12n
0760
(K12n
0760
)
A knot diagram
1
Linearized knot diagam
4 6 7 1 12 10 5 2 7 6 3 8
Solving Sequence
6,10 3,7
4 11 12 2 1 5 9 8
c
6
c
3
c
10
c
11
c
2
c
1
c
5
c
9
c
8
c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h3.36560 × 10
16
u
33
4.05432 × 10
17
u
32
+ ··· + 2.03548 × 10
16
b 4.65631 × 10
16
,
4.40305 × 10
16
u
33
5.75517 × 10
17
u
32
+ ··· + 4.07095 × 10
16
a 1.59911 × 10
17
, u
34
13u
33
+ ··· 6u + 4i
I
u
2
= h−164346u
11
a
3
+ 243817u
11
a
2
+ ··· + 1429364a + 308156, 5u
11
a
2
2u
11
a + ··· 4a 3,
u
12
+ 5u
11
+ 13u
10
+ 20u
9
+ 21u
8
+ 16u
7
+ 12u
6
+ 8u
5
+ 6u
4
+ 3u
3
+ 3u
2
+ 1i
I
u
3
= h−127540u
19
1007094u
18
+ ··· + 123517b + 27064,
154604u
19
1351146u
18
+ ··· + 123517a 395220, u
20
+ 8u
19
+ ··· + u + 1i
* 3 irreducible components of dim
C
= 0, with total 102 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h3.37×10
16
u
33
4.05×10
17
u
32
+· · ·+2.04×10
16
b4.66×10
16
, 4.40×10
16
u
33
5.76 × 10
17
u
32
+ · · · + 4.07 × 10
16
a 1.60 × 10
17
, u
34
13u
33
+ · · · 6u + 4i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
1.08158u
33
+ 14.1371u
32
+ ··· 1.84914u + 3.92810
1.65347u
33
+ 19.9183u
32
+ ··· 5.07189u + 2.28758
a
7
=
1
u
2
a
4
=
1.00999u
33
+ 11.8197u
32
+ ··· 1.56347u + 1.94713
0.938990u
33
11.3875u
32
+ ··· + 3.53499u 3.25944
a
11
=
u
u
a
12
=
0.204732u
33
3.45935u
32
+ ··· 6.67202u + 1.64778
1.28084u
33
16.1679u
32
+ ··· + 1.50444u 4.30443
a
2
=
0.571894u
33
5.78115u
32
+ ··· + 3.22275u + 1.64052
1.65347u
33
+ 19.9183u
32
+ ··· 5.07189u + 2.28758
a
1
=
0.267000u
33
+ 3.12839u
32
+ ··· + 0.838672u + 2.49762
0.625596u
33
+ 6.10151u
32
+ ··· 4.07077u 2.20949
a
5
=
4.42916u
33
52.7017u
32
+ ··· + 19.1323u 9.10875
0.312839u
33
+ 0.640403u
32
+ ··· + 0.133353u + 11.3419
a
9
=
u
u
3
+ u
a
8
=
0.278275u
33
+ 3.49089u
32
+ ··· 12.0526u + 6.77114
0.126689u
33
1.92864u
32
+ ··· 4.10149u 1.11310
(ii) Obstruction class = 1
(iii) Cusp Shapes =
245172184142911492
10177386517582189
u
33
2970953353069335864
10177386517582189
u
32
+···+
687896807227313368
10177386517582189
u
550241350633760298
10177386517582189
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
34
15u
33
+ ··· 260u + 16
c
2
, c
11
u
34
3u
33
+ ··· + u + 1
c
3
, c
8
u
34
+ u
33
+ ··· + 104u + 52
c
5
u
34
24u
33
+ ··· 65536u + 4096
c
6
, c
9
, c
10
u
34
+ 13u
33
+ ··· + 6u + 4
c
7
, c
12
u
34
u
33
+ ··· + 2u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
34
+ 25y
33
+ ··· + 6608y + 256
c
2
, c
11
y
34
37y
33
+ ··· 3y + 1
c
3
, c
8
y
34
+ 15y
33
+ ··· + 26832y + 2704
c
5
y
34
+ 18y
33
+ ··· + 41943040y + 16777216
c
6
, c
9
, c
10
y
34
+ 13y
33
+ ··· + 4y + 16
c
7
, c
12
y
34
+ 9y
33
+ ··· + 24y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.177745 + 0.860510I
a = 0.987660 + 0.758962I
b = 0.133957 + 0.738294I
0.48946 2.43392I 4.03642 + 1.50736I
u = 0.177745 0.860510I
a = 0.987660 0.758962I
b = 0.133957 0.738294I
0.48946 + 2.43392I 4.03642 1.50736I
u = 0.807369 + 0.789323I
a = 0.046019 1.265130I
b = 1.54529 0.84093I
4.30370 + 4.79186I 12.7548 15.8539I
u = 0.807369 0.789323I
a = 0.046019 + 1.265130I
b = 1.54529 + 0.84093I
4.30370 4.79186I 12.7548 + 15.8539I
u = 0.742638 + 0.428063I
a = 0.092694 1.192120I
b = 0.201006 0.534634I
3.50069 1.29985I 5.39595 + 2.66124I
u = 0.742638 0.428063I
a = 0.092694 + 1.192120I
b = 0.201006 + 0.534634I
3.50069 + 1.29985I 5.39595 2.66124I
u = 0.199740 + 0.757222I
a = 0.768202 + 1.019930I
b = 0.694012 + 0.122979I
1.79897 2.51887I 1.62969 + 2.73665I
u = 0.199740 0.757222I
a = 0.768202 1.019930I
b = 0.694012 0.122979I
1.79897 + 2.51887I 1.62969 2.73665I
u = 0.807251 + 0.921530I
a = 0.549456 1.161350I
b = 1.63739 0.33756I
4.49772 + 3.04334I 0
u = 0.807251 0.921530I
a = 0.549456 + 1.161350I
b = 1.63739 + 0.33756I
4.49772 3.04334I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.968837 + 0.772002I
a = 0.600368 + 0.589855I
b = 1.331840 0.217349I
1.19675 4.92326I 0
u = 0.968837 0.772002I
a = 0.600368 0.589855I
b = 1.331840 + 0.217349I
1.19675 + 4.92326I 0
u = 0.704114 + 1.059300I
a = 0.900068 0.778966I
b = 1.362050 + 0.199758I
3.45060 + 0.99312I 0
u = 0.704114 1.059300I
a = 0.900068 + 0.778966I
b = 1.362050 0.199758I
3.45060 0.99312I 0
u = 1.086830 + 0.767498I
a = 0.484855 + 0.792427I
b = 1.57485 + 0.28400I
10.11120 2.61148I 0
u = 1.086830 0.767498I
a = 0.484855 0.792427I
b = 1.57485 0.28400I
10.11120 + 2.61148I 0
u = 0.878326 + 1.055870I
a = 0.371450 + 1.291500I
b = 1.53857 + 0.80521I
0.37459 + 11.68900I 0
u = 0.878326 1.055870I
a = 0.371450 1.291500I
b = 1.53857 0.80521I
0.37459 11.68900I 0
u = 0.386020 + 0.458150I
a = 0.537326 + 0.629358I
b = 0.052527 + 0.335533I
0.064441 1.136870I 0.93772 + 5.85683I
u = 0.386020 0.458150I
a = 0.537326 0.629358I
b = 0.052527 0.335533I
0.064441 + 1.136870I 0.93772 5.85683I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.89212 + 1.15663I
a = 0.747140 + 1.031830I
b = 1.57182 + 0.30895I
8.86289 + 9.81740I 0
u = 0.89212 1.15663I
a = 0.747140 1.031830I
b = 1.57182 0.30895I
8.86289 9.81740I 0
u = 1.22079 + 0.87455I
a = 0.716079 0.451230I
b = 1.395450 + 0.196055I
6.07747 9.60440I 0
u = 1.22079 0.87455I
a = 0.716079 + 0.451230I
b = 1.395450 0.196055I
6.07747 + 9.60440I 0
u = 0.98696 + 1.14798I
a = 0.477391 1.245850I
b = 1.55779 0.81772I
5.1283 + 17.4721I 0
u = 0.98696 1.14798I
a = 0.477391 + 1.245850I
b = 1.55779 + 0.81772I
5.1283 17.4721I 0
u = 0.00685 + 1.55539I
a = 0.394264 + 0.143907I
b = 0.343831 0.076929I
7.56742 2.39125I 0
u = 0.00685 1.55539I
a = 0.394264 0.143907I
b = 0.343831 + 0.076929I
7.56742 + 2.39125I 0
u = 0.201303 + 0.350187I
a = 1.40378 2.09303I
b = 1.034130 0.541372I
1.50426 + 2.26332I 0.52367 3.19533I
u = 0.201303 0.350187I
a = 1.40378 + 2.09303I
b = 1.034130 + 0.541372I
1.50426 2.26332I 0.52367 + 3.19533I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.399608 + 0.017982I
a = 2.46321 2.18711I
b = 0.683499 0.647318I
1.77799 2.09204I 0.21369 + 3.52332I
u = 0.399608 0.017982I
a = 2.46321 + 2.18711I
b = 0.683499 + 0.647318I
1.77799 + 2.09204I 0.21369 3.52332I
u = 0.14129 + 1.69680I
a = 0.176576 0.469335I
b = 0.318827 0.269592I
5.11425 5.43935I 0
u = 0.14129 1.69680I
a = 0.176576 + 0.469335I
b = 0.318827 + 0.269592I
5.11425 + 5.43935I 0
8
II. I
u
2
= h−1.64 × 10
5
a
3
u
11
+ 2.44 × 10
5
a
2
u
11
+ · · · + 1.43 × 10
6
a + 3.08 ×
10
5
, 5u
11
a
2
2u
11
a + · · · 4a 3, u
12
+ 5u
11
+ · · · + 3u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
a
0.173165a
3
u
11
0.256901a
2
u
11
+ ··· 1.50607a 0.324693
a
7
=
1
u
2
a
4
=
0.173165a
3
u
11
+ 0.256901a
2
u
11
+ ··· + 2.50607a + 0.324693
0.0438292a
3
u
11
+ 0.198053a
2
u
11
+ ··· 0.0752979a + 0.187445
a
11
=
u
u
a
12
=
0.233575a
3
u
11
0.244925a
2
u
11
+ ··· 0.00431686a 0.0487698
0.137377a
3
u
11
0.991313a
2
u
11
+ ··· 0.124280a + 0.0462769
a
2
=
0.173165a
3
u
11
+ 0.256901a
2
u
11
+ ··· + 2.50607a + 0.324693
0.173165a
3
u
11
0.256901a
2
u
11
+ ··· 1.50607a 0.324693
a
1
=
0.590217a
3
u
11
0.580359a
2
u
11
+ ··· + 2.60386a + 1.74028
0.384443a
3
u
11
+ 0.245718a
2
u
11
+ ··· 0.729774a 1.29352
a
5
=
0.482755a
3
u
11
+ 0.427855a
2
u
11
+ ··· + 0.290788a + 1.76402
0.137377a
3
u
11
0.991313a
2
u
11
+ ··· 0.124280a 0.953723
a
9
=
u
u
3
+ u
a
8
=
0.808272a
3
u
11
0.111891a
2
u
11
+ ··· + 0.482231a + 0.268134
1.17922a
3
u
11
+ 0.858278a
2
u
11
+ ··· 0.362268a 0.363181
(ii) Obstruction class = 1
(iii) Cusp Shapes =
52152
94907
u
11
a
3
+
376330
94907
u
11
a
2
+ ··· +
47180
94907
a
1346266
94907
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
12
+ 3u
11
+ ··· 2u + 1)
4
c
2
, c
11
u
48
3u
47
+ ··· 1764u + 304
c
3
, c
8
u
48
u
47
+ ··· 10752u + 31744
c
5
(u
2
+ u + 1)
24
c
6
, c
9
, c
10
(u
12
5u
11
+ ··· + 3u
2
+ 1)
4
c
7
, c
12
u
48
+ u
47
+ ··· 8u + 4
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
12
+ 9y
11
+ ··· 6y + 1)
4
c
2
, c
11
y
48
25y
47
+ ··· 3021104y + 92416
c
3
, c
8
y
48
+ 19y
47
+ ··· 4422631424y + 1007681536
c
5
(y
2
+ y + 1)
24
c
6
, c
9
, c
10
(y
12
+ y
11
+ ··· + 6y + 1)
4
c
7
, c
12
y
48
9y
47
+ ··· + 648y + 16
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.096849 + 0.815314I
a = 0.991274 + 0.244561I
b = 0.180533 + 0.571823I
0.55801 2.43094I 5.64801 + 1.26417I
u = 0.096849 + 0.815314I
a = 0.334752 + 0.461645I
b = 1.62106 + 0.09220I
0.55801 6.49071I 5.64801 + 8.19237I
u = 0.096849 + 0.815314I
a = 1.04597 + 1.22420I
b = 0.380309 + 0.923695I
0.55801 2.43094I 5.64801 + 1.26417I
u = 0.096849 + 0.815314I
a = 0.08139 2.96033I
b = 0.425795 1.012970I
0.55801 6.49071I 5.64801 + 8.19237I
u = 0.096849 0.815314I
a = 0.991274 0.244561I
b = 0.180533 0.571823I
0.55801 + 2.43094I 5.64801 1.26417I
u = 0.096849 0.815314I
a = 0.334752 0.461645I
b = 1.62106 0.09220I
0.55801 + 6.49071I 5.64801 8.19237I
u = 0.096849 0.815314I
a = 1.04597 1.22420I
b = 0.380309 0.923695I
0.55801 + 2.43094I 5.64801 1.26417I
u = 0.096849 0.815314I
a = 0.08139 + 2.96033I
b = 0.425795 + 1.012970I
0.55801 + 6.49071I 5.64801 8.19237I
u = 0.897414 + 0.962359I
a = 0.512515 + 0.835613I
b = 1.54234 + 0.56752I
1.93740 5.36645I 3.82297 + 5.38834I
u = 0.897414 + 0.962359I
a = 0.635177 + 0.979032I
b = 1.154690 + 0.241144I
1.93740 1.30669I 3.82297 1.53987I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.897414 + 0.962359I
a = 0.067373 1.313560I
b = 1.182180 0.750468I
1.93740 5.36645I 3.82297 + 5.38834I
u = 0.897414 + 0.962359I
a = 0.443837 0.354556I
b = 1.176330 + 0.162236I
1.93740 1.30669I 3.82297 1.53987I
u = 0.897414 0.962359I
a = 0.512515 0.835613I
b = 1.54234 0.56752I
1.93740 + 5.36645I 3.82297 5.38834I
u = 0.897414 0.962359I
a = 0.635177 0.979032I
b = 1.154690 0.241144I
1.93740 + 1.30669I 3.82297 + 1.53987I
u = 0.897414 0.962359I
a = 0.067373 + 1.313560I
b = 1.182180 + 0.750468I
1.93740 + 5.36645I 3.82297 5.38834I
u = 0.897414 0.962359I
a = 0.443837 + 0.354556I
b = 1.176330 0.162236I
1.93740 + 1.30669I 3.82297 + 1.53987I
u = 0.492148 + 0.450600I
a = 1.238170 + 0.532971I
b = 0.806292 0.362544I
1.25303 + 4.19921I 2.04009 7.81755I
u = 0.492148 + 0.450600I
a = 0.45433 + 1.76693I
b = 0.60135 + 2.02277I
1.25303 + 8.25898I 2.0401 14.7458I
u = 0.492148 + 0.450600I
a = 0.65546 1.77721I
b = 0.60266 1.36196I
1.25303 + 4.19921I 2.04009 7.81755I
u = 0.492148 + 0.450600I
a = 1.57002 2.78474I
b = 0.187637 + 0.059665I
1.25303 + 8.25898I 2.0401 14.7458I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.492148 0.450600I
a = 1.238170 0.532971I
b = 0.806292 + 0.362544I
1.25303 4.19921I 2.04009 + 7.81755I
u = 0.492148 0.450600I
a = 0.45433 1.76693I
b = 0.60135 2.02277I
1.25303 8.25898I 2.0401 + 14.7458I
u = 0.492148 0.450600I
a = 0.65546 + 1.77721I
b = 0.60266 + 1.36196I
1.25303 4.19921I 2.04009 + 7.81755I
u = 0.492148 0.450600I
a = 1.57002 + 2.78474I
b = 0.187637 0.059665I
1.25303 8.25898I 2.0401 + 14.7458I
u = 0.225615 + 0.583583I
a = 0.49226 1.52837I
b = 0.30789 1.81604I
3.58098 + 2.94957I 9.5307 10.6461I
u = 0.225615 + 0.583583I
a = 0.0844684 0.0883145I
b = 1.43468 + 0.37842I
3.58098 1.11020I 9.53074 3.71786I
u = 0.225615 + 0.583583I
a = 2.65608 + 1.33311I
b = 0.126282 0.172499I
3.58098 + 2.94957I 9.5307 10.6461I
u = 0.225615 + 0.583583I
a = 1.32060 + 2.91249I
b = 0.070364 + 0.991849I
3.58098 1.11020I 9.53074 3.71786I
u = 0.225615 0.583583I
a = 0.49226 + 1.52837I
b = 0.30789 + 1.81604I
3.58098 2.94957I 9.5307 + 10.6461I
u = 0.225615 0.583583I
a = 0.0844684 + 0.0883145I
b = 1.43468 0.37842I
3.58098 + 1.11020I 9.53074 + 3.71786I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.225615 0.583583I
a = 2.65608 1.33311I
b = 0.126282 + 0.172499I
3.58098 2.94957I 9.5307 + 10.6461I
u = 0.225615 0.583583I
a = 1.32060 2.91249I
b = 0.070364 0.991849I
3.58098 + 1.11020I 9.53074 + 3.71786I
u = 1.216860 + 0.709160I
a = 0.953155 + 0.065735I
b = 1.62157 0.26350I
6.16619 0.50759I 8.43865 1.75135I
u = 1.216860 + 0.709160I
a = 0.146312 0.814725I
b = 1.046850 0.073374I
6.16619 0.50759I 8.43865 1.75135I
u = 1.216860 + 0.709160I
a = 0.881067 0.903352I
b = 1.74042 0.74034I
6.16619 4.56735I 8.43865 + 5.17685I
u = 1.216860 + 0.709160I
a = 0.171000 + 0.579101I
b = 1.161320 + 0.411057I
6.16619 4.56735I 8.43865 + 5.17685I
u = 1.216860 0.709160I
a = 0.953155 0.065735I
b = 1.62157 + 0.26350I
6.16619 + 0.50759I 8.43865 + 1.75135I
u = 1.216860 0.709160I
a = 0.146312 + 0.814725I
b = 1.046850 + 0.073374I
6.16619 + 0.50759I 8.43865 + 1.75135I
u = 1.216860 0.709160I
a = 0.881067 + 0.903352I
b = 1.74042 + 0.74034I
6.16619 + 4.56735I 8.43865 5.17685I
u = 1.216860 0.709160I
a = 0.171000 0.579101I
b = 1.161320 0.411057I
6.16619 + 4.56735I 8.43865 5.17685I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00664 + 1.21018I
a = 0.368637 0.732620I
b = 1.42346 0.46423I
4.65197 7.43387I 4.52298 + 12.02747I
u = 1.00664 + 1.21018I
a = 1.052560 0.811213I
b = 1.47525 0.31651I
4.65197 3.37411I 4.52298 + 5.09926I
u = 1.00664 + 1.21018I
a = 0.270267 + 0.605480I
b = 1.024180 + 0.013550I
4.65197 3.37411I 4.52298 + 5.09926I
u = 1.00664 + 1.21018I
a = 0.58161 + 1.51297I
b = 1.38663 + 1.00635I
4.65197 7.43387I 4.52298 + 12.02747I
u = 1.00664 1.21018I
a = 0.368637 + 0.732620I
b = 1.42346 + 0.46423I
4.65197 + 7.43387I 4.52298 12.02747I
u = 1.00664 1.21018I
a = 1.052560 + 0.811213I
b = 1.47525 + 0.31651I
4.65197 + 3.37411I 4.52298 5.09926I
u = 1.00664 1.21018I
a = 0.270267 0.605480I
b = 1.024180 0.013550I
4.65197 + 3.37411I 4.52298 5.09926I
u = 1.00664 1.21018I
a = 0.58161 1.51297I
b = 1.38663 1.00635I
4.65197 + 7.43387I 4.52298 12.02747I
16
III.
I
u
3
= h−1.28 × 10
5
u
19
1.01 × 10
6
u
18
+ · · · + 1.24 × 10
5
b + 2.71 × 10
4
, 1.55 ×
10
5
u
19
1.35× 10
6
u
18
+ · · · + 1.24 × 10
5
a 3.95 × 10
5
, u
20
+ 8u
19
+ · · · + u + 1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
3
=
1.25168u
19
+ 10.9389u
18
+ ··· + 5.92810u + 3.19972
1.03257u
19
+ 8.15348u
18
+ ··· + 3.19972u 0.219112
a
7
=
1
u
2
a
4
=
0.685072u
19
+ 6.77196u
18
+ ··· + 4.90555u + 4.34433
0.994365u
19
+ 7.79298u
18
+ ··· + 2.99900u + 0.146781
a
11
=
u
u
a
12
=
1.41270u
19
+ 10.8173u
18
+ ··· + 2.62466u 3.71599
0.0514585u
19
0.844532u
18
+ ··· 2.71599u 1.46416
a
2
=
0.219112u
19
+ 2.78546u
18
+ ··· + 2.72838u + 3.41883
1.03257u
19
+ 8.15348u
18
+ ··· + 3.19972u 0.219112
a
1
=
0.372111u
19
3.33171u
18
+ ··· 5.09162u 1.99085
0.0253083u
19
+ 0.0849600u
18
+ ··· 0.193803u 0.124768
a
5
=
0.0850814u
19
0.341281u
18
+ ··· + 7.95479u + 5.36282
0.182671u
19
+ 1.18521u
18
+ ··· + 2.89866u + 0.319211
a
9
=
u
u
3
+ u
a
8
=
0.979841u
19
+ 7.65593u
18
+ ··· 0.788045u 3.66453
0.182793u
19
1.80174u
18
+ ··· 3.64437u 0.979841
(ii) Obstruction class = 1
(iii) Cusp Shapes =
499031
123517
u
19
4050048
123517
u
18
+ ···
2050088
123517
u
1463308
123517
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
6u
19
+ ··· 60u + 13
c
2
, c
11
u
20
+ u
19
+ ··· 2u + 1
c
3
, c
8
u
20
+ u
19
+ ··· + 14u + 4
c
4
u
20
+ 6u
19
+ ··· + 60u + 13
c
5
u
20
+ u
19
+ ··· + 16u + 4
c
6
u
20
+ 8u
19
+ ··· + u + 1
c
7
, c
12
u
20
+ u
19
+ ··· u + 1
c
9
, c
10
u
20
8u
19
+ ··· u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
+ 16y
19
+ ··· + 898y + 169
c
2
, c
11
y
20
7y
19
+ ··· + 14y + 1
c
3
, c
8
y
20
+ 9y
19
+ ··· 140y + 16
c
5
y
20
+ 17y
19
+ ··· + 24y + 16
c
6
, c
9
, c
10
y
20
+ 12y
19
+ ··· + 17y + 1
c
7
, c
12
y
20
5y
19
+ ··· 11y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.259172 + 0.789945I
a = 0.453090 1.212650I
b = 0.649863 0.751845I
0.42253 4.22906I 5.35058 + 7.44660I
u = 0.259172 0.789945I
a = 0.453090 + 1.212650I
b = 0.649863 + 0.751845I
0.42253 + 4.22906I 5.35058 7.44660I
u = 0.895921 + 0.782105I
a = 0.130078 1.052420I
b = 1.43054 0.71304I
3.95309 4.42208I 0.03830 + 2.60323I
u = 0.895921 0.782105I
a = 0.130078 + 1.052420I
b = 1.43054 + 0.71304I
3.95309 + 4.42208I 0.03830 2.60323I
u = 0.006166 + 0.794036I
a = 1.42462 + 0.70783I
b = 0.202350 + 0.972159I
0.21086 + 3.04136I 2.18801 12.60182I
u = 0.006166 0.794036I
a = 1.42462 0.70783I
b = 0.202350 0.972159I
0.21086 3.04136I 2.18801 + 12.60182I
u = 0.861598 + 1.089010I
a = 0.674552 0.746963I
b = 1.272090 0.051603I
3.03798 2.11515I 2.18905 + 2.74412I
u = 0.861598 1.089010I
a = 0.674552 + 0.746963I
b = 1.272090 + 0.051603I
3.03798 + 2.11515I 2.18905 2.74412I
u = 0.03594 + 1.46709I
a = 0.396238 0.317108I
b = 0.121323 0.406539I
7.89022 2.18840I 12.61867 3.03439I
u = 0.03594 1.46709I
a = 0.396238 + 0.317108I
b = 0.121323 + 0.406539I
7.89022 + 2.18840I 12.61867 + 3.03439I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.23438 + 0.88194I
a = 0.580747 + 0.471657I
b = 1.243720 0.010639I
5.17052 1.53215I 3.03837 + 1.45772I
u = 1.23438 0.88194I
a = 0.580747 0.471657I
b = 1.243720 + 0.010639I
5.17052 + 1.53215I 3.03837 1.45772I
u = 1.01176 + 1.13887I
a = 0.434877 + 1.068860I
b = 1.37724 + 0.69674I
4.29670 6.43818I 0.75875 + 3.16318I
u = 1.01176 1.13887I
a = 0.434877 1.068860I
b = 1.37724 0.69674I
4.29670 + 6.43818I 0.75875 3.16318I
u = 0.008780 + 0.407930I
a = 1.72037 + 2.51790I
b = 0.612822 + 0.965409I
3.50293 + 2.03494I 8.02468 3.62963I
u = 0.008780 0.407930I
a = 1.72037 2.51790I
b = 0.612822 0.965409I
3.50293 2.03494I 8.02468 + 3.62963I
u = 0.305216 + 0.259032I
a = 0.09291 3.82400I
b = 0.534986 1.018830I
0.87428 + 7.54309I 2.98032 4.37955I
u = 0.305216 0.259032I
a = 0.09291 + 3.82400I
b = 0.534986 + 1.018830I
0.87428 7.54309I 2.98032 + 4.37955I
u = 0.00905 + 1.65571I
a = 0.008243 + 0.541451I
b = 0.234725 + 0.401012I
5.30604 5.88407I 4.73823 + 11.00994I
u = 0.00905 1.65571I
a = 0.008243 0.541451I
b = 0.234725 0.401012I
5.30604 + 5.88407I 4.73823 11.00994I
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
12
+ 3u
11
+ ··· 2u + 1)
4
)(u
20
6u
19
+ ··· 60u + 13)
· (u
34
15u
33
+ ··· 260u + 16)
c
2
, c
11
(u
20
+ u
19
+ ··· 2u + 1)(u
34
3u
33
+ ··· + u + 1)
· (u
48
3u
47
+ ··· 1764u + 304)
c
3
, c
8
(u
20
+ u
19
+ ··· + 14u + 4)(u
34
+ u
33
+ ··· + 104u + 52)
· (u
48
u
47
+ ··· 10752u + 31744)
c
4
((u
12
+ 3u
11
+ ··· 2u + 1)
4
)(u
20
+ 6u
19
+ ··· + 60u + 13)
· (u
34
15u
33
+ ··· 260u + 16)
c
5
((u
2
+ u + 1)
24
)(u
20
+ u
19
+ ··· + 16u + 4)
· (u
34
24u
33
+ ··· 65536u + 4096)
c
6
((u
12
5u
11
+ ··· + 3u
2
+ 1)
4
)(u
20
+ 8u
19
+ ··· + u + 1)
· (u
34
+ 13u
33
+ ··· + 6u + 4)
c
7
, c
12
(u
20
+ u
19
+ ··· u + 1)(u
34
u
33
+ ··· + 2u + 1)
· (u
48
+ u
47
+ ··· 8u + 4)
c
9
, c
10
((u
12
5u
11
+ ··· + 3u
2
+ 1)
4
)(u
20
8u
19
+ ··· u + 1)
· (u
34
+ 13u
33
+ ··· + 6u + 4)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
12
+ 9y
11
+ ··· 6y + 1)
4
)(y
20
+ 16y
19
+ ··· + 898y + 169)
· (y
34
+ 25y
33
+ ··· + 6608y + 256)
c
2
, c
11
(y
20
7y
19
+ ··· + 14y + 1)(y
34
37y
33
+ ··· 3y + 1)
· (y
48
25y
47
+ ··· 3021104y + 92416)
c
3
, c
8
(y
20
+ 9y
19
+ ··· 140y + 16)(y
34
+ 15y
33
+ ··· + 26832y + 2704)
· (y
48
+ 19y
47
+ ··· 4422631424y + 1007681536)
c
5
((y
2
+ y + 1)
24
)(y
20
+ 17y
19
+ ··· + 24y + 16)
· (y
34
+ 18y
33
+ ··· + 41943040y + 16777216)
c
6
, c
9
, c
10
((y
12
+ y
11
+ ··· + 6y + 1)
4
)(y
20
+ 12y
19
+ ··· + 17y + 1)
· (y
34
+ 13y
33
+ ··· + 4y + 16)
c
7
, c
12
(y
20
5y
19
+ ··· 11y + 1)(y
34
+ 9y
33
+ ··· + 24y + 1)
· (y
48
9y
47
+ ··· + 648y + 16)
23