12n
0768
(K12n
0768
)
A knot diagram
1
Linearized knot diagam
4 6 9 10 11 3 12 11 2 5 8 9
Solving Sequence
5,10
11 6
2,4
1 9 3 7 8 12
c
10
c
5
c
4
c
1
c
9
c
3
c
6
c
8
c
12
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.92778 × 10
21
u
25
+ 2.56531 × 10
22
u
24
+ ··· + 3.87990 × 10
23
b 1.26738 × 10
24
,
2.71108 × 10
23
u
25
+ 1.09424 × 10
24
u
24
+ ··· + 1.20277 × 10
25
a 1.27374 × 10
26
, u
26
u
25
+ ··· + 12u + 31i
I
u
2
= h−u
13
+ 6u
11
+ u
10
14u
9
6u
8
+ 14u
7
+ 15u
6
3u
5
18u
4
5u
3
+ 9u
2
+ b + 3u 1,
u
13
+ u
12
+ 6u
11
4u
10
15u
9
+ 2u
8
+ 19u
7
+ 13u
6
12u
5
22u
4
+ 10u
2
+ a + 5u 1,
u
14
7u
12
u
11
+ 19u
10
+ 7u
9
23u
8
20u
7
+ 8u
6
+ 28u
5
+ 7u
4
17u
3
6u
2
+ 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−2.93 × 10
21
u
25
+ 2.57 × 10
22
u
24
+ · · · + 3.88 × 10
23
b 1.27 ×
10
24
, 2.71 × 10
23
u
25
+ 1.09 × 10
24
u
24
+ · · · + 1.20 × 10
25
a 1.27 ×
10
26
, u
26
u
25
+ · · · + 12u + 31i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
2
=
0.0225403u
25
0.0909766u
24
+ ··· + 5.26309u + 10.5900
0.00754601u
25
0.0661178u
24
+ ··· 2.55257u + 3.26654
a
4
=
u
u
a
1
=
0.0460308u
25
0.0975533u
24
+ ··· + 3.67107u + 8.88673
0.0159445u
25
0.0726945u
24
+ ··· 4.14458u + 1.56324
a
9
=
0.0228681u
25
0.107777u
24
+ ··· 0.424141u + 6.30289
0.105094u
25
0.0463805u
24
+ ··· 7.82285u 2.16744
a
3
=
0.0714029u
25
0.131292u
24
+ ··· + 7.63526u + 15.5015
0.00756581u
25
0.0451761u
24
+ ··· 2.33987u + 1.11953
a
7
=
0.466848u
25
+ 0.229048u
24
+ ··· + 25.8666u + 8.47181
0.0444585u
25
+ 0.0166367u
24
+ ··· 2.65167u 3.76153
a
8
=
0.192283u
25
0.0910018u
24
+ ··· + 9.67536u + 12.5203
0.00596389u
25
0.0322573u
24
+ ··· 0.739325u + 2.56438
a
12
=
0.235482u
25
0.154199u
24
+ ··· 20.6106u 7.26827
0.0223603u
25
0.0205281u
24
+ ··· 3.27390u 0.0676271
(ii) Obstruction class = 1
(iii) Cusp Shapes =
46652502203510047014961
129330126954099989822173
u
25
+
99744336497876668876271
387990380862299969466519
u
24
+ ··· +
7467042075154247618912122
387990380862299969466519
u
1919651047154391762384890
387990380862299969466519
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
24u
24
+ ··· 352u + 41
c
2
, c
6
u
26
4u
25
+ ··· 322u 529
c
3
u
26
u
25
+ ··· 12769u 1781
c
4
, c
5
, c
10
u
26
+ u
25
+ ··· 12u + 31
c
7
, c
8
, c
11
u
26
+ u
25
+ ··· 34u 4
c
9
u
26
+ 2u
25
+ ··· + 36u 19
c
12
u
26
u
25
+ ··· 304218u 40564
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
48y
25
+ ··· + 19924y + 1681
c
2
, c
6
y
26
+ 12y
25
+ ··· 348082y + 279841
c
3
y
26
+ 69y
25
+ ··· 266466469y + 3171961
c
4
, c
5
, c
10
y
26
33y
25
+ ··· 12482y + 961
c
7
, c
8
, c
11
y
26
+ 43y
25
+ ··· 716y + 16
c
9
y
26
+ 6y
25
+ ··· + 1782y + 361
c
12
y
26
+ 147y
25
+ ··· 80260701260y + 1645438096
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.764982 + 0.335496I
a = 0.043942 0.279919I
b = 1.019140 0.401366I
1.38320 3.64635I 1.35824 + 7.32767I
u = 0.764982 0.335496I
a = 0.043942 + 0.279919I
b = 1.019140 + 0.401366I
1.38320 + 3.64635I 1.35824 7.32767I
u = 0.777607 + 0.118039I
a = 2.55907 0.95852I
b = 0.478055 0.742412I
13.15060 0.37776I 1.22408 1.34498I
u = 0.777607 0.118039I
a = 2.55907 + 0.95852I
b = 0.478055 + 0.742412I
13.15060 + 0.37776I 1.22408 + 1.34498I
u = 0.842907 + 0.881469I
a = 0.571747 + 0.134450I
b = 0.469429 0.674553I
1.203930 0.496037I 0.79686 2.54300I
u = 0.842907 0.881469I
a = 0.571747 0.134450I
b = 0.469429 + 0.674553I
1.203930 + 0.496037I 0.79686 + 2.54300I
u = 0.719777
a = 0.187725
b = 1.16272
2.17524 2.79410
u = 0.159981 + 0.568954I
a = 0.445478 + 0.461168I
b = 0.321692 + 0.362997I
0.333623 1.008960I 5.28376 + 6.66934I
u = 0.159981 0.568954I
a = 0.445478 0.461168I
b = 0.321692 0.362997I
0.333623 + 1.008960I 5.28376 6.66934I
u = 1.40068 + 0.23284I
a = 0.23778 + 1.47903I
b = 0.413279 + 0.877413I
4.79645 + 4.01069I 0.34699 9.12487I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40068 0.23284I
a = 0.23778 1.47903I
b = 0.413279 0.877413I
4.79645 4.01069I 0.34699 + 9.12487I
u = 0.571043
a = 2.07972
b = 0.907867
2.93787 5.61080
u = 0.484610 + 0.243441I
a = 1.71290 + 0.53126I
b = 0.461065 + 0.861987I
3.51192 + 0.62346I 2.84586 0.67416I
u = 0.484610 0.243441I
a = 1.71290 0.53126I
b = 0.461065 0.861987I
3.51192 0.62346I 2.84586 + 0.67416I
u = 1.52698 + 0.20871I
a = 0.133555 + 1.387270I
b = 1.051380 + 0.928731I
10.29450 2.62985I 1.70383 + 1.78381I
u = 1.52698 0.20871I
a = 0.133555 1.387270I
b = 1.051380 0.928731I
10.29450 + 2.62985I 1.70383 1.78381I
u = 0.82721 + 1.33251I
a = 0.352400 0.194950I
b = 0.445225 1.242010I
15.2105 + 4.3640I 1.41577 3.17462I
u = 0.82721 1.33251I
a = 0.352400 + 0.194950I
b = 0.445225 + 1.242010I
15.2105 4.3640I 1.41577 + 3.17462I
u = 1.65746 + 0.14713I
a = 0.159581 + 0.992092I
b = 0.250667 + 1.107520I
5.67875 1.02437I 0.521896 0.910763I
u = 1.65746 0.14713I
a = 0.159581 0.992092I
b = 0.250667 1.107520I
5.67875 + 1.02437I 0.521896 + 0.910763I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.77337 + 0.06842I
a = 0.294799 0.960179I
b = 1.44079 1.23613I
16.7710 + 1.3129I 1.252333 0.225172I
u = 1.77337 0.06842I
a = 0.294799 + 0.960179I
b = 1.44079 + 1.23613I
16.7710 1.3129I 1.252333 + 0.225172I
u = 1.74642 + 0.44620I
a = 0.080704 1.254640I
b = 1.18154 1.35502I
16.0643 11.0020I 1.09431 + 4.10898I
u = 1.74642 0.44620I
a = 0.080704 + 1.254640I
b = 1.18154 + 1.35502I
16.0643 + 11.0020I 1.09431 4.10898I
u = 1.84505 + 0.14739I
a = 0.154266 1.018760I
b = 0.87327 1.36223I
11.74950 + 5.10402I 1.81943 2.88501I
u = 1.84505 0.14739I
a = 0.154266 + 1.018760I
b = 0.87327 + 1.36223I
11.74950 5.10402I 1.81943 + 2.88501I
7
II.
I
u
2
= h−u
13
+6u
11
+· · ·+b1, u
13
+u
12
+· · ·+a1, u
14
7u
12
+· · ·+2u+1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
6
=
u
u
3
+ u
a
2
=
u
13
u
12
+ ··· 5u + 1
u
13
6u
11
+ ··· 3u + 1
a
4
=
u
u
a
1
=
u
13
+ u
12
+ ··· 4u
2
7u
u
13
+ 2u
12
+ ··· 3u
2
5u
a
9
=
u
13
+ 2u
12
+ ··· + 10u
3
+ 3
2u
12
u
11
+ ··· u + 1
a
3
=
u
13
6u
11
+ ··· 5u
2
8u
u
13
6u
11
+ ··· 2u + 1
a
7
=
u
13
5u
11
u
10
+ 8u
9
+ 4u
8
u
7
5u
6
6u
5
u
3
+ 3u
2
+ 6u
u
12
+ u
11
+ ··· + u 2
a
8
=
3u
13
+ 4u
12
+ ··· + 20u
2
2u
2u
13
+ 5u
12
+ ··· 3u 1
a
12
=
4u
13
+ 5u
12
+ ··· 5u 7
3u
13
+ 6u
12
+ ··· 8u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes =
2u
13
3u
12
+16u
11
+20u
10
44u
9
56u
8
+40u
7
+84u
6
+28u
5
71u
4
68u
3
+24u
2
+27u+7
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
5u
13
+ ··· u
2
+ 1
c
2
u
14
3u
13
+ 8u
11
9u
10
+ 13u
8
16u
7
+ 14u
5
9u
4
3u
3
+ 4u
2
1
c
3
u
14
+ 4u
12
+ 5u
10
+ 2u
9
3u
8
+ 4u
7
u
6
u
5
+ u
4
+ 2u
3
+ u
2
u 1
c
4
, c
5
u
14
7u
12
+ ··· 2u + 1
c
6
u
14
+ 3u
13
8u
11
9u
10
+ 13u
8
+ 16u
7
14u
5
9u
4
+ 3u
3
+ 4u
2
1
c
7
, c
8
u
14
+ 9u
12
+ ··· + 2u 1
c
9
u
14
+ u
13
u
12
2u
11
u
10
+ u
9
+ u
8
4u
7
+ 3u
6
2u
5
5u
4
4u
2
1
c
10
u
14
7u
12
+ ··· + 2u + 1
c
11
u
14
+ 9u
12
+ ··· 2u 1
c
12
u
14
+ 11u
12
+ ··· 2u 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
17y
13
+ ··· 2y + 1
c
2
, c
6
y
14
9y
13
+ ··· 8y + 1
c
3
y
14
+ 8y
13
+ ··· 3y + 1
c
4
, c
5
, c
10
y
14
14y
13
+ ··· 16y + 1
c
7
, c
8
, c
11
y
14
+ 18y
13
+ ··· 6y + 1
c
9
y
14
3y
13
+ ··· + 8y + 1
c
12
y
14
+ 22y
13
+ ··· 4y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.388251 + 0.920456I
a = 0.055423 0.175899I
b = 0.169523 + 0.638462I
1.29955 + 1.48242I 0.47756 5.07450I
u = 0.388251 0.920456I
a = 0.055423 + 0.175899I
b = 0.169523 0.638462I
1.29955 1.48242I 0.47756 + 5.07450I
u = 1.132050 + 0.372393I
a = 1.77286 + 0.32994I
b = 0.171528 + 0.571644I
13.37670 1.61202I 3.25492 + 4.00039I
u = 1.132050 0.372393I
a = 1.77286 0.32994I
b = 0.171528 0.571644I
13.37670 + 1.61202I 3.25492 4.00039I
u = 1.28132
a = 0.283790
b = 1.39820
0.241511 0.487210
u = 1.290010 + 0.033553I
a = 0.507609 + 0.986318I
b = 1.39611 + 0.51797I
4.48352 1.89225I 0.38957 + 1.57022I
u = 1.290010 0.033553I
a = 0.507609 0.986318I
b = 1.39611 0.51797I
4.48352 + 1.89225I 0.38957 1.57022I
u = 1.38089 + 0.32443I
a = 0.496730 + 1.151660I
b = 0.353075 + 0.853393I
5.02225 + 3.24893I 3.06027 0.56445I
u = 1.38089 0.32443I
a = 0.496730 1.151660I
b = 0.353075 0.853393I
5.02225 3.24893I 3.06027 + 0.56445I
u = 1.45042 + 0.21038I
a = 0.11773 + 1.53514I
b = 0.623035 + 1.209470I
7.62759 4.80166I 1.22227 + 4.11227I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.45042 0.21038I
a = 0.11773 1.53514I
b = 0.623035 1.209470I
7.62759 + 4.80166I 1.22227 4.11227I
u = 0.434339
a = 2.22641
b = 1.03128
3.32890 16.1810
u = 0.381146 + 0.175722I
a = 1.76509 0.05508I
b = 0.984611 + 0.552289I
1.22934 + 2.47209I 1.10273 1.06165I
u = 0.381146 0.175722I
a = 1.76509 + 0.05508I
b = 0.984611 0.552289I
1.22934 2.47209I 1.10273 + 1.06165I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
5u
13
+ ··· u
2
+ 1)(u
26
24u
24
+ ··· 352u + 41)
c
2
(u
14
3u
13
+ 8u
11
9u
10
+ 13u
8
16u
7
+ 14u
5
9u
4
3u
3
+ 4u
2
1)
· (u
26
4u
25
+ ··· 322u 529)
c
3
(u
14
+ 4u
12
+ 5u
10
+ 2u
9
3u
8
+ 4u
7
u
6
u
5
+ u
4
+ 2u
3
+ u
2
u 1)
· (u
26
u
25
+ ··· 12769u 1781)
c
4
, c
5
(u
14
7u
12
+ ··· 2u + 1)(u
26
+ u
25
+ ··· 12u + 31)
c
6
(u
14
+ 3u
13
8u
11
9u
10
+ 13u
8
+ 16u
7
14u
5
9u
4
+ 3u
3
+ 4u
2
1)
· (u
26
4u
25
+ ··· 322u 529)
c
7
, c
8
(u
14
+ 9u
12
+ ··· + 2u 1)(u
26
+ u
25
+ ··· 34u 4)
c
9
(u
14
+ u
13
u
12
2u
11
u
10
+ u
9
+ u
8
4u
7
+ 3u
6
2u
5
5u
4
4u
2
1)
· (u
26
+ 2u
25
+ ··· + 36u 19)
c
10
(u
14
7u
12
+ ··· + 2u + 1)(u
26
+ u
25
+ ··· 12u + 31)
c
11
(u
14
+ 9u
12
+ ··· 2u 1)(u
26
+ u
25
+ ··· 34u 4)
c
12
(u
14
+ 11u
12
+ ··· 2u 1)(u
26
u
25
+ ··· 304218u 40564)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
14
17y
13
+ ··· 2y + 1)(y
26
48y
25
+ ··· + 19924y + 1681)
c
2
, c
6
(y
14
9y
13
+ ··· 8y + 1)(y
26
+ 12y
25
+ ··· 348082y + 279841)
c
3
(y
14
+ 8y
13
+ ··· 3y + 1)
· (y
26
+ 69y
25
+ ··· 266466469y + 3171961)
c
4
, c
5
, c
10
(y
14
14y
13
+ ··· 16y + 1)(y
26
33y
25
+ ··· 12482y + 961)
c
7
, c
8
, c
11
(y
14
+ 18y
13
+ ··· 6y + 1)(y
26
+ 43y
25
+ ··· 716y + 16)
c
9
(y
14
3y
13
+ ··· + 8y + 1)(y
26
+ 6y
25
+ ··· + 1782y + 361)
c
12
(y
14
+ 22y
13
+ ··· 4y + 1)
· (y
26
+ 147y
25
+ ··· 80260701260y + 1645438096)
14