 + 0.575126I
3.13815 + 0.83302I 1.02036 3.40722I
u = 0.05084 + 1.54951I
a = 0.027721 + 0.450422I
b = 0.223004 0.781521I
7.37098 2.21708I 0
u = 0.05084 1.54951I
a = 0.027721 0.450422I
b = 0.223004 + 0.781521I
7.37098 + 2.21708I 0
u = 0.12383 + 1.62650I
a = 0.376630 0.307169I
b = 0.973816 + 0.280615I
5.40481 5.27286I 0
u = 0.12383 1.62650I
a = 0.376630 + 0.307169I
b = 0.973816 0.280615I
5.40481 + 5.27286I 0
u = 0.270127
a = 2.08837
b = 0.620523
1.19161 2.79840
8
II.
I
u
2
= h−u
17
au
17
+· · ·+b+a, u
16
a+2u
17
+· · ·+a+5, u
18
+5u
17
+· · ·+3u1i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
2
=
a
u
17
a + u
17
+ ··· a + 2u
a
12
=
u
u
3
+ u
a
3
=
u
17
a 4u
16
a + ··· + 2a u
u
17
a 4u
16
a + ··· + a + 1
a
4
=
u
16
+ 4u
15
+ ··· + a 1
u
17
a 4u
16
a + ··· + a + 1
a
1
=
u
16
4u
15
+ ··· + a + 2
u
17
a + 4u
16
a + ··· a 1
a
6
=
u
15
a u
16
+ ··· a + 3
u
17
a + 4u
16
a + ··· a 1
a
5
=
u
15
a u
16
+ ··· a + 3
u
17
a + 4u
16
a + ··· a 1
a
10
=
u
u
a
9
=
u
16
6u
15
+ ··· a 2
u
17
a + 4u
16
a + ··· a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
+ 20u
15
+ 72u
14
+ 180u
13
+ 356u
12
+ 572u
11
+ 744u
10
+
808u
9
+ 692u
8
+ 460u
7
+ 204u
6
+ 12u
5
36u
4
32u
3
+ 8u
2
+ 20u 6
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
18
+ 5u
17
+ ··· + 3u 1)
2
c
2
, c
6
u
36
5u
35
+ ··· 8364u + 2329
c
3
, c
9
u
36
u
35
+ ··· + 8146u + 1229
c
5
(u + 1)
36
c
7
, c
10
, c
11
(u
18
5u
17
+ ··· 3u 1)
2
c
8
, c
12
u
36
+ 5u
35
+ ··· + 4u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
, c
11
(y
18
+ 13y
17
+ ··· 11y + 1)
2
c
2
, c
6
y
36
+ 15y
35
+ ··· + 24442532y + 5424241
c
3
, c
9
y
36
+ 23y
35
+ ··· 9149824y + 1510441
c
5
(y 1)
36
c
8
, c
12
y
36
5y
35
+ ··· + 20y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.912787
a = 0.316703 + 0.131353I
b = 0.415001 1.265310I
4.47245 3.52670
u = 0.912787
a = 0.316703 0.131353I
b = 0.415001 + 1.265310I
4.47245 3.52670
u = 0.193687 + 1.098120I
a = 0.25197 1.40720I
b = 0.00135 + 2.27636I
0.62200 + 7.06147I 4.14650 10.25752I
u = 0.193687 + 1.098120I
a = 2.64599 0.58963I
b = 1.112400 0.674637I
0.62200 + 7.06147I 4.14650 10.25752I
u = 0.193687 1.098120I
a = 0.25197 + 1.40720I
b = 0.00135 2.27636I
0.62200 7.06147I 4.14650 + 10.25752I
u = 0.193687 1.098120I
a = 2.64599 + 0.58963I
b = 1.112400 + 0.674637I
0.62200 7.06147I 4.14650 + 10.25752I
u = 1.098040 + 0.205475I
a = 0.433613 + 0.557861I
b = 0.95722 + 2.11469I
7.71440 1.25989I 8.84485 + 4.81225I
u = 1.098040 + 0.205475I
a = 0.067996 + 0.235470I
b = 0.055833 0.954772I
7.71440 1.25989I 8.84485 + 4.81225I
u = 1.098040 0.205475I
a = 0.433613 0.557861I
b = 0.95722 2.11469I
7.71440 + 1.25989I 8.84485 4.81225I
u = 1.098040 0.205475I
a = 0.067996 0.235470I
b = 0.055833 + 0.954772I
7.71440 + 1.25989I 8.84485 4.81225I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.074623 + 1.166690I
a = 0.948927 + 0.761406I
b = 0.68925 1.45078I
4.42453 + 1.25989I 12.84485 4.81225I
u = 0.074623 + 1.166690I
a = 2.01169 + 0.29861I
b = 1.225920 0.410668I
4.42453 + 1.25989I 12.84485 4.81225I
u = 0.074623 1.166690I
a = 0.948927 0.761406I
b = 0.68925 + 1.45078I
4.42453 1.25989I 12.84485 + 4.81225I
u = 0.074623 1.166690I
a = 2.01169 0.29861I
b = 1.225920 + 0.410668I
4.42453 1.25989I 12.84485 + 4.81225I
u = 0.618147 + 1.082030I
a = 1.224620 0.051654I
b = 0.763703 0.555491I
5.04831 4.71254I 4.73930 + 5.43197I
u = 0.618147 + 1.082030I
a = 1.21202 1.10387I
b = 1.114730 + 0.784301I
5.04831 4.71254I 4.73930 + 5.43197I
u = 0.618147 1.082030I
a = 1.224620 + 0.051654I
b = 0.763703 + 0.555491I
5.04831 + 4.71254I 4.73930 5.43197I
u = 0.618147 1.082030I
a = 1.21202 + 1.10387I
b = 1.114730 0.784301I
5.04831 + 4.71254I 4.73930 5.43197I
u = 0.088119 + 1.247720I
a = 0.055705 + 0.760873I
b = 0.129650 + 0.365843I
1.75844 4.71254I 8.73930 + 5.43197I
u = 0.088119 + 1.247720I
a = 2.17705 0.69599I
b = 2.28573 + 1.08019I
1.75844 4.71254I 8.73930 + 5.43197I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.088119 1.247720I
a = 0.055705 0.760873I
b = 0.129650 0.365843I
1.75844 + 4.71254I 8.73930 5.43197I
u = 0.088119 1.247720I
a = 2.17705 + 0.69599I
b = 2.28573 1.08019I
1.75844 + 4.71254I 8.73930 5.43197I
u = 0.438063 + 1.312710I
a = 0.981041 + 0.771931I
b = 0.266538 0.848544I
0.37326 4.83126I 7.11010 + 2.24363I
u = 0.438063 + 1.312710I
a = 1.55067 0.56043I
b = 1.10173 + 1.50831I
0.37326 4.83126I 7.11010 + 2.24363I
u = 0.438063 1.312710I
a = 0.981041 0.771931I
b = 0.266538 + 0.848544I
0.37326 + 4.83126I 7.11010 2.24363I
u = 0.438063 1.312710I
a = 1.55067 + 0.56043I
b = 1.10173 1.50831I
0.37326 + 4.83126I 7.11010 2.24363I
u = 0.52615 + 1.42545I
a = 0.966701 0.471265I
b = 0.693432 + 0.999976I
2.66787 7.06147I 0.14650 + 10.25752I
u = 0.52615 + 1.42545I
a = 1.51704 + 0.90563I
b = 0.50804 2.48535I
2.66787 7.06147I 0.14650 + 10.25752I
u = 0.52615 1.42545I
a = 0.966701 + 0.471265I
b = 0.693432 0.999976I
2.66787 + 7.06147I 0.14650 10.25752I
u = 0.52615 1.42545I
a = 1.51704 0.90563I
b = 0.50804 + 2.48535I
2.66787 + 7.06147I 0.14650 10.25752I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.316467 + 0.267299I
a = 1.22025 1.72230I
b = 1.118440 0.785603I
2.91661 4.83126I 3.11010 + 2.24363I
u = 0.316467 + 0.267299I
a = 2.99288 0.82848I
b = 0.141618 + 0.818664I
2.91661 4.83126I 3.11010 + 2.24363I
u = 0.316467 0.267299I
a = 1.22025 + 1.72230I
b = 1.118440 + 0.785603I
2.91661 + 4.83126I 3.11010 2.24363I
u = 0.316467 0.267299I
a = 2.99288 + 0.82848I
b = 0.141618 0.818664I
2.91661 + 4.83126I 3.11010 2.24363I
u = 0.280251
a = 2.14871 + 0.64223I
b = 0.667889 + 0.191026I
1.18258 0.473290
u = 0.280251
a = 2.14871 0.64223I
b = 0.667889 0.191026I
1.18258 0.473290
15
III. I
u
3
=
hu
16
+5u
15
+· · ·+b+3, 3u
17
17u
16
+· · ·+2a11, u
18
+5u
17
+· · ·+13u+2i
(i) Arc colorings
a
8
=
1
0
a
11
=
0
u
a
7
=
1
u
2
a
2
=
3
2
u
17
+
17
2
u
16
+ ··· + 31u +
11
2
u
16
5u
15
+ ··· 16u 3
a
12
=
u
u
3
+ u
a
3
=
3
2
u
17
+
15
2
u
16
+ ··· + 17u +
7
2
u
16
5u
15
+ ··· 17u 3
a
4
=
3
2
u
17
+
17
2
u
16
+ ··· + 34u +
13
2
u
16
5u
15
+ ··· 17u 3
a
1
=
1
2
u
17
+
5
2
u
16
+ ··· + 16u +
3
2
u
9
3u
8
9u
7
16u
6
24u
5
27u
4
22u
3
15u
2
5u 1
a
6
=
1
2
u
17
+
7
2
u
16
+ ··· + 26u +
13
2
u
16
4u
15
+ ··· 3u 1
a
5
=
1
2
u
17
+
5
2
u
16
+ ··· + 14u +
9
2
u
3
u
2
2u 1
a
10
=
u
u
a
9
=
1
2
u
17
5
2
u
16
+ ··· 22u
7
2
u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 6u
2
+ 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
17
+ 3u
16
+ 15u
15
+ 12u
14
+ 26u
13
13u
12
41u
11
106u
10
145u
9
101u
8
54u
7
+ 89u
6
+ 142u
5
+ 163u
4
+ 144u
3
+ 55u
2
+ 40u
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
8u
17
+ ··· 73u + 12
c
2
, c
6
u
18
3u
14
+ ··· 6u
2
+ 1
c
3
, c
9
u
18
u
17
+ ··· u
2
+ 1
c
4
u
18
+ 8u
17
+ ··· + 73u + 12
c
5
u
18
+ 5u
17
+ ··· 3u + 7
c
7
u
18
+ 5u
17
+ ··· + 13u + 2
c
8
, c
12
u
18
u
17
+ ··· + u + 1
c
10
, c
11
u
18
5u
17
+ ··· 13u + 2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
18
+ 10y
17
+ ··· + 623y + 144
c
2
, c
6
y
18
6y
16
+ ··· 12y + 1
c
3
, c
9
y
18
+ 11y
17
+ ··· 2y + 1
c
5
y
18
5y
17
+ ··· 597y + 49
c
7
, c
10
, c
11
y
18
+ 19y
17
+ ··· + 39y + 4
c
8
, c
12
y
18
3y
17
+ ··· + 3y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.005820 + 0.143618I
a = 0.191143 0.040717I
b = 0.163157 1.366040I
6.70136 0.69923I 0.082570 + 0.255758I
u = 1.005820 0.143618I
a = 0.191143 + 0.040717I
b = 0.163157 + 1.366040I
6.70136 + 0.69923I 0.082570 0.255758I
u = 0.108804 + 1.151700I
a = 1.76688 + 0.65260I
b = 1.10749 0.99631I
4.02138 1.16907I 3.75736 3.23683I
u = 0.108804 1.151700I
a = 1.76688 0.65260I
b = 1.10749 + 0.99631I
4.02138 + 1.16907I 3.75736 + 3.23683I
u = 0.079474 + 1.171950I
a = 1.53601 0.65895I
b = 0.79013 + 1.51732I
0.20326 + 5.79607I 5.72434 5.34843I
u = 0.079474 1.171950I
a = 1.53601 + 0.65895I
b = 0.79013 1.51732I
0.20326 5.79607I 5.72434 + 5.34843I
u = 0.566647 + 1.152440I
a = 1.188160 + 0.386784I
b = 0.136894 0.761815I
3.59865 4.81934I 2.65309 + 4.91066I
u = 0.566647 1.152440I
a = 1.188160 0.386784I
b = 0.136894 + 0.761815I
3.59865 + 4.81934I 2.65309 4.91066I
u = 0.043618 + 0.529613I
a = 1.40097 1.49588I
b = 0.590722 + 0.667130I
1.95706 5.18785I 6.23632 + 5.50637I
u = 0.043618 0.529613I
a = 1.40097 + 1.49588I
b = 0.590722 0.667130I
1.95706 + 5.18785I 6.23632 5.50637I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.47475 + 1.39812I
a = 1.179570 0.770752I
b = 0.59799 + 1.57020I
1.87518 5.99210I 3.66371 + 3.71889I
u = 0.47475 1.39812I
a = 1.179570 + 0.770752I
b = 0.59799 1.57020I
1.87518 + 5.99210I 3.66371 3.71889I
u = 0.08311 + 1.51235I
a = 0.379469 + 0.480793I
b = 0.485462 0.844585I
7.63748 1.81605I 11.92101 4.04816I
u = 0.08311 1.51235I
a = 0.379469 0.480793I
b = 0.485462 + 0.844585I
7.63748 + 1.81605I 11.92101 + 4.04816I
u = 0.315334 + 0.278447I
a = 1.04390 + 1.08403I
b = 0.603695 + 0.097936I
1.45757 0.47837I 8.82227 + 8.75123I
u = 0.315334 0.278447I
a = 1.04390 1.08403I
b = 0.603695 0.097936I
1.45757 + 0.47837I 8.82227 8.75123I
u = 0.06863 + 1.59394I
a = 0.598023 + 0.023436I
b = 1.087790 + 0.106451I
5.74737 5.68174I 10.6541 + 9.4506I
u = 0.06863 1.59394I
a = 0.598023 0.023436I
b = 1.087790 0.106451I
5.74737 + 5.68174I 10.6541 9.4506I
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
8u
17
+ ··· 73u + 12)(u
18
+ 5u
17
+ ··· + 3u 1)
2
· (u
37
11u
36
+ ··· 158u + 10)
c
2
, c
6
(u
18
3u
14
+ ··· 6u
2
+ 1)(u
36
5u
35
+ ··· 8364u + 2329)
· (u
37
+ 20u
35
+ ··· + 4u + 1)
c
3
, c
9
(u
18
u
17
+ ··· u
2
+ 1)(u
36
u
35
+ ··· + 8146u + 1229)
· (u
37
u
36
+ ··· + 286u + 121)
c
4
((u
18
+ 5u
17
+ ··· + 3u 1)
2
)(u
18
+ 8u
17
+ ··· + 73u + 12)
· (u
37
11u
36
+ ··· 158u + 10)
c
5
((u + 1)
36
)(u
18
+ 5u
17
+ ··· 3u + 7)
· (u
37
32u
36
+ ··· 3538944u + 262144)
c
7
((u
18
5u
17
+ ··· 3u 1)
2
)(u
18
+ 5u
17
+ ··· + 13u + 2)
· (u
37
+ 8u
36
+ ··· + 54u + 10)
c
8
, c
12
(u
18
u
17
+ ··· + u + 1)(u
36
+ 5u
35
+ ··· + 4u + 1)
· (u
37
+ u
36
+ ··· + 5u + 1)
c
10
, c
11
((u
18
5u
17
+ ··· 3u 1)
2
)(u
18
5u
17
+ ··· 13u + 2)
· (u
37
+ 8u
36
+ ··· + 54u + 10)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
18
+ 10y
17
+ ··· + 623y + 144)(y
18
+ 13y
17
+ ··· 11y + 1)
2
· (y
37
+ 23y
36
+ ··· + 1464y 100)
c
2
, c
6
(y
18
6y
16
+ ··· 12y + 1)
· (y
36
+ 15y
35
+ ··· + 24442532y + 5424241)
· (y
37
+ 40y
36
+ ··· 24y 1)
c
3
, c
9
(y
18
+ 11y
17
+ ··· 2y + 1)
· (y
36
+ 23y
35
+ ··· 9149824y + 1510441)
· (y
37
+ 19y
36
+ ··· 31218y 14641)
c
5
((y 1)
36
)(y
18
5y
17
+ ··· 597y + 49)
· (y
37
6y
36
+ ··· + 51539607552y 68719476736)
c
7
, c
10
, c
11
((y
18
+ 13y
17
+ ··· 11y + 1)
2
)(y
18
+ 19y
17
+ ··· + 39y + 4)
· (y
37
+ 32y
36
+ ··· + 1176y 100)
c
8
, c
12
(y
18
3y
17
+ ··· + 3y + 1)(y
36
5y
35
+ ··· + 20y + 1)
· (y
37
+ 21y
36
+ ··· + y 1)
22