12n
0777
(K12n
0777
)
A knot diagram
1
Linearized knot diagam
4 6 9 11 12 10 3 12 7 2 5 9
Solving Sequence
4,11
5 12
6,9
1 3 2 8 7 10
c
4
c
11
c
5
c
12
c
3
c
2
c
8
c
7
c
10
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h4585u
29
53373u
28
+ ··· + 32b 211552, 13955u
29
160849u
28
+ ··· + 64a 593856,
u
30
13u
29
+ ··· 96u + 64i
I
u
2
= h3u
21
2u
20
+ ··· + b + 1, 5u
21
6u
20
+ ··· + a + 4, u
22
12u
20
+ ··· + 2u + 1i
I
u
3
= h−8.71806 × 10
22
a
11
u + 1.90564 × 10
22
a
10
u + ··· + 4.42015 × 10
24
a + 2.07365 × 10
24
,
a
11
u 8a
10
u + ··· 155a + 597, u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 76 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h4585u
29
53373u
28
+ · · · + 32b 211552, 13955u
29
160849u
28
+
· · · + 64a 593856, u
30
13u
29
+ · · · 96u + 64i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
218.047u
29
+ 2513.27u
28
+ ··· 7883.75u + 9279
143.281u
29
+ 1667.91u
28
+ ··· 5240.50u + 6611
a
1
=
12u
29
+
583
4
u
28
+ ···
961
2
u +
1409
2
31
4
u
29
325
4
u
28
+ ··· +
465
2
u 112
a
3
=
12u
29
583
4
u
28
+ ··· +
959
2
u
1407
2
31
4
u
29
+
325
4
u
28
+ ···
463
2
u + 112
a
2
=
79
4
u
29
+ 227u
28
+ ··· 713u +
1633
2
31
4
u
29
325
4
u
28
+ ··· +
465
2
u 112
a
8
=
412.797u
29
+ 4786.39u
28
+ ··· 15027.8u + 18449
282.531u
29
+ 3320.78u
28
+ ··· 10460.5u + 13993
a
7
=
1425
8
u
29
+
32277
16
u
28
+ ··· 6300u + 6463
3901
16
u
29
+
5761
2
u
28
+ ··· 9090u + 12556
a
10
=
77
4
u
29
+
825
4
u
28
+ ···
2465
4
u + 368
90u
29
+
4209
4
u
28
+ ··· 3335u + 4240
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3861
4
u
29
+
22479
2
u
28
+ ··· 35492u + 44366
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
14u
29
+ ··· 1674u + 180
c
2
, c
10
u
30
u
29
+ ··· 4u + 1
c
3
, c
8
, c
12
u
30
+ 25u
28
+ ··· + 14u
2
+ 1
c
4
, c
5
, c
11
u
30
13u
29
+ ··· 96u + 64
c
6
, c
9
u
30
+ 9u
29
+ ··· + 58u + 4
c
7
u
30
+ u
29
+ ··· + 134u + 43
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
42y
29
+ ··· 660636y + 32400
c
2
, c
10
y
30
+ 27y
29
+ ··· + 10y + 1
c
3
, c
8
, c
12
y
30
+ 50y
29
+ ··· + 28y + 1
c
4
, c
5
, c
11
y
30
27y
29
+ ··· + 7168y + 4096
c
6
, c
9
y
30
+ 21y
29
+ ··· 204y + 16
c
7
y
30
+ 37y
29
+ ··· 12796y + 1849
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.712100 + 0.956564I
a = 0.866632 0.189288I
b = 0.17533 2.06721I
12.2909 + 9.4994I 0. 5.67165I
u = 0.712100 0.956564I
a = 0.866632 + 0.189288I
b = 0.17533 + 2.06721I
12.2909 9.4994I 0. + 5.67165I
u = 1.076880 + 0.516113I
a = 1.16983 + 0.89905I
b = 0.750113 + 0.531557I
0.60829 5.16519I 7.68800 3.17301I
u = 1.076880 0.516113I
a = 1.16983 0.89905I
b = 0.750113 0.531557I
0.60829 + 5.16519I 7.68800 + 3.17301I
u = 1.179430 + 0.197792I
a = 0.198189 + 0.197833I
b = 0.370253 + 0.632453I
2.67535 + 1.28324I 0
u = 1.179430 0.197792I
a = 0.198189 0.197833I
b = 0.370253 0.632453I
2.67535 1.28324I 0
u = 0.576495 + 1.064220I
a = 0.893792 0.009633I
b = 0.22203 2.04575I
11.81400 2.89439I 0
u = 0.576495 1.064220I
a = 0.893792 + 0.009633I
b = 0.22203 + 2.04575I
11.81400 + 2.89439I 0
u = 0.695385 + 1.054340I
a = 0.834599 + 0.093305I
b = 0.17902 + 2.11004I
7.50297 + 3.48252I 0
u = 0.695385 1.054340I
a = 0.834599 0.093305I
b = 0.17902 2.11004I
7.50297 3.48252I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.405900 + 0.604201I
a = 1.206390 0.215475I
b = 0.706818 + 0.267801I
1.34273 + 0.69486I 10.73680 5.94826I
u = 0.405900 0.604201I
a = 1.206390 + 0.215475I
b = 0.706818 0.267801I
1.34273 0.69486I 10.73680 + 5.94826I
u = 0.349023 + 0.634623I
a = 0.391030 + 0.430038I
b = 0.490044 0.392098I
2.73365 + 3.23503I 0.14526 3.30647I
u = 0.349023 0.634623I
a = 0.391030 0.430038I
b = 0.490044 + 0.392098I
2.73365 3.23503I 0.14526 + 3.30647I
u = 0.473468 + 0.455765I
a = 0.178820 0.624865I
b = 0.466864 0.464807I
3.35774 + 0.41602I 0.28518 3.29821I
u = 0.473468 0.455765I
a = 0.178820 + 0.624865I
b = 0.466864 + 0.464807I
3.35774 0.41602I 0.28518 + 3.29821I
u = 0.241152 + 0.560887I
a = 0.450417 + 0.043597I
b = 0.043133 + 0.373812I
0.155530 + 1.274890I 2.11047 6.19395I
u = 0.241152 0.560887I
a = 0.450417 0.043597I
b = 0.043133 0.373812I
0.155530 1.274890I 2.11047 + 6.19395I
u = 1.40597 + 0.22506I
a = 0.363023 + 0.409362I
b = 0.021884 + 0.360955I
5.15833 4.20213I 0
u = 1.40597 0.22506I
a = 0.363023 0.409362I
b = 0.021884 0.360955I
5.15833 + 4.20213I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.42237 + 0.17547I
a = 0.152611 0.928981I
b = 0.387688 0.480108I
9.29324 2.70234I 0
u = 1.42237 0.17547I
a = 0.152611 + 0.928981I
b = 0.387688 + 0.480108I
9.29324 + 2.70234I 0
u = 1.43366 + 0.23827I
a = 0.798085 + 0.019961I
b = 0.459766 0.343812I
8.45070 6.42278I 0
u = 1.43366 0.23827I
a = 0.798085 0.019961I
b = 0.459766 + 0.343812I
8.45070 + 6.42278I 0
u = 1.64901 + 0.32277I
a = 0.70265 1.71037I
b = 0.58983 2.17349I
19.4368 14.3151I 0
u = 1.64901 0.32277I
a = 0.70265 + 1.71037I
b = 0.58983 + 2.17349I
19.4368 + 14.3151I 0
u = 1.67171 + 0.34503I
a = 0.67299 + 1.59613I
b = 0.61499 + 2.14641I
15.2886 8.7374I 0
u = 1.67171 0.34503I
a = 0.67299 1.59613I
b = 0.61499 2.14641I
15.2886 + 8.7374I 0
u = 1.66154 + 0.39521I
a = 0.74838 1.46675I
b = 0.64093 2.07022I
19.0732 2.6309I 0
u = 1.66154 0.39521I
a = 0.74838 + 1.46675I
b = 0.64093 + 2.07022I
19.0732 + 2.6309I 0
7
II.
I
u
2
= h3u
21
2u
20
+· · ·+b+1, 5u
21
6u
20
+· · ·+a+4, u
22
12u
20
+· · ·+2u+1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
9
=
5u
21
+ 6u
20
+ ··· 3u 4
3u
21
+ 2u
20
+ ··· u 1
a
1
=
u
21
+ u
20
+ ··· 6u 5
u
19
+ 10u
17
+ ··· 8u
2
3u
a
3
=
u
21
+ u
20
+ ··· 5u 4
u
19
+ 10u
17
+ ··· 8u
2
4u
a
2
=
u
21
+ u
20
+ ··· 3u 5
u
19
+ 10u
17
+ ··· 8u
2
3u
a
8
=
7u
21
+ 10u
20
+ ··· 8u 7
4u
21
+ 4u
20
+ ··· 2u 2
a
7
=
3u
21
+ 5u
20
+ ··· + 6u 2
3u
21
+ 5u
20
+ ··· 3u 3
a
10
=
u
21
14u
19
+ ··· + 3u + 3
3u
20
31u
18
+ ··· 6u 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 3u
21
+ 8u
20
+ 26u
19
80u
18
95u
17
+ 329u
16
+ 225u
15
730u
14
469u
13
+ 949u
12
+
835u
11
674u
10
1053u
9
+ 119u
8
+ 859u
7
+ 156u
6
388u
5
102u
4
+ 54u
3
+ 43u
2
18u
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
19u
21
+ ··· + 33u + 11
c
2
, c
10
u
22
u
21
+ ··· 5u
2
1
c
3
, c
8
u
22
+ 8u
20
+ ··· + 6u
2
1
c
4
, c
5
u
22
12u
20
+ ··· + 2u + 1
c
6
u
22
+ 6u
21
+ ··· + 26u + 5
c
7
u
22
u
21
+ ··· + 6u
2
1
c
9
u
22
6u
21
+ ··· 26u + 5
c
11
u
22
12u
20
+ ··· 2u + 1
c
12
u
22
+ 8u
20
+ ··· + 6u
2
1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
31y
21
+ ··· 19833y + 121
c
2
, c
10
y
22
3y
21
+ ··· + 10y + 1
c
3
, c
8
, c
12
y
22
+ 16y
21
+ ··· 12y + 1
c
4
, c
5
, c
11
y
22
24y
21
+ ··· 16y + 1
c
6
, c
9
y
22
+ 16y
21
+ ··· + 44y + 25
c
7
y
22
+ 15y
21
+ ··· 12y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.952998 + 0.363147I
a = 0.447217 + 0.580843I
b = 0.16042 + 1.47642I
5.37181 1.39365I 0.44374 + 4.45166I
u = 0.952998 0.363147I
a = 0.447217 0.580843I
b = 0.16042 1.47642I
5.37181 + 1.39365I 0.44374 4.45166I
u = 0.411052 + 0.829761I
a = 0.908472 0.306162I
b = 0.800223 + 0.419012I
0.886074 0.327914I 1.50287 2.30603I
u = 0.411052 0.829761I
a = 0.908472 + 0.306162I
b = 0.800223 0.419012I
0.886074 + 0.327914I 1.50287 + 2.30603I
u = 0.991893 + 0.557470I
a = 1.33261 + 0.73674I
b = 0.828904 + 0.495963I
0.76850 + 5.48421I 1.6991 16.1374I
u = 0.991893 0.557470I
a = 1.33261 0.73674I
b = 0.828904 0.495963I
0.76850 5.48421I 1.6991 + 16.1374I
u = 1.26981
a = 1.47162
b = 0.504182
0.523875 1.69110
u = 1.283890 + 0.044119I
a = 1.67687 + 0.65247I
b = 0.562792 + 0.352530I
4.65589 4.05576I 3.08182 + 3.35198I
u = 1.283890 0.044119I
a = 1.67687 0.65247I
b = 0.562792 0.352530I
4.65589 + 4.05576I 3.08182 3.35198I
u = 1.281110 + 0.143729I
a = 0.023735 0.409037I
b = 0.140554 1.199050I
11.14630 3.12297I 7.71456 + 3.43607I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.281110 0.143729I
a = 0.023735 + 0.409037I
b = 0.140554 + 1.199050I
11.14630 + 3.12297I 7.71456 3.43607I
u = 0.542807
a = 2.74234
b = 0.680559
2.28404 18.6410
u = 1.44169 + 0.27299I
a = 0.190001 + 0.084721I
b = 0.564861 + 0.493339I
5.07635 3.48825I 0.374917 1.318569I
u = 1.44169 0.27299I
a = 0.190001 0.084721I
b = 0.564861 0.493339I
5.07635 + 3.48825I 0.374917 + 1.318569I
u = 1.46316 + 0.17821I
a = 0.211286 + 0.093946I
b = 0.820499 + 0.187762I
7.43021 6.90057I 0.73795 + 6.43274I
u = 1.46316 0.17821I
a = 0.211286 0.093946I
b = 0.820499 0.187762I
7.43021 + 6.90057I 0.73795 6.43274I
u = 0.392750 + 0.252362I
a = 1.72917 1.60391I
b = 0.11303 1.55435I
8.04498 + 1.60371I 2.68984 + 0.68205I
u = 0.392750 0.252362I
a = 1.72917 + 1.60391I
b = 0.11303 + 1.55435I
8.04498 1.60371I 2.68984 0.68205I
u = 0.322581 + 0.260655I
a = 1.85686 1.81617I
b = 0.699900 + 0.348525I
1.38244 + 4.88830I 7.02230 6.99712I
u = 0.322581 0.260655I
a = 1.85686 + 1.81617I
b = 0.699900 0.348525I
1.38244 4.88830I 7.02230 + 6.99712I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.61599 + 0.03920I
a = 0.17786 2.13380I
b = 0.00990 2.13633I
15.4624 0.5787I 3.29897 0.02802I
u = 1.61599 0.03920I
a = 0.17786 + 2.13380I
b = 0.00990 + 2.13633I
15.4624 + 0.5787I 3.29897 + 0.02802I
13
III. I
u
3
= h−8.72 × 10
22
a
11
u + 1.91 × 10
22
a
10
u + · · · + 4.42 × 10
24
a + 2.07 ×
10
24
, a
11
u 8a
10
u + · · · 155a + 597, u
2
+ u 1i
(i) Arc colorings
a
4
=
1
0
a
11
=
0
u
a
5
=
1
u + 1
a
12
=
u
u + 1
a
6
=
u
u
a
9
=
a
0.0214307a
11
u 0.00468444a
10
u + ··· 1.08656a 0.509744
a
1
=
0.00917669a
11
u + 0.0325719a
10
u + ··· 0.675635a 3.24372
0.00286472a
11
u + 0.00833889a
10
u + ··· + 0.562457a 0.832737
a
3
=
0.00602071a
11
u 0.0204554a
10
u + ··· + 0.0565892a + 1.03823
0.00946796a
11
u 0.0363495a
10
u + ··· + 1.85714a + 2.61648
a
2
=
0.00631197a
11
u + 0.0242330a
10
u + ··· 1.23809a 2.41098
0.00286472a
11
u + 0.00833889a
10
u + ··· + 0.562457a 0.832737
a
8
=
0.0535869a
11
u + 0.00623328a
10
u + ··· + 5.66354a 0.143400
0.0643124a
11
u + 0.00309767a
10
u + ··· + 7.15396a 1.30629
a
7
=
0.0183450a
11
u + 0.214734a
10
u + ··· + 1.71015a 3.10299
0.00922299a
11
u + 0.168170a
10
u + ··· + 1.41669a 2.28054
a
10
=
0.107560a
11
u 0.0410873a
10
u + ··· 1.69236a 2.46606
0.0907209a
11
u 0.0394227a
10
u + ··· 1.61846a 0.543159
(ii) Obstruction class = 1
(iii) Cusp Shapes =
133284116432454129908660
4068027487962543539939429
a
11
u +
1093266323961776835486728
4068027487962543539939429
a
10
u +
··· +
9514250227401971513320248
4068027487962543539939429
a
32385451624456899956132574
4068027487962543539939429
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
4
c
2
, c
10
u
24
5u
23
+ ··· 70u 359
c
3
, c
8
, c
12
u
24
u
23
+ ··· 4244u + 59
c
4
, c
5
, c
11
(u
2
+ u 1)
12
c
6
, c
9
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
c
7
u
24
+ u
23
+ ··· 34758u 11549
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
4
c
2
, c
10
y
24
y
23
+ ··· + 306712y + 128881
c
3
, c
8
, c
12
y
24
+ 35y
23
+ ··· 17208900y + 3481
c
4
, c
5
, c
11
(y
2
3y + 1)
12
c
6
, c
9
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
4
c
7
y
24
+ 27y
23
+ ··· 597684620y + 133379401
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 0.449650 + 0.833274I
b = 0.34833 + 1.76411I
8.88201 + 1.97241I 7.42428 3.68478I
u = 0.618034
a = 0.449650 0.833274I
b = 0.34833 1.76411I
8.88201 1.97241I 7.42428 + 3.68478I
u = 0.618034
a = 1.40776 + 0.25253I
b = 1.053060 + 0.516427I
2.22618 4.59213I 3.41886 + 3.20482I
u = 0.618034
a = 1.40776 0.25253I
b = 1.053060 0.516427I
2.22618 + 4.59213I 3.41886 3.20482I
u = 0.618034
a = 1.55325
b = 0.936974
1.73832 0.269500
u = 0.618034
a = 0.63314 + 1.45797I
b = 0.14946 + 1.45797I
5.18291 1.41678 + 0.I
u = 0.618034
a = 0.63314 1.45797I
b = 0.14946 1.45797I
5.18291 1.41678 + 0.I
u = 0.618034
a = 2.47602
b = 0.0142072
1.73832 0.269500
u = 0.618034
a = 0.84151 + 2.33940I
b = 0.043531 + 1.408560I
8.88201 1.97241I 7.42428 + 3.68478I
u = 0.618034
a = 0.84151 2.33940I
b = 0.043531 1.408560I
8.88201 + 1.97241I 7.42428 3.68478I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.618034
a = 2.57392 + 0.67952I
b = 0.113108 + 0.415629I
2.22618 + 4.59213I 3.41886 3.20482I
u = 0.618034
a = 2.57392 0.67952I
b = 0.113108 0.415629I
2.22618 4.59213I 3.41886 + 3.20482I
u = 1.61803
a = 0.119315 + 0.970364I
b = 0.820632 + 0.869565I
10.12190 4.59213I 3.41886 + 3.20482I
u = 1.61803
a = 0.119315 0.970364I
b = 0.820632 0.869565I
10.12190 + 4.59213I 3.41886 3.20482I
u = 1.61803
a = 0.293931 + 0.836107I
b = 1.24511 + 0.83611I
6.15736 60.269499 + 0.10I
u = 1.61803
a = 0.293931 0.836107I
b = 1.24511 0.83611I
6.15736 60.269499 + 0.10I
u = 1.61803
a = 0.700234 + 1.032660I
b = 1.64018 + 1.13346I
10.12190 + 4.59213I 3.41886 3.20482I
u = 1.61803
a = 0.700234 1.032660I
b = 1.64018 1.13346I
10.12190 4.59213I 3.41886 + 3.20482I
u = 1.61803
a = 0.09237 + 2.05693I
b = 0.39130 + 2.05693I
13.0786 1.41678 + 0.I
u = 1.61803
a = 0.09237 2.05693I
b = 0.39130 2.05693I
13.0786 1.41678 + 0.I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.61803
a = 0.11987 + 2.08307I
b = 0.18493 + 1.72753I
16.7777 + 1.9724I 7.42428 3.68478I
u = 1.61803
a = 0.11987 2.08307I
b = 0.18493 1.72753I
16.7777 1.9724I 7.42428 + 3.68478I
u = 1.61803
a = 0.30825 + 2.30281I
b = 0.61305 + 2.65836I
16.7777 1.9724I 7.42428 + 3.68478I
u = 1.61803
a = 0.30825 2.30281I
b = 0.61305 2.65836I
16.7777 + 1.9724I 7.42428 3.68478I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
4
)(u
22
19u
21
+ ··· + 33u + 11)
· (u
30
14u
29
+ ··· 1674u + 180)
c
2
, c
10
(u
22
u
21
+ ··· 5u
2
1)(u
24
5u
23
+ ··· 70u 359)
· (u
30
u
29
+ ··· 4u + 1)
c
3
, c
8
(u
22
+ 8u
20
+ ··· + 6u
2
1)(u
24
u
23
+ ··· 4244u + 59)
· (u
30
+ 25u
28
+ ··· + 14u
2
+ 1)
c
4
, c
5
((u
2
+ u 1)
12
)(u
22
12u
20
+ ··· + 2u + 1)
· (u
30
13u
29
+ ··· 96u + 64)
c
6
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
)(u
22
+ 6u
21
+ ··· + 26u + 5)
· (u
30
+ 9u
29
+ ··· + 58u + 4)
c
7
(u
22
u
21
+ ··· + 6u
2
1)(u
24
+ u
23
+ ··· 34758u 11549)
· (u
30
+ u
29
+ ··· + 134u + 43)
c
9
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
4
)(u
22
6u
21
+ ··· 26u + 5)
· (u
30
+ 9u
29
+ ··· + 58u + 4)
c
11
((u
2
+ u 1)
12
)(u
22
12u
20
+ ··· 2u + 1)
· (u
30
13u
29
+ ··· 96u + 64)
c
12
(u
22
+ 8u
20
+ ··· + 6u
2
1)(u
24
u
23
+ ··· 4244u + 59)
· (u
30
+ 25u
28
+ ··· + 14u
2
+ 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
4
· (y
22
31y
21
+ ··· 19833y + 121)
· (y
30
42y
29
+ ··· 660636y + 32400)
c
2
, c
10
(y
22
3y
21
+ ··· + 10y + 1)(y
24
y
23
+ ··· + 306712y + 128881)
· (y
30
+ 27y
29
+ ··· + 10y + 1)
c
3
, c
8
, c
12
(y
22
+ 16y
21
+ ··· 12y + 1)(y
24
+ 35y
23
+ ··· 17208900y + 3481)
· (y
30
+ 50y
29
+ ··· + 28y + 1)
c
4
, c
5
, c
11
((y
2
3y + 1)
12
)(y
22
24y
21
+ ··· 16y + 1)
· (y
30
27y
29
+ ··· + 7168y + 4096)
c
6
, c
9
((y
6
+ 5y
5
+ ··· 5y + 1)
4
)(y
22
+ 16y
21
+ ··· + 44y + 25)
· (y
30
+ 21y
29
+ ··· 204y + 16)
c
7
(y
22
+ 15y
21
+ ··· 12y + 1)
· (y
24
+ 27y
23
+ ··· 597684620y + 133379401)
· (y
30
+ 37y
29
+ ··· 12796y + 1849)
21