12n
0774
(K12n
0774
)
A knot diagram
1
Linearized knot diagam
4 6 9 11 10 3 12 11 2 5 8 9
Solving Sequence
4,11 2,5
1 10 6 9 3 7 8 12
c
4
c
1
c
10
c
5
c
9
c
3
c
6
c
8
c
12
c
2
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h6.62437 × 10
34
u
37
3.38900 × 10
34
u
36
+ ··· + 1.55713 × 10
36
b + 2.95623 × 10
35
,
1.51031 × 10
35
u
37
6.63829 × 10
35
u
36
+ ··· + 4.82710 × 10
37
a + 1.02169 × 10
38
,
u
38
u
37
+ ··· 43u + 31i
I
u
2
= h−u
4
2u
2
+ b, 2u
9
12u
7
+ u
6
26u
5
+ 6u
4
25u
3
+ 10u
2
+ a 11u + 4,
u
10
+ 6u
8
u
7
+ 13u
6
5u
5
+ 13u
4
8u
3
+ 7u
2
4u + 1i
I
u
3
= hb + u, a u + 1, u
3
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h6.62 × 10
34
u
37
3.39 × 10
34
u
36
+ · · · + 1.56 × 10
36
b + 2.96 ×
10
35
, 1.51 × 10
35
u
37
6.64 × 10
35
u
36
+ · · · + 4.83 × 10
37
a + 1.02 ×
10
38
, u
38
u
37
+ · · · 43u + 31i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
0.00312880u
37
+ 0.0137521u
36
+ ··· 0.745993u 2.11658
0.0425422u
37
+ 0.0217644u
36
+ ··· + 0.229678u 0.189851
a
5
=
1
u
2
a
1
=
0.0394133u
37
+ 0.0355165u
36
+ ··· 0.516316u 2.30643
0.0425422u
37
+ 0.0217644u
36
+ ··· + 0.229678u 0.189851
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
0.0349433u
37
0.0282337u
36
+ ··· + 3.18335u 1.12201
0.00748664u
37
0.0301041u
36
+ ··· + 1.94650u 0.496751
a
3
=
0.0134487u
37
0.0104237u
36
+ ··· + 1.71946u 0.562332
0.0504426u
37
+ 0.0543512u
36
+ ··· 0.337341u + 1.77353
a
7
=
0.0100216u
37
0.0217773u
36
+ ··· + 2.92598u 1.52154
0.0285363u
37
+ 0.118276u
36
+ ··· 1.14068u 0.466351
a
8
=
0.0349433u
37
0.0282337u
36
+ ··· + 3.18335u 1.12201
0.0450590u
37
+ 0.00970789u
36
+ ··· + 1.15176u 0.704747
a
12
=
0.0447886u
37
0.00640128u
36
+ ··· 3.64544u + 0.609170
0.0494523u
37
+ 0.0164682u
36
+ ··· 0.878416u 0.773098
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0331406u
37
+ 0.0412227u
36
+ ··· 15.9826u 0.691715
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
38
5u
37
+ ··· 5335u + 599
c
2
, c
6
u
38
4u
37
+ ··· + 538u 98
c
3
u
38
u
37
+ ··· 6836u + 799
c
4
, c
5
, c
10
u
38
u
37
+ ··· 43u + 31
c
7
, c
8
, c
11
u
38
+ u
37
+ ··· 33u 1
c
9
u
38
+ 2u
37
+ ··· + 85u 51
c
12
u
38
u
37
+ ··· 7672u 232
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
38
57y
37
+ ··· + 6455881y + 358801
c
2
, c
6
y
38
18y
37
+ ··· 108928y + 9604
c
3
y
38
+ 51y
37
+ ··· 5168514y + 638401
c
4
, c
5
, c
10
y
38
+ 35y
37
+ ··· 1911y + 961
c
7
, c
8
, c
11
y
38
+ 53y
37
+ ··· 1289y + 1
c
9
y
38
18y
37
+ ··· 30685y + 2601
c
12
y
38
+ 137y
37
+ ··· 68527952y + 53824
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.638019 + 0.750388I
a = 0.0267617 + 0.1147200I
b = 0.722696 + 0.604621I
0.0307983 + 0.0668754I 5.97468 + 0.20302I
u = 0.638019 0.750388I
a = 0.0267617 0.1147200I
b = 0.722696 0.604621I
0.0307983 0.0668754I 5.97468 0.20302I
u = 0.205648 + 1.005780I
a = 1.065570 + 0.155067I
b = 0.566243 0.700302I
0.30073 + 3.12728I 5.74339 3.05475I
u = 0.205648 1.005780I
a = 1.065570 0.155067I
b = 0.566243 + 0.700302I
0.30073 3.12728I 5.74339 + 3.05475I
u = 0.808673 + 0.138234I
a = 1.29598 + 0.61262I
b = 1.050550 0.092879I
1.57428 + 4.12934I 1.75204 5.88893I
u = 0.808673 0.138234I
a = 1.29598 0.61262I
b = 1.050550 + 0.092879I
1.57428 4.12934I 1.75204 + 5.88893I
u = 0.186789 + 1.179420I
a = 0.437334 + 0.307728I
b = 1.43772 + 0.15241I
0.62020 1.71292I 7.11578 + 4.48405I
u = 0.186789 1.179420I
a = 0.437334 0.307728I
b = 1.43772 0.15241I
0.62020 + 1.71292I 7.11578 4.48405I
u = 0.035830 + 1.196030I
a = 0.74364 + 1.35480I
b = 0.094716 + 0.338801I
1.54048 1.51605I 5.47077 + 1.56313I
u = 0.035830 1.196030I
a = 0.74364 1.35480I
b = 0.094716 0.338801I
1.54048 + 1.51605I 5.47077 1.56313I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.191440 + 0.333174I
a = 1.043410 0.369661I
b = 2.01038 + 0.71201I
12.06790 6.30873I 2.13106 + 4.45047I
u = 1.191440 0.333174I
a = 1.043410 + 0.369661I
b = 2.01038 0.71201I
12.06790 + 6.30873I 2.13106 4.45047I
u = 0.728989 + 0.094813I
a = 2.26028 + 0.66699I
b = 2.27756 + 0.23999I
13.44440 + 0.57800I 0.020927 + 0.338279I
u = 0.728989 0.094813I
a = 2.26028 0.66699I
b = 2.27756 0.23999I
13.44440 0.57800I 0.020927 0.338279I
u = 0.270004 + 1.252220I
a = 0.282766 1.337250I
b = 0.757575 0.249175I
5.78248 3.21327I 7.91783 + 2.84424I
u = 0.270004 1.252220I
a = 0.282766 + 1.337250I
b = 0.757575 + 0.249175I
5.78248 + 3.21327I 7.91783 2.84424I
u = 0.328477 + 1.291160I
a = 1.19013 2.17034I
b = 2.48972 0.49981I
9.66385 + 3.20076I 5.89501 3.23003I
u = 0.328477 1.291160I
a = 1.19013 + 2.17034I
b = 2.48972 + 0.49981I
9.66385 3.20076I 5.89501 + 3.23003I
u = 0.615140
a = 1.71995
b = 0.634685
1.97433 3.38590
u = 0.198749 + 0.555559I
a = 0.466569 0.230649I
b = 0.042075 + 0.321375I
0.293656 + 0.891269I 6.04844 7.62734I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.198749 0.555559I
a = 0.466569 + 0.230649I
b = 0.042075 0.321375I
0.293656 0.891269I 6.04844 + 7.62734I
u = 0.19095 + 1.40255I
a = 0.762581 + 0.804443I
b = 0.648853 0.396327I
7.52810 2.72251I 5.91943 + 2.93635I
u = 0.19095 1.40255I
a = 0.762581 0.804443I
b = 0.648853 + 0.396327I
7.52810 + 2.72251I 5.91943 2.93635I
u = 0.33162 + 1.39639I
a = 0.384147 0.722282I
b = 2.04211 + 0.03629I
8.62803 + 4.45679I 4.27715 2.52282I
u = 0.33162 1.39639I
a = 0.384147 + 0.722282I
b = 2.04211 0.03629I
8.62803 4.45679I 4.27715 + 2.52282I
u = 0.560762
a = 0.627330
b = 0.630030
2.83334 3.70100
u = 0.39837 + 1.38695I
a = 0.00124 + 1.46170I
b = 1.46915 0.06976I
3.24411 + 8.61128I 5.93302 6.50406I
u = 0.39837 1.38695I
a = 0.00124 1.46170I
b = 1.46915 + 0.06976I
3.24411 8.61128I 5.93302 + 6.50406I
u = 0.456864 + 0.208287I
a = 0.90969 + 1.40386I
b = 1.084480 0.415889I
3.49555 0.69535I 2.34683 + 1.44862I
u = 0.456864 0.208287I
a = 0.90969 1.40386I
b = 1.084480 + 0.415889I
3.49555 + 0.69535I 2.34683 1.44862I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.87973 + 1.22637I
a = 0.139604 0.532893I
b = 1.63216 0.82120I
9.52612 0.81474I 4.00000 + 0.I
u = 0.87973 1.22637I
a = 0.139604 + 0.532893I
b = 1.63216 + 0.82120I
9.52612 + 0.81474I 4.00000 + 0.I
u = 0.05021 + 1.52644I
a = 0.17157 + 1.59718I
b = 0.18166 1.41300I
2.16967 2.20129I 4.00000 + 3.06497I
u = 0.05021 1.52644I
a = 0.17157 1.59718I
b = 0.18166 + 1.41300I
2.16967 + 2.20129I 4.00000 3.06497I
u = 0.12317 + 1.58705I
a = 0.40122 1.36947I
b = 0.37780 + 1.57073I
8.12130 + 2.40437I 4.00000 + 0.I
u = 0.12317 1.58705I
a = 0.40122 + 1.36947I
b = 0.37780 1.57073I
8.12130 2.40437I 4.00000 + 0.I
u = 0.48360 + 1.54293I
a = 0.14007 1.57905I
b = 2.28229 + 0.66578I
6.11597 12.29010I 0
u = 0.48360 1.54293I
a = 0.14007 + 1.57905I
b = 2.28229 0.66578I
6.11597 + 12.29010I 0
8
II. I
u
2
= h−u
4
2u
2
+ b, 2u
9
12u
7
+ · · · + a + 4, u
10
+ 6u
8
+ · · · 4u + 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
2u
9
+ 12u
7
u
6
+ 26u
5
6u
4
+ 25u
3
10u
2
+ 11u 4
u
4
+ 2u
2
a
5
=
1
u
2
a
1
=
2u
9
+ 12u
7
u
6
+ 26u
5
5u
4
+ 25u
3
8u
2
+ 11u 4
u
4
+ 2u
2
a
10
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
2u
9
+ u
8
+ 12u
7
+ 4u
6
+ 25u
5
+ 3u
4
+ 22u
3
3u
2
+ 9u 2
u
3
+ 2u
a
3
=
2u
9
+ 12u
7
u
6
+ 26u
5
5u
4
+ 25u
3
8u
2
+ 11u 3
u
6
+ 4u
4
+ 4u
2
a
7
=
2u
9
u
8
12u
7
4u
6
25u
5
3u
4
22u
3
+ 4u
2
9u + 4
u
8
5u
6
7u
4
2u
2
a
8
=
2u
9
+ u
8
+ 12u
7
+ 4u
6
+ 25u
5
+ 3u
4
+ 22u
3
3u
2
+ 9u 2
u
5
+ 4u
3
u
2
+ 4u 1
a
12
=
u
9
+ 6u
7
u
6
+ 13u
5
6u
4
+ 13u
3
11u
2
+ 7u 6
u
7
u
6
+ 5u
5
4u
4
+ 8u
3
5u
2
+ 4u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
8
+ 3u
7
8u
6
+ 13u
5
11u
4
+ 19u
3
11u
2
+ 11u 2
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
4u
9
+ 4u
8
3u
7
+ 11u
6
7u
5
u
4
8u
3
+ 5u
2
+ 2u + 1
c
2
u
10
2u
9
u
8
+ 3u
7
+ 2u
5
2u
4
5u
3
+ 2u
2
+ 2u + 1
c
3
u
10
3u
9
+ 8u
8
12u
7
+ 13u
6
11u
5
+ 6u
4
u
3
+ u
2
2u + 1
c
4
, c
5
u
10
+ 6u
8
u
7
+ 13u
6
5u
5
+ 13u
4
8u
3
+ 7u
2
4u + 1
c
6
u
10
+ 2u
9
u
8
3u
7
2u
5
2u
4
+ 5u
3
+ 2u
2
2u + 1
c
7
, c
8
u
10
+ 7u
8
u
7
+ 17u
6
5u
5
+ 17u
4
8u
3
+ 6u
2
4u + 1
c
9
u
10
2u
9
+ u
8
u
7
+ 6u
6
11u
5
+ 13u
4
12u
3
+ 8u
2
3u + 1
c
10
u
10
+ 6u
8
+ u
7
+ 13u
6
+ 5u
5
+ 13u
4
+ 8u
3
+ 7u
2
+ 4u + 1
c
11
u
10
+ 7u
8
+ u
7
+ 17u
6
+ 5u
5
+ 17u
4
+ 8u
3
+ 6u
2
+ 4u + 1
c
12
u
10
+ 3u
9
+ ··· + 6u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
8y
9
+ ··· + 6y + 1
c
2
, c
6
y
10
6y
9
+ 13y
8
5y
7
24y
6
+ 32y
5
+ 10y
4
41y
3
+ 20y
2
+ 1
c
3
y
10
+ 7y
9
+ 18y
8
+ 10y
7
3y
6
+ 17y
5
+ 8y
4
7y
3
+ 9y
2
2y + 1
c
4
, c
5
, c
10
y
10
+ 12y
9
+ ··· 2y + 1
c
7
, c
8
, c
11
y
10
+ 14y
9
+ ··· 4y + 1
c
9
y
10
2y
9
+ 9y
8
7y
7
+ 8y
6
+ 17y
5
3y
4
+ 10y
3
+ 18y
2
+ 7y + 1
c
12
y
10
+ 25y
9
+ ··· + 2y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.203188 + 0.867061I
a = 0.493495 + 0.731043I
b = 1.040350 + 0.204005I
1.57782 0.69065I 1.59727 + 0.69033I
u = 0.203188 0.867061I
a = 0.493495 0.731043I
b = 1.040350 0.204005I
1.57782 + 0.69065I 1.59727 0.69033I
u = 0.518951 + 1.046120I
a = 0.16725 1.58982I
b = 2.14828 0.37991I
10.93840 + 1.99907I 1.90479 0.88974I
u = 0.518951 1.046120I
a = 0.16725 + 1.58982I
b = 2.14828 + 0.37991I
10.93840 1.99907I 1.90479 + 0.88974I
u = 0.09726 + 1.51614I
a = 0.226826 + 1.186790I
b = 0.575141 0.760414I
4.87853 4.08278I 5.39048 + 3.19814I
u = 0.09726 1.51614I
a = 0.226826 1.186790I
b = 0.575141 + 0.760414I
4.87853 + 4.08278I 5.39048 3.19814I
u = 0.15182 + 1.51661I
a = 0.58645 1.30038I
b = 0.418801 + 1.176140I
8.85979 + 2.29290I 14.4139 0.8018I
u = 0.15182 1.51661I
a = 0.58645 + 1.30038I
b = 0.418801 1.176140I
8.85979 2.29290I 14.4139 + 0.8018I
u = 0.370323 + 0.187881I
a = 0.84746 + 2.49473I
b = 0.194686 + 0.306649I
1.22208 2.50161I 1.19353 + 1.66838I
u = 0.370323 0.187881I
a = 0.84746 2.49473I
b = 0.194686 0.306649I
1.22208 + 2.50161I 1.19353 1.66838I
12
III. I
u
3
= hb + u, a u + 1, u
3
+ 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
2
=
u 1
u
a
5
=
1
u
2
a
1
=
1
u
a
10
=
u
u 1
a
6
=
u
2
+ 1
u
a
9
=
1
1
a
3
=
0
1
a
7
=
u
2
+ 1
u
2
u 1
a
8
=
1
u
2
1
a
12
=
u
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
2
u + 14
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
8
u
3
+ 2u + 1
c
2
u
3
u
2
u + 2
c
3
, c
9
(u + 1)
3
c
6
u
3
+ u
2
u 2
c
10
, c
11
u
3
+ 2u 1
c
12
u
3
3u
2
+ 5u 2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
7
, c
8
, c
10
c
11
y
3
+ 4y
2
+ 4y 1
c
2
, c
6
y
3
3y
2
+ 5y 4
c
3
, c
9
(y 1)
3
c
12
y
3
+ y
2
+ 13y 4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.77330 + 1.46771I
b = 0.22670 1.46771I
3.28987 7.46495 + 0.52866I
u = 0.22670 1.46771I
a = 0.77330 1.46771I
b = 0.22670 + 1.46771I
3.28987 7.46495 0.52866I
u = 0.453398
a = 1.45340
b = 0.453398
3.28987 15.0700
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ 2u + 1)
· (u
10
4u
9
+ 4u
8
3u
7
+ 11u
6
7u
5
u
4
8u
3
+ 5u
2
+ 2u + 1)
· (u
38
5u
37
+ ··· 5335u + 599)
c
2
(u
3
u
2
u + 2)(u
10
2u
9
+ ··· + 2u + 1)
· (u
38
4u
37
+ ··· + 538u 98)
c
3
(u + 1)
3
· (u
10
3u
9
+ 8u
8
12u
7
+ 13u
6
11u
5
+ 6u
4
u
3
+ u
2
2u + 1)
· (u
38
u
37
+ ··· 6836u + 799)
c
4
, c
5
(u
3
+ 2u + 1)(u
10
+ 6u
8
+ ··· 4u + 1)
· (u
38
u
37
+ ··· 43u + 31)
c
6
(u
3
+ u
2
u 2)(u
10
+ 2u
9
+ ··· 2u + 1)
· (u
38
4u
37
+ ··· + 538u 98)
c
7
, c
8
(u
3
+ 2u + 1)(u
10
+ 7u
8
+ ··· 4u + 1)
· (u
38
+ u
37
+ ··· 33u 1)
c
9
(u + 1)
3
· (u
10
2u
9
+ u
8
u
7
+ 6u
6
11u
5
+ 13u
4
12u
3
+ 8u
2
3u + 1)
· (u
38
+ 2u
37
+ ··· + 85u 51)
c
10
(u
3
+ 2u 1)(u
10
+ 6u
8
+ ··· + 4u + 1)
· (u
38
u
37
+ ··· 43u + 31)
c
11
(u
3
+ 2u 1)(u
10
+ 7u
8
+ ··· + 4u + 1)
· (u
38
+ u
37
+ ··· 33u 1)
c
12
(u
3
3u
2
+ 5u 2)(u
10
+ 3u
9
+ ··· + 6u + 1)
· (u
38
u
37
+ ··· 7672u 232)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
3
+ 4y
2
+ 4y 1)(y
10
8y
9
+ ··· + 6y + 1)
· (y
38
57y
37
+ ··· + 6455881y + 358801)
c
2
, c
6
(y
3
3y
2
+ 5y 4)
· (y
10
6y
9
+ 13y
8
5y
7
24y
6
+ 32y
5
+ 10y
4
41y
3
+ 20y
2
+ 1)
· (y
38
18y
37
+ ··· 108928y + 9604)
c
3
(y 1)
3
· (y
10
+ 7y
9
+ 18y
8
+ 10y
7
3y
6
+ 17y
5
+ 8y
4
7y
3
+ 9y
2
2y + 1)
· (y
38
+ 51y
37
+ ··· 5168514y + 638401)
c
4
, c
5
, c
10
(y
3
+ 4y
2
+ 4y 1)(y
10
+ 12y
9
+ ··· 2y + 1)
· (y
38
+ 35y
37
+ ··· 1911y + 961)
c
7
, c
8
, c
11
(y
3
+ 4y
2
+ 4y 1)(y
10
+ 14y
9
+ ··· 4y + 1)
· (y
38
+ 53y
37
+ ··· 1289y + 1)
c
9
(y 1)
3
· (y
10
2y
9
+ 9y
8
7y
7
+ 8y
6
+ 17y
5
3y
4
+ 10y
3
+ 18y
2
+ 7y + 1)
· (y
38
18y
37
+ ··· 30685y + 2601)
c
12
(y
3
+ y
2
+ 13y 4)(y
10
+ 25y
9
+ ··· + 2y + 1)
· (y
38
+ 137y
37
+ ··· 68527952y + 53824)
18