12n
0764
(K12n
0764
)
A knot diagram
1
Linearized knot diagam
4 7 10 8 12 3 11 1 4 5 7 10
Solving Sequence
7,11
8
5,12
4 10 1 2 3 6 9
c
7
c
11
c
4
c
10
c
12
c
1
c
3
c
6
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−521239u
17
378608u
16
+ ··· + 1930047b + 369959,
4207072u
17
369959u
16
+ ··· + 1930047a + 27427427, u
18
+ 9u
16
+ ··· 7u + 1i
I
u
2
= hu
2
+ b, u
6
u
5
+ 2u
4
4u
3
+ u
2
+ a 2u + 2, u
7
u
6
+ 2u
5
4u
4
+ u
3
2u
2
+ u + 1i
I
u
3
= h−47u
11
232u
10
+ ··· + 125b 849, 3669u
11
+ 13414u
10
+ ··· + 14875a + 13098,
u
12
+ 2u
11
+ 8u
10
+ 12u
9
+ 29u
8
+ 33u
7
+ 54u
6
+ 51u
5
+ 54u
4
+ 43u
3
+ 28u
2
+ 15u + 7i
I
u
4
= h−2931u
11
+ 6882u
10
+ ··· + 36253b 67921, 20673u
11
60690u
10
+ ··· + 471289a 219170,
u
12
2u
11
2u
10
+ 4u
9
+ 11u
8
u
7
6u
6
7u
5
14u
4
19u
3
+ 10u
2
+ 25u + 13i
* 4 irreducible components of dim
C
= 0, with total 49 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−5.21 × 10
5
u
17
3.79 × 10
5
u
16
+ · · · + 1.93 × 10
6
b + 3.70 × 10
5
, 4.21 ×
10
6
u
17
3.70×10
5
u
16
+· · · +1.93×10
6
a+2.74×10
7
, u
18
+9u
16
+· · · 7u +1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
5
=
2.17978u
17
+ 0.191684u
16
+ ··· + 26.2071u 14.2108
0.270065u
17
+ 0.196165u
16
+ ··· 1.83799u 0.191684
a
12
=
u
u
a
4
=
2.17978u
17
+ 0.191684u
16
+ ··· + 25.2071u 14.2108
0.270065u
17
+ 0.196165u
16
+ ··· 1.83799u 0.191684
a
10
=
2.64153u
17
0.657915u
16
+ ··· 25.4168u + 18.5822
0.576170u
17
0.104194u
16
+ ··· 0.125886u + 0.849598
a
1
=
7.90979u
17
+ 1.38868u
16
+ ··· + 54.3071u 42.6181
0.275909u
17
+ 0.141446u
16
+ ··· + 7.93863u 3.32710
a
2
=
2.85131u
17
+ 0.717915u
16
+ ··· + 18.8121u 16.5368
0.0775567u
17
0.0705465u
16
+ ··· + 6.12764u 1.93842
a
3
=
2.77375u
17
0.788461u
16
+ ··· 12.6845u + 14.5983
0.0775567u
17
+ 0.0705465u
16
+ ··· 6.12764u + 1.93842
a
6
=
2.06984u
17
+ 0.123529u
16
+ ··· + 25.9420u 13.8229
0.380005u
17
+ 0.264320u
16
+ ··· 1.57289u 0.579533
a
9
=
5.96916u
17
1.48818u
16
+ ··· 52.2245u + 38.4019
0.707998u
17
0.0464724u
16
+ ··· 2.87520u + 2.06771
(ii) Obstruction class = 1
(iii) Cusp Shapes =
464573
91907
u
17
454121
643349
u
16
+ ···
30228500
643349
u +
10577045
643349
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
+ u
17
+ ··· + 10u + 7
c
2
, c
6
, c
8
u
18
+ u
17
+ ··· 3u 1
c
3
, c
5
, c
9
u
18
16u
16
+ ··· 20u 11
c
4
, c
7
, c
11
u
18
+ 9u
16
+ ··· + 7u + 1
c
10
u
18
+ 7u
17
+ ··· 57u 7
c
12
u
18
4u
17
+ ··· + 24u + 117
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
29y
17
+ ··· 1724y + 49
c
2
, c
6
, c
8
y
18
15y
17
+ ··· 3y + 1
c
3
, c
5
, c
9
y
18
32y
17
+ ··· 1060y + 121
c
4
, c
7
, c
11
y
18
+ 18y
17
+ ··· 31y + 1
c
10
y
18
+ y
17
+ ··· 337y + 49
c
12
y
18
38y
17
+ ··· 200412y + 13689
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.017806 + 1.047910I
a = 0.678997 0.386228I
b = 0.748794 0.598570I
0.15119 + 2.09745I 12.63201 4.12977I
u = 0.017806 1.047910I
a = 0.678997 + 0.386228I
b = 0.748794 + 0.598570I
0.15119 2.09745I 12.63201 + 4.12977I
u = 0.346086 + 0.994636I
a = 0.819378 + 0.554280I
b = 1.44016 0.91249I
5.46595 1.70319I 1.84461 + 1.40793I
u = 0.346086 0.994636I
a = 0.819378 0.554280I
b = 1.44016 + 0.91249I
5.46595 + 1.70319I 1.84461 1.40793I
u = 0.442971 + 1.297020I
a = 0.306761 0.349541I
b = 0.497178 0.425094I
0.12898 + 2.98542I 11.42448 1.55661I
u = 0.442971 1.297020I
a = 0.306761 + 0.349541I
b = 0.497178 + 0.425094I
0.12898 2.98542I 11.42448 + 1.55661I
u = 0.680846 + 1.209390I
a = 0.815864 0.142059I
b = 1.262000 + 0.276114I
0.03662 6.82707I 12.5292 + 8.6563I
u = 0.680846 1.209390I
a = 0.815864 + 0.142059I
b = 1.262000 0.276114I
0.03662 + 6.82707I 12.5292 8.6563I
u = 0.76192 + 1.23703I
a = 0.045171 1.091190I
b = 1.337910 0.285858I
13.04820 + 4.46526I 11.23742 2.32071I
u = 0.76192 1.23703I
a = 0.045171 + 1.091190I
b = 1.337910 + 0.285858I
13.04820 4.46526I 11.23742 + 2.32071I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.24569 + 1.44514I
a = 1.051510 0.623676I
b = 1.93533 + 0.56642I
8.63765 + 4.81272I 14.8469 + 6.2266I
u = 0.24569 1.44514I
a = 1.051510 + 0.623676I
b = 1.93533 0.56642I
8.63765 4.81272I 14.8469 6.2266I
u = 0.172111 + 0.488659I
a = 1.21271 + 2.12963I
b = 0.783985 0.730119I
2.63033 2.95805I 12.64066 + 3.45085I
u = 0.172111 0.488659I
a = 1.21271 2.12963I
b = 0.783985 + 0.730119I
2.63033 + 2.95805I 12.64066 3.45085I
u = 0.292901
a = 1.34245
b = 0.177730
0.535468 18.6140
u = 0.178761
a = 8.26850
b = 0.442984
7.55325 4.27620
u = 1.03430 + 1.57774I
a = 0.813344 0.058598I
b = 1.99758 + 1.15997I
11.6616 12.5169I 11.17612 + 5.12731I
u = 1.03430 1.57774I
a = 0.813344 + 0.058598I
b = 1.99758 1.15997I
11.6616 + 12.5169I 11.17612 5.12731I
6
II. I
u
2
=
hu
2
+b, u
6
u
5
+2u
4
4u
3
+u
2
+a2u+2, u
7
u
6
+2u
5
4u
4
+u
3
2u
2
+u+1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
5
=
u
6
+ u
5
2u
4
+ 4u
3
u
2
+ 2u 2
u
2
a
12
=
u
u
a
4
=
u
6
+ u
5
2u
4
+ 4u
3
u
2
+ u 2
u
3
u
2
a
10
=
u
6
+ u
5
2u
4
+ 4u
3
u
2
+ 3u 3
u
3
u
2
+ u
a
1
=
u
6
2u
5
+ 5u
4
9u
3
+ 8u
2
10u + 5
u
6
2u
5
+ u
4
4u
3
+ u
2
+ u + 1
a
2
=
u
6
u
5
+ 3u
4
5u
3
+ 3u
2
5u + 2
u
6
u
5
+ 2u
4
3u
3
+ u
2
u
a
3
=
u
4
2u
3
+ 2u
2
4u + 2
u
6
u
5
+ 2u
4
3u
3
+ u
2
u
a
6
=
u
6
+ u
5
u
4
+ 4u
3
+ u 2
u
4
2u
2
+ u
a
9
=
2u
6
+ 2u
5
3u
4
+ 9u
3
2u
2
+ 5u 6
u
6
+ u
5
+ u
4
+ u
3
2u
2
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
6
+ 5u
5
11u
4
+ 28u
3
15u
2
+ 14u 24
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
7
6u
5
u
4
+ 9u
3
+ u
2
4u + 1
c
2
, c
8
u
7
+ 2u
6
u
5
+ 2u
4
+ u
3
2u
2
u 1
c
3
, c
5
u
7
+ u
6
5u
5
+ 5u
4
9u
3
+ 7u
2
1
c
4
, c
7
u
7
u
6
+ 2u
5
4u
4
+ u
3
2u
2
+ u + 1
c
6
u
7
2u
6
u
5
2u
4
+ u
3
+ 2u
2
u + 1
c
9
u
7
u
6
5u
5
5u
4
9u
3
7u
2
+ 1
c
10
u
7
+ 6u
6
+ 17u
5
+ 26u
4
+ 20u
3
+ 3u
2
5u 1
c
11
u
7
+ u
6
+ 2u
5
+ 4u
4
+ u
3
+ 2u
2
+ u 1
c
12
u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 18u
3
+ 5u
2
+ 10u + 7
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
7
12y
6
+ 54y
5
117y
4
+ 131y
3
71y
2
+ 14y 1
c
2
, c
6
, c
8
y
7
6y
6
5y
5
+ 15y
3
2y
2
3y 1
c
3
, c
5
, c
9
y
7
11y
6
3y
5
+ 51y
4
+ 13y
3
39y
2
+ 14y 1
c
4
, c
7
, c
11
y
7
+ 3y
6
2y
5
14y
4
9y
3
+ 6y
2
+ 5y 1
c
10
y
7
2y
6
+ 17y
5
42y
4
+ 86y
3
157y
2
+ 31y 1
c
12
y
7
13y
6
+ 2y
5
+ 137y
4
+ 304y
3
+ 237y
2
+ 30y 49
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.180603 + 0.994309I
a = 1.17684 0.97360I
b = 0.956033 + 0.359151I
3.86399 + 3.81570I 7.59315 5.07181I
u = 0.180603 0.994309I
a = 1.17684 + 0.97360I
b = 0.956033 0.359151I
3.86399 3.81570I 7.59315 + 5.07181I
u = 0.799230
a = 0.251205
b = 0.638768
3.11260 12.2590
u = 1.42119
a = 0.296362
b = 2.01977
14.5025 11.1100
u = 0.22015 + 1.41755I
a = 1.106980 0.688829I
b = 1.96097 + 0.62416I
8.82336 + 5.00709I 6.2703 15.1192I
u = 0.22015 1.41755I
a = 1.106980 + 0.688829I
b = 1.96097 0.62416I
8.82336 5.00709I 6.2703 + 15.1192I
u = 0.418901
a = 3.38720
b = 0.175478
7.75956 34.9850
10
III. I
u
3
= h−47u
11
232u
10
+ · · · + 125b 849, 3669u
11
+ 13414u
10
+ · · · +
14875a + 13098, u
12
+ 2u
11
+ · · · + 15u + 7i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
5
=
0.246655u
11
0.901782u
10
+ ··· 4.03341u 0.880538
0.376000u
11
+ 1.85600u
10
+ ··· + 17.0880u + 6.79200
a
12
=
u
u
a
4
=
0.154420u
11
0.00719328u
10
+ ··· + 5.20094u + 3.05217
0.287059u
11
+ 0.957647u
10
+ ··· + 5.79059u + 1.82118
a
10
=
0.389513u
11
+ 1.18750u
10
+ ··· + 8.03341u + 3.02339
0.301647u
11
0.798118u
10
+ ··· 5.36847u 3.08094
a
1
=
0.154420u
11
+ 0.00719328u
10
+ ··· 5.20094u 3.05217
0.187294u
11
0.500235u
10
+ ··· 2.12894u + 0.310118
a
2
=
0.0135126u
11
+ 0.331496u
10
+ ··· + 5.94541u + 2.23139
0.362824u
11
+ 0.871059u
10
+ ··· + 4.34024u + 0.944471
a
3
=
0.349311u
11
0.539563u
10
+ ··· + 1.60518u + 1.28692
0.362824u
11
+ 0.871059u
10
+ ··· + 4.34024u + 0.944471
a
6
=
0.346420u
11
0.359193u
10
+ ··· + 7.30494u + 3.98817
0.475765u
11
+ 1.31341u
10
+ ··· + 5.74965u + 1.92329
a
9
=
0.778958u
11
+ 1.90568u
10
+ ··· + 5.02729u + 1.17002
0.515765u
11
1.55341u
10
+ ··· 5.26965u 1.60329
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3466
2125
u
11
+
5146
2125
u
10
+
20662
2125
u
9
+
4013
425
u
8
+
54149
2125
u
7
+
27374
2125
u
6
+
10937
425
u
5
+
7631
2125
u
4
+
2288
2125
u
3
3202
425
u
2
16867
2125
u
37678
2125
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
3u
2
+ 2u + 1)
4
c
2
, c
8
u
12
u
11
u
10
+ u
9
u
8
+ 2u
7
+ u
6
9u
5
+ 15u
4
13u
3
+ 9u
2
4u + 1
c
3
, c
5
u
12
+ 4u
11
+ ··· + 2u + 1
c
4
, c
7
u
12
+ 2u
11
+ ··· + 15u + 7
c
6
u
12
+ u
11
u
10
u
9
u
8
2u
7
+ u
6
+ 9u
5
+ 15u
4
+ 13u
3
+ 9u
2
+ 4u + 1
c
9
u
12
4u
11
+ ··· 2u + 1
c
10
(u
2
u + 1)
6
c
11
u
12
2u
11
+ ··· 15u + 7
c
12
u
12
4u
11
+ ··· + 21u + 7
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
5y
2
+ 10y 1)
4
c
2
, c
6
, c
8
y
12
3y
11
+ ··· + 2y + 1
c
3
, c
5
, c
9
y
12
2y
11
+ ··· + 26y + 1
c
4
, c
7
, c
11
y
12
+ 12y
11
+ ··· + 167y + 49
c
10
(y
2
+ y + 1)
6
c
12
y
12
+ 4y
11
+ ··· + 105y + 49
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.180135 + 0.927755I
a = 0.798712 + 0.694015I
b = 1.29718 + 1.09845I
0.265740 0.798239I 10.21508 2.15696I
u = 0.180135 0.927755I
a = 0.798712 0.694015I
b = 1.29718 1.09845I
0.265740 + 0.798239I 10.21508 + 2.15696I
u = 0.206453 + 1.188860I
a = 0.636230 + 0.531056I
b = 1.80380 0.74655I
4.40332 2.02988I 10.56984 + 3.46410I
u = 0.206453 1.188860I
a = 0.636230 0.531056I
b = 1.80380 + 0.74655I
4.40332 + 2.02988I 10.56984 3.46410I
u = 0.300960 + 1.170050I
a = 0.797324 + 0.222244I
b = 1.87013 + 0.59068I
0.26574 4.85801I 10.21508 + 4.77124I
u = 0.300960 1.170050I
a = 0.797324 0.222244I
b = 1.87013 0.59068I
0.26574 + 4.85801I 10.21508 4.77124I
u = 0.670986 + 0.330909I
a = 0.087396 + 1.333780I
b = 0.828521 0.773223I
4.40332 2.02988I 10.56984 + 3.46410I
u = 0.670986 0.330909I
a = 0.087396 1.333780I
b = 0.828521 + 0.773223I
4.40332 + 2.02988I 10.56984 3.46410I
u = 0.40365 + 1.40633I
a = 0.663216 + 0.165175I
b = 0.835953 0.124983I
0.265740 + 0.798239I 10.21508 + 2.15696I
u = 0.40365 1.40633I
a = 0.663216 0.165175I
b = 0.835953 + 0.124983I
0.265740 0.798239I 10.21508 2.15696I
14
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00731 + 1.43634I
a = 0.567805 0.050096I
b = 1.041220 0.420474I
0.26574 + 4.85801I 10.21508 4.77124I
u = 1.00731 1.43634I
a = 0.567805 + 0.050096I
b = 1.041220 + 0.420474I
0.26574 4.85801I 10.21508 + 4.77124I
15
IV. I
u
4
= h−2931u
11
+ 6882u
10
+ · · · + 36253b 67921, 20673u
11
60690u
10
+ · · · + 471289a 219170, u
12
2u
11
+ · · · + 25u + 13i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
8
=
1
u
2
a
5
=
0.0438648u
11
+ 0.128774u
10
+ ··· 0.996698u + 0.465044
0.0808485u
11
0.189833u
10
+ ··· + 2.60001u + 1.87353
a
12
=
u
u
a
4
=
0.0941100u
11
0.160829u
10
+ ··· + 2.05919u + 2.87215
0.0281356u
11
+ 0.0393623u
10
+ ··· + 1.14768u + 2.05103
a
10
=
0.120788u
11
0.282621u
10
+ ··· + 1.76593u + 1.45803
0.0273908u
11
0.164621u
10
+ ··· + 0.519405u 1.22343
a
1
=
0.0941100u
11
+ 0.160829u
10
+ ··· 2.05919u 2.87215
0.0324939u
11
+ 0.0685461u
10
+ ··· + 0.472016u 0.826442
a
2
=
0.133483u
11
+ 0.361165u
10
+ ··· 2.47857u 2.33702
0.190081u
11
+ 0.415166u
10
+ ··· 2.22379u 2.79433
a
3
=
0.0565980u
11
+ 0.0540008u
10
+ ··· + 0.254780u 0.457318
0.190081u
11
0.415166u
10
+ ··· + 2.22379u + 2.79433
a
6
=
0.108895u
11
0.270117u
10
+ ··· 0.193179u + 0.632864
0.0719113u
11
+ 0.209059u
10
+ ··· + 1.79649u + 1.70571
a
9
=
0.177965u
11
0.558920u
10
+ ··· + 2.12679u + 1.81136
0.514054u
11
1.53965u
10
+ ··· + 9.23946u + 4.75588
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3530
36253
u
11
+
19484
36253
u
10
23246
36253
u
9
11803
36253
u
8
17415
36253
u
7
+
113796
36253
u
6
+
5597
36253
u
5
+
68101
36253
u
4
58140
36253
u
3
1074
36253
u
2
209035
36253
u
58638
5179
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
2u + 1)
4
c
2
, c
6
, c
8
u
12
+ u
11
+ ··· 308u + 91
c
3
, c
5
, c
9
u
12
+ 4u
11
+ ··· + 315u
2
+ 189
c
4
, c
7
, c
11
u
12
+ 2u
11
+ ··· 25u + 13
c
10
(u
2
u + 1)
6
c
12
u
12
18u
10
+ ··· 525u + 127
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
3
5y
2
+ 6y 1)
4
c
2
, c
6
, c
8
y
12
31y
11
+ ··· 27342y + 8281
c
3
, c
5
, c
9
y
12
38y
11
+ ··· + 119070y + 35721
c
4
, c
7
, c
11
y
12
8y
11
+ ··· 365y + 169
c
10
(y
2
+ y + 1)
6
c
12
y
12
36y
11
+ ··· 25943y + 16129
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.935871 + 0.612228I
a = 0.798080 0.403281I
b = 1.27562 0.98498I
3.05488 + 2.02988I 11.80194 3.46410I
u = 0.935871 0.612228I
a = 0.798080 + 0.403281I
b = 1.27562 + 0.98498I
3.05488 2.02988I 11.80194 + 3.46410I
u = 0.267965 + 1.122990I
a = 0.830154 + 0.247151I
b = 1.50749 0.36507I
2.58490 2.02988I 8.75302 + 3.46410I
u = 0.267965 1.122990I
a = 0.830154 0.247151I
b = 1.50749 + 0.36507I
2.58490 + 2.02988I 8.75302 3.46410I
u = 0.668934 + 0.428490I
a = 1.118010 0.578487I
b = 0.304581 + 0.329429I
2.58490 + 2.02988I 8.75302 3.46410I
u = 0.668934 0.428490I
a = 1.118010 + 0.578487I
b = 0.304581 0.329429I
2.58490 2.02988I 8.75302 + 3.46410I
u = 1.213350 + 0.131620I
a = 0.483814 0.661265I
b = 0.443182 0.504374I
3.05488 2.02988I 11.80194 + 3.46410I
u = 1.213350 0.131620I
a = 0.483814 + 0.661265I
b = 0.443182 + 0.504374I
3.05488 + 2.02988I 11.80194 3.46410I
u = 0.894944 + 0.895021I
a = 0.763167 0.204455I
b = 2.34607 2.27347I
14.3344 + 2.0299I 10.44504 3.46410I
u = 0.894944 0.895021I
a = 0.763167 + 0.204455I
b = 2.34607 + 2.27347I
14.3344 2.0299I 10.44504 + 3.46410I
19
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 2.01843 + 1.05092I
a = 0.019135 + 0.439021I
b = 1.024400 + 0.327533I
14.3344 + 2.0299I 10.44504 3.46410I
u = 2.01843 1.05092I
a = 0.019135 0.439021I
b = 1.024400 0.327533I
14.3344 2.0299I 10.44504 + 3.46410I
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
3u
2
+ 2u + 1)
4
(u
3
u
2
2u + 1)
4
· (u
7
6u
5
u
4
+ 9u
3
+ u
2
4u + 1)(u
18
+ u
17
+ ··· + 10u + 7)
c
2
, c
8
(u
7
+ 2u
6
u
5
+ 2u
4
+ u
3
2u
2
u 1)
· (u
12
u
11
u
10
+ u
9
u
8
+ 2u
7
+ u
6
9u
5
+ 15u
4
13u
3
+ 9u
2
4u + 1)
· (u
12
+ u
11
+ ··· 308u + 91)(u
18
+ u
17
+ ··· 3u 1)
c
3
, c
5
(u
7
+ u
6
+ ··· + 7u
2
1)(u
12
+ 4u
11
+ ··· + 315u
2
+ 189)
· (u
12
+ 4u
11
+ ··· + 2u + 1)(u
18
16u
16
+ ··· 20u 11)
c
4
, c
7
(u
7
u
6
+ ··· + u + 1)(u
12
+ 2u
11
+ ··· 25u + 13)
· (u
12
+ 2u
11
+ ··· + 15u + 7)(u
18
+ 9u
16
+ ··· + 7u + 1)
c
6
(u
7
2u
6
+ ··· u + 1)(u
12
+ u
11
+ ··· 308u + 91)
· (u
12
+ u
11
u
10
u
9
u
8
2u
7
+ u
6
+ 9u
5
+ 15u
4
+ 13u
3
+ 9u
2
+ 4u + 1)
· (u
18
+ u
17
+ ··· 3u 1)
c
9
(u
7
u
6
+ ··· 7u
2
+ 1)(u
12
4u
11
+ ··· 2u + 1)
· (u
12
+ 4u
11
+ ··· + 315u
2
+ 189)(u
18
16u
16
+ ··· 20u 11)
c
10
(u
2
u + 1)
12
(u
7
+ 6u
6
+ 17u
5
+ 26u
4
+ 20u
3
+ 3u
2
5u 1)
· (u
18
+ 7u
17
+ ··· 57u 7)
c
11
(u
7
+ u
6
+ ··· + u 1)(u
12
2u
11
+ ··· 15u + 7)
· (u
12
+ 2u
11
+ ··· 25u + 13)(u
18
+ 9u
16
+ ··· + 7u + 1)
c
12
(u
7
+ 5u
6
+ 6u
5
+ 7u
4
+ 18u
3
+ 5u
2
+ 10u + 7)
· (u
12
18u
10
+ ··· 525u + 127)(u
12
4u
11
+ ··· + 21u + 7)
· (u
18
4u
17
+ ··· + 24u + 117)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
3
5y
2
+ 6y 1)
4
(y
3
5y
2
+ 10y 1)
4
· (y
7
12y
6
+ 54y
5
117y
4
+ 131y
3
71y
2
+ 14y 1)
· (y
18
29y
17
+ ··· 1724y + 49)
c
2
, c
6
, c
8
(y
7
6y
6
5y
5
+ 15y
3
2y
2
3y 1)
· (y
12
31y
11
+ ··· 27342y + 8281)(y
12
3y
11
+ ··· + 2y + 1)
· (y
18
15y
17
+ ··· 3y + 1)
c
3
, c
5
, c
9
(y
7
11y
6
3y
5
+ 51y
4
+ 13y
3
39y
2
+ 14y 1)
· (y
12
38y
11
+ ··· + 119070y + 35721)(y
12
2y
11
+ ··· + 26y + 1)
· (y
18
32y
17
+ ··· 1060y + 121)
c
4
, c
7
, c
11
(y
7
+ 3y
6
2y
5
14y
4
9y
3
+ 6y
2
+ 5y 1)
· (y
12
8y
11
+ ··· 365y + 169)(y
12
+ 12y
11
+ ··· + 167y + 49)
· (y
18
+ 18y
17
+ ··· 31y + 1)
c
10
(y
2
+ y + 1)
12
(y
7
2y
6
+ 17y
5
42y
4
+ 86y
3
157y
2
+ 31y 1)
· (y
18
+ y
17
+ ··· 337y + 49)
c
12
(y
7
13y
6
+ 2y
5
+ 137y
4
+ 304y
3
+ 237y
2
+ 30y 49)
· (y
12
36y
11
+ ··· 25943y + 16129)(y
12
+ 4y
11
+ ··· + 105y + 49)
· (y
18
38y
17
+ ··· 200412y + 13689)
22