12n
0762
(K12n
0762
)
A knot diagram
1
Linearized knot diagam
4 6 9 7 12 2 12 3 1 8 6 10
Solving Sequence
2,6
3
7,12
8 9 5 4 1 11 10
c
2
c
6
c
7
c
8
c
5
c
4
c
1
c
11
c
10
c
3
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.39438 × 10
155
u
61
1.83142 × 10
156
u
60
+ ··· + 1.27661 × 10
155
b + 4.88446 × 10
156
,
4.08969 × 10
156
u
61
1.17222 × 10
157
u
60
+ ··· + 1.27661 × 10
155
a + 3.11795 × 10
157
,
u
62
+ 3u
61
+ ··· 18u 1i
I
u
2
= h−4390048992u
27
+ 17294455334u
26
+ ··· + 1052877967b 16499967912,
1778777089u
27
+ 10103913125u
26
+ ··· + 1052877967a 14753500781,
u
28
2u
27
+ ··· 3u 1i
* 2 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.39 × 10
155
u
61
1.83 × 10
156
u
60
+ · · · + 1.28 × 10
155
b + 4.88 ×
10
156
, 4.09 × 10
156
u
61
1.17 × 10
157
u
60
+ · · · + 1.28 × 10
155
a + 3.12 ×
10
157
, u
62
+ 3u
61
+ · · · 18u 1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
12
=
32.0357u
61
+ 91.8228u
60
+ ··· 2497.42u 244.237
5.00889u
61
+ 14.3460u
60
+ ··· 387.238u 38.2613
a
8
=
5.65842u
61
16.2812u
60
+ ··· + 456.306u + 40.1573
3.01761u
61
+ 8.66285u
60
+ ··· 242.152u 24.6253
a
9
=
8.58616u
61
24.6845u
60
+ ··· + 691.623u + 64.0885
3.06626u
61
+ 8.80184u
60
+ ··· 246.062u 25.0051
a
5
=
1.10750u
61
+ 3.21521u
60
+ ··· 87.7707u 3.39247
4.55092u
61
13.0660u
60
+ ··· + 368.535u + 36.7648
a
4
=
1.01763u
61
+ 2.95572u
60
+ ··· 80.9356u 2.69839
4.64079u
61
13.3255u
60
+ ··· + 375.370u + 37.4589
a
1
=
14.0757u
61
+ 40.4062u
60
+ ··· 1167.51u 118.139
3.44249u
61
+ 9.89638u
60
+ ··· 294.292u 28.6685
a
11
=
32.0357u
61
+ 91.8228u
60
+ ··· 2497.42u 244.237
4.46323u
61
+ 12.7861u
60
+ ··· 342.159u 33.9771
a
10
=
18.5714u
61
+ 53.2721u
60
+ ··· 1400.80u 141.560
0.0553237u
61
0.161959u
60
+ ··· + 11.9855u 0.335246
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5.41881u
61
15.7513u
60
+ ··· + 462.106u + 47.0844
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
62
8u
61
+ ··· 14573u 2354
c
2
, c
6
u
62
3u
61
+ ··· + 18u 1
c
3
, c
8
u
62
u
61
+ ··· 1064u + 127
c
4
u
62
7u
61
+ ··· + 2345u 631
c
5
, c
11
u
62
u
61
+ ··· 67775u + 24008
c
7
u
62
+ 3u
61
+ ··· 11203u + 18287
c
9
, c
12
u
62
+ 5u
61
+ ··· + 7u + 1
c
10
u
62
13u
61
+ ··· + 690763u 71359
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
62
30y
61
+ ··· + 87051763y + 5541316
c
2
, c
6
y
62
+ 59y
61
+ ··· 98y + 1
c
3
, c
8
y
62
57y
61
+ ··· 252240y + 16129
c
4
y
62
95y
61
+ ··· 19707883y + 398161
c
5
, c
11
y
62
99y
61
+ ··· 7503268241y + 576384064
c
7
y
62
89y
61
+ ··· 6246385553y + 334414369
c
9
, c
12
y
62
+ 51y
61
+ ··· 37y + 1
c
10
y
62
81y
61
+ ··· + 2924033206473y + 5092106881
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.333052 + 0.944555I
a = 0.389031 0.384339I
b = 0.154212 0.620844I
0.62353 1.46430I 0
u = 0.333052 0.944555I
a = 0.389031 + 0.384339I
b = 0.154212 + 0.620844I
0.62353 + 1.46430I 0
u = 0.832713 + 0.485235I
a = 0.254095 + 0.534839I
b = 0.07870 + 1.70723I
0.80228 + 3.34364I 0
u = 0.832713 0.485235I
a = 0.254095 0.534839I
b = 0.07870 1.70723I
0.80228 3.34364I 0
u = 0.589027 + 0.853031I
a = 0.727906 + 0.227126I
b = 0.309790 0.219659I
0.90701 2.10996I 0
u = 0.589027 0.853031I
a = 0.727906 0.227126I
b = 0.309790 + 0.219659I
0.90701 + 2.10996I 0
u = 0.183155 + 1.090710I
a = 0.870044 + 0.673371I
b = 0.590651 + 1.128490I
4.41723 3.27563I 0
u = 0.183155 1.090710I
a = 0.870044 0.673371I
b = 0.590651 1.128490I
4.41723 + 3.27563I 0
u = 0.958678 + 0.626520I
a = 0.093398 0.975017I
b = 0.24619 1.53004I
0.14869 2.80498I 0
u = 0.958678 0.626520I
a = 0.093398 + 0.975017I
b = 0.24619 + 1.53004I
0.14869 + 2.80498I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.807646 + 0.092651I
a = 0.386650 + 0.557445I
b = 0.224777 0.223097I
5.34851 2.44220I 0
u = 0.807646 0.092651I
a = 0.386650 0.557445I
b = 0.224777 + 0.223097I
5.34851 + 2.44220I 0
u = 0.770858
a = 1.84196
b = 0.196952
3.55600 0
u = 0.350668 + 1.211440I
a = 0.074129 + 0.331633I
b = 1.006790 + 0.617776I
3.91833 0.86784I 0
u = 0.350668 1.211440I
a = 0.074129 0.331633I
b = 1.006790 0.617776I
3.91833 + 0.86784I 0
u = 0.066377 + 0.729220I
a = 0.474227 0.548295I
b = 0.416502 0.022118I
0.903631 1.036690I 6.98552 + 4.12911I
u = 0.066377 0.729220I
a = 0.474227 + 0.548295I
b = 0.416502 + 0.022118I
0.903631 + 1.036690I 6.98552 4.12911I
u = 0.454755 + 1.195890I
a = 0.313664 + 0.218835I
b = 0.336580 + 0.566077I
4.85375 + 4.25052I 0
u = 0.454755 1.195890I
a = 0.313664 0.218835I
b = 0.336580 0.566077I
4.85375 4.25052I 0
u = 0.698392 + 0.177356I
a = 1.92419 + 0.75830I
b = 0.236377 + 0.216993I
7.74561 + 4.18757I 4.00000 3.79519I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.698392 0.177356I
a = 1.92419 0.75830I
b = 0.236377 0.216993I
7.74561 4.18757I 4.00000 + 3.79519I
u = 0.459690 + 1.195230I
a = 0.548483 + 0.114412I
b = 0.911400 0.215151I
8.60885 + 7.03690I 0
u = 0.459690 1.195230I
a = 0.548483 0.114412I
b = 0.911400 + 0.215151I
8.60885 7.03690I 0
u = 0.435856 + 1.211820I
a = 0.098938 0.576576I
b = 0.278422 1.000790I
9.25216 + 1.84332I 0
u = 0.435856 1.211820I
a = 0.098938 + 0.576576I
b = 0.278422 + 1.000790I
9.25216 1.84332I 0
u = 0.696310
a = 0.539160
b = 0.210110
1.50281 7.64330
u = 0.12810 + 1.44057I
a = 0.39257 + 1.87823I
b = 0.23423 + 2.96746I
15.6787 + 2.6099I 0
u = 0.12810 1.44057I
a = 0.39257 1.87823I
b = 0.23423 2.96746I
15.6787 2.6099I 0
u = 0.28124 + 1.49021I
a = 0.29340 1.43793I
b = 0.35314 2.63889I
12.38030 0.46591I 0
u = 0.28124 1.49021I
a = 0.29340 + 1.43793I
b = 0.35314 + 2.63889I
12.38030 + 0.46591I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.14213 + 1.52049I
a = 0.27464 1.43449I
b = 0.01746 2.61143I
12.42090 + 1.93692I 0
u = 0.14213 1.52049I
a = 0.27464 + 1.43449I
b = 0.01746 + 2.61143I
12.42090 1.93692I 0
u = 0.26991 + 1.53473I
a = 0.180066 + 1.299350I
b = 0.17141 + 2.61130I
9.12418 + 3.84227I 0
u = 0.26991 1.53473I
a = 0.180066 1.299350I
b = 0.17141 2.61130I
9.12418 3.84227I 0
u = 0.08283 + 1.56880I
a = 1.068300 0.728241I
b = 0.589996 1.278450I
9.51760 + 5.08658I 0
u = 0.08283 1.56880I
a = 1.068300 + 0.728241I
b = 0.589996 + 1.278450I
9.51760 5.08658I 0
u = 0.27775 + 1.56012I
a = 0.132678 1.236370I
b = 0.09558 2.68981I
13.8317 + 7.8929I 0
u = 0.27775 1.56012I
a = 0.132678 + 1.236370I
b = 0.09558 + 2.68981I
13.8317 7.8929I 0
u = 0.15046 + 1.60424I
a = 0.160295 + 1.146520I
b = 0.31811 + 2.51871I
17.6021 + 1.1585I 0
u = 0.15046 1.60424I
a = 0.160295 1.146520I
b = 0.31811 2.51871I
17.6021 1.1585I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341402 + 0.171738I
a = 4.13096 1.61392I
b = 0.675184 0.592840I
11.05090 0.90973I 10.78531 1.39456I
u = 0.341402 0.171738I
a = 4.13096 + 1.61392I
b = 0.675184 + 0.592840I
11.05090 + 0.90973I 10.78531 + 1.39456I
u = 0.03842 + 1.63568I
a = 0.527691 0.462807I
b = 0.451791 1.092900I
10.48550 5.71222I 0
u = 0.03842 1.63568I
a = 0.527691 + 0.462807I
b = 0.451791 + 1.092900I
10.48550 + 5.71222I 0
u = 0.359374
a = 4.34971
b = 0.676883
6.85123 16.8270
u = 1.63565 + 0.23135I
a = 1.293770 0.085038I
b = 0.0375020 + 0.0652272I
14.1359 7.0273I 0
u = 1.63565 0.23135I
a = 1.293770 + 0.085038I
b = 0.0375020 0.0652272I
14.1359 + 7.0273I 0
u = 0.02899 + 1.68061I
a = 0.815326 + 0.498354I
b = 0.070018 + 1.005780I
5.54238 0.38545I 0
u = 0.02899 1.68061I
a = 0.815326 0.498354I
b = 0.070018 1.005780I
5.54238 + 0.38545I 0
u = 0.280510 + 0.151518I
a = 0.50395 2.20616I
b = 0.683528 0.071725I
0.97360 1.69901I 2.82413 + 3.98750I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.280510 0.151518I
a = 0.50395 + 2.20616I
b = 0.683528 + 0.071725I
0.97360 + 1.69901I 2.82413 3.98750I
u = 0.63741 + 1.66286I
a = 0.172192 + 1.286190I
b = 0.29163 + 2.50361I
19.3723 14.9543I 0
u = 0.63741 1.66286I
a = 0.172192 1.286190I
b = 0.29163 2.50361I
19.3723 + 14.9543I 0
u = 1.82775
a = 1.25873
b = 0.0527036
9.14724 0
u = 0.1296520 + 0.0012514I
a = 0.05922 4.98520I
b = 1.113010 0.819545I
1.23431 1.93321I 3.80958 + 0.69705I
u = 0.1296520 0.0012514I
a = 0.05922 + 4.98520I
b = 1.113010 + 0.819545I
1.23431 + 1.93321I 3.80958 0.69705I
u = 0.0707850 + 0.0951134I
a = 3.35295 + 6.50987I
b = 1.65303 + 0.74429I
3.99047 6.24706I 0.93942 + 7.90678I
u = 0.0707850 0.0951134I
a = 3.35295 6.50987I
b = 1.65303 0.74429I
3.99047 + 6.24706I 0.93942 7.90678I
u = 0.70822 + 1.75594I
a = 0.122804 1.218420I
b = 0.26978 2.37851I
14.8352 9.0166I 0
u = 0.70822 1.75594I
a = 0.122804 + 1.218420I
b = 0.26978 + 2.37851I
14.8352 + 9.0166I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.89562 + 1.71883I
a = 0.131696 + 1.125940I
b = 0.34909 + 2.24166I
18.4977 2.0999I 0
u = 0.89562 1.71883I
a = 0.131696 1.125940I
b = 0.34909 2.24166I
18.4977 + 2.0999I 0
11
II.
I
u
2
= h−4.39×10
9
u
27
+1.73×10
10
u
26
+· · ·+1.05×10
9
b1.65×10
10
, 1.78×
10
9
u
27
+1.01×10
10
u
26
+· · ·+1.05×10
9
a1.48×10
10
, u
28
2u
27
+· · ·3u1i
(i) Arc colorings
a
2
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
a
12
=
1.68944u
27
9.59647u
26
+ ··· + 24.1792u + 14.0125
4.16957u
27
16.4259u
26
+ ··· + 32.1745u + 15.6713
a
8
=
2.24104u
27
+ 7.12886u
26
+ ··· 3.77423u 5.73930
2.94974u
27
7.15613u
26
+ ··· 15.1617u 2.88782
a
9
=
4.88782u
27
+ 13.7254u
26
+ ··· + 5.68818u 5.49827
2.90344u
27
6.26923u
26
+ ··· 16.4238u 4.19078
a
5
=
0.706864u
27
+ 0.0240004u
26
+ ··· + 5.39279u + 5.52854
2.94790u
27
+ 7.15286u
26
+ ··· + 1.61856u 0.210764
a
4
=
1.00982u
27
+ 0.583605u
26
+ ··· + 11.0921u + 8.17533
3.25085u
27
+ 7.71247u
26
+ ··· + 7.31789u + 2.43602
a
1
=
0.0543874u
27
+ 4.91254u
26
+ ··· 27.6210u 16.4249
0.355447u
27
3.74364u
26
+ ··· + 2.08328u 0.417512
a
11
=
1.68944u
27
9.59647u
26
+ ··· + 24.1792u + 14.0125
2.50358u
27
14.8480u
26
+ ··· + 49.1378u + 21.8889
a
10
=
6.69021u
27
18.1519u
26
+ ··· 16.4160u 3.40215
0.584244u
27
13.8628u
26
+ ··· + 64.1728u + 26.2558
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2679606931
1052877967
u
27
15977495031
1052877967
u
26
+ ···+
130752365383
1052877967
u +
40877254048
1052877967
12
(iv) u-Polynomials at the component
13
Crossings u-Polynomials at each crossing
c
1
u
28
3u
27
+ ··· 23u 1
c
2
u
28
2u
27
+ ··· 3u 1
c
3
u
28
11u
26
+ ··· 3u + 9
c
4
u
28
12u
27
+ ··· 334u + 61
c
5
u
28
12u
26
+ ··· 15u 9
c
6
u
28
+ 2u
27
+ ··· + 3u 1
c
7
u
28
+ 2u
27
+ ··· 2u 1
c
8
u
28
11u
26
+ ··· + 3u + 9
c
9
u
28
+ 6u
27
+ ··· + 40u + 7
c
10
u
28
2u
27
+ ··· 22u 1
c
11
u
28
12u
26
+ ··· + 15u 9
c
12
u
28
6u
27
+ ··· 40u + 7
14
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
3y
27
+ ··· 785y + 1
c
2
, c
6
y
28
+ 18y
27
+ ··· + 13y + 1
c
3
, c
8
y
28
22y
27
+ ··· 1017y + 81
c
4
y
28
36y
27
+ ··· + 37772y + 3721
c
5
, c
11
y
28
24y
27
+ ··· + 1143y + 81
c
7
y
28
18y
27
+ ··· + 10y + 1
c
9
, c
12
y
28
+ 22y
27
+ ··· + 206y + 49
c
10
y
28
22y
27
+ ··· 84y + 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.828405 + 0.452191I
a = 0.028306 0.670431I
b = 0.05021 1.69084I
1.19357 3.29942I 7.01162 + 4.13444I
u = 0.828405 0.452191I
a = 0.028306 + 0.670431I
b = 0.05021 + 1.69084I
1.19357 + 3.29942I 7.01162 4.13444I
u = 0.244046 + 1.060440I
a = 0.504268 + 0.829036I
b = 0.360086 + 1.027120I
3.07097 2.47420I 8.69591 + 2.72420I
u = 0.244046 1.060440I
a = 0.504268 0.829036I
b = 0.360086 1.027120I
3.07097 + 2.47420I 8.69591 2.72420I
u = 0.440560 + 0.777431I
a = 0.85713 + 1.51445I
b = 0.300793 + 0.409666I
11.55490 + 2.10708I 14.0670 3.9463I
u = 0.440560 0.777431I
a = 0.85713 1.51445I
b = 0.300793 0.409666I
11.55490 2.10708I 14.0670 + 3.9463I
u = 0.181263 + 0.870571I
a = 0.625474 0.654885I
b = 1.36669 0.40888I
2.30932 + 0.72869I 9.84041 0.97767I
u = 0.181263 0.870571I
a = 0.625474 + 0.654885I
b = 1.36669 + 0.40888I
2.30932 0.72869I 9.84041 + 0.97767I
u = 0.868921
a = 2.03119
b = 0.370017
6.20668 3.53400
u = 0.464589 + 1.065340I
a = 0.498147 0.250055I
b = 0.298592 0.642842I
0.928502 0.756039I 7.92403 2.74336I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.464589 1.065340I
a = 0.498147 + 0.250055I
b = 0.298592 + 0.642842I
0.928502 + 0.756039I 7.92403 + 2.74336I
u = 0.193282 + 0.717392I
a = 0.726013 0.070993I
b = 1.250320 0.616788I
0.70335 2.38577I 5.36948 + 6.65379I
u = 0.193282 0.717392I
a = 0.726013 + 0.070993I
b = 1.250320 + 0.616788I
0.70335 + 2.38577I 5.36948 6.65379I
u = 0.311418 + 1.272500I
a = 0.759828 0.331562I
b = 0.314202 + 0.008550I
7.48839 + 7.54015I 7.59672 6.45984I
u = 0.311418 1.272500I
a = 0.759828 + 0.331562I
b = 0.314202 0.008550I
7.48839 7.54015I 7.59672 + 6.45984I
u = 0.003913 + 0.661555I
a = 1.182080 + 0.471507I
b = 1.88693 + 1.20938I
4.54720 6.17336I 15.2173 + 5.6644I
u = 0.003913 0.661555I
a = 1.182080 0.471507I
b = 1.88693 1.20938I
4.54720 + 6.17336I 15.2173 5.6644I
u = 1.325390 + 0.413589I
a = 0.144604 + 0.859044I
b = 0.27440 + 1.56013I
0.99658 + 3.41956I 11.11044 4.64179I
u = 1.325390 0.413589I
a = 0.144604 0.859044I
b = 0.27440 1.56013I
0.99658 3.41956I 11.11044 + 4.64179I
u = 0.258149 + 0.502688I
a = 0.38944 2.12090I
b = 0.930879 + 0.071120I
8.76882 4.01982I 13.72838 + 2.52464I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.258149 0.502688I
a = 0.38944 + 2.12090I
b = 0.930879 0.071120I
8.76882 + 4.01982I 13.72838 2.52464I
u = 0.56341 + 1.32038I
a = 0.654369 0.176621I
b = 0.154007 0.126542I
4.61292 + 3.39320I 8.40856 + 0.I
u = 0.56341 1.32038I
a = 0.654369 + 0.176621I
b = 0.154007 + 0.126542I
4.61292 3.39320I 8.40856 + 0.I
u = 0.27803 + 1.44237I
a = 0.07083 1.57790I
b = 0.21421 2.70805I
14.3357 + 1.1241I 11.79638 + 0.I
u = 0.27803 1.44237I
a = 0.07083 + 1.57790I
b = 0.21421 + 2.70805I
14.3357 1.1241I 11.79638 + 0.I
u = 0.471793
a = 2.53420
b = 0.699654
4.37150 10.4710
u = 0.04846 + 1.54491I
a = 0.34412 + 1.45356I
b = 0.14671 + 2.63714I
13.66150 + 2.95733I 11.75419 3.36100I
u = 0.04846 1.54491I
a = 0.34412 1.45356I
b = 0.14671 2.63714I
13.66150 2.95733I 11.75419 + 3.36100I
19
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
28
3u
27
+ ··· 23u 1)(u
62
8u
61
+ ··· 14573u 2354)
c
2
(u
28
2u
27
+ ··· 3u 1)(u
62
3u
61
+ ··· + 18u 1)
c
3
(u
28
11u
26
+ ··· 3u + 9)(u
62
u
61
+ ··· 1064u + 127)
c
4
(u
28
12u
27
+ ··· 334u + 61)(u
62
7u
61
+ ··· + 2345u 631)
c
5
(u
28
12u
26
+ ··· 15u 9)(u
62
u
61
+ ··· 67775u + 24008)
c
6
(u
28
+ 2u
27
+ ··· + 3u 1)(u
62
3u
61
+ ··· + 18u 1)
c
7
(u
28
+ 2u
27
+ ··· 2u 1)(u
62
+ 3u
61
+ ··· 11203u + 18287)
c
8
(u
28
11u
26
+ ··· + 3u + 9)(u
62
u
61
+ ··· 1064u + 127)
c
9
(u
28
+ 6u
27
+ ··· + 40u + 7)(u
62
+ 5u
61
+ ··· + 7u + 1)
c
10
(u
28
2u
27
+ ··· 22u 1)(u
62
13u
61
+ ··· + 690763u 71359)
c
11
(u
28
12u
26
+ ··· + 15u 9)(u
62
u
61
+ ··· 67775u + 24008)
c
12
(u
28
6u
27
+ ··· 40u + 7)(u
62
+ 5u
61
+ ··· + 7u + 1)
20
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
28
3y
27
+ ··· 785y + 1)
· (y
62
30y
61
+ ··· + 87051763y + 5541316)
c
2
, c
6
(y
28
+ 18y
27
+ ··· + 13y + 1)(y
62
+ 59y
61
+ ··· 98y + 1)
c
3
, c
8
(y
28
22y
27
+ ··· 1017y + 81)
· (y
62
57y
61
+ ··· 252240y + 16129)
c
4
(y
28
36y
27
+ ··· + 37772y + 3721)
· (y
62
95y
61
+ ··· 19707883y + 398161)
c
5
, c
11
(y
28
24y
27
+ ··· + 1143y + 81)
· (y
62
99y
61
+ ··· 7503268241y + 576384064)
c
7
(y
28
18y
27
+ ··· + 10y + 1)
· (y
62
89y
61
+ ··· 6246385553y + 334414369)
c
9
, c
12
(y
28
+ 22y
27
+ ··· + 206y + 49)(y
62
+ 51y
61
+ ··· 37y + 1)
c
10
(y
28
22y
27
+ ··· 84y + 1)
· (y
62
81y
61
+ ··· + 2924033206473y + 5092106881)
21