11a
37
(K11a
37
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 11 10 3 5 7 6 9
Solving Sequence
2,5
4 1
3,9
8 7 11 6 10
c
4
c
1
c
2
c
8
c
7
c
11
c
5
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−48u
49
+ 213u
48
+ ··· + 4b + 63, 29u
49
118u
48
+ ··· + 4a 19, u
50
5u
49
+ ··· u + 1i
I
u
2
= hb
4
b
3
+ b
2
+ 1, a, u + 1i
* 2 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−48u
49
+ 213u
48
+ · · · + 4b + 63, 29u
49
118u
48
+ · · · + 4a
19, u
50
5u
49
+ · · · u + 1i
(i) Arc colorings
a
2
=
0
u
a
5
=
1
0
a
4
=
1
u
2
a
1
=
u
u
3
+ u
a
3
=
u
3
u
5
u
3
+ u
a
9
=
29
4
u
49
+
59
2
u
48
+ ··· +
5
2
u +
19
4
12u
49
213
4
u
48
+ ···
1
4
u
63
4
a
8
=
19.2500u
49
+ 82.7500u
48
+ ··· + 2.75000u + 20.5000
12u
49
213
4
u
48
+ ···
1
4
u
63
4
a
7
=
9u
49
+
149
4
u
48
+ ··· +
17
4
u +
35
4
51
4
u
49
223
4
u
48
+ ··· +
5
4
u 15
a
11
=
u
10
+ 3u
8
2u
7
4u
6
+ 4u
5
+ u
4
4u
3
+ u
2
+ 2u 1
1
8
u
49
1
2
u
48
+ ··· + 2u
1
8
a
6
=
1
8
u
49
+
1
2
u
48
+ ··· 2u +
9
8
21
8
u
49
43
4
u
48
+ ···
1
4
u
23
8
a
10
=
1
2
u
49
+
9
4
u
48
+ ··· +
17
4
u
1
4
7
2
u
49
17u
48
+ ··· 2u 7
a
10
=
1
2
u
49
+
9
4
u
48
+ ··· +
17
4
u
1
4
7
2
u
49
17u
48
+ ··· 2u 7
(ii) Obstruction class = 1
(iii) Cusp Shapes =
85
4
u
49
+
399
4
u
48
+ ···
53
4
u +
65
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
50
5u
49
+ ··· u + 1
c
2
u
50
+ 23u
49
+ ··· 15u + 1
c
3
, c
7
u
50
+ u
49
+ ··· + 24u + 16
c
5
, c
6
, c
9
c
10
u
50
2u
49
+ ··· 3u + 1
c
8
u
50
2u
49
+ ··· 1491u + 445
c
11
u
50
+ 14u
49
+ ··· + 1257u + 131
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
50
23y
49
+ ··· + 15y + 1
c
2
y
50
+ 13y
49
+ ··· + 3y + 1
c
3
, c
7
y
50
27y
49
+ ··· 2624y + 256
c
5
, c
6
, c
9
c
10
y
50
+ 58y
49
+ ··· + y + 1
c
8
y
50
22y
49
+ ··· 648671y + 198025
c
11
y
50
10y
49
+ ··· + 86009y + 17161
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.582859 + 0.818130I
a = 0.981092 + 0.022618I
b = 1.038970 0.194067I
5.74926 1.32005I 5.01799 + 3.45627I
u = 0.582859 0.818130I
a = 0.981092 0.022618I
b = 1.038970 + 0.194067I
5.74926 + 1.32005I 5.01799 3.45627I
u = 0.435613 + 0.882797I
a = 1.36085 0.66520I
b = 1.36121 0.51636I
4.77931 + 5.21174I 3.15504 5.31436I
u = 0.435613 0.882797I
a = 1.36085 + 0.66520I
b = 1.36121 + 0.51636I
4.77931 5.21174I 3.15504 + 5.31436I
u = 0.928435 + 0.426925I
a = 1.46100 + 0.63623I
b = 0.719839 0.472231I
1.61695 + 1.61236I 6.30739 1.92987I
u = 0.928435 0.426925I
a = 1.46100 0.63623I
b = 0.719839 + 0.472231I
1.61695 1.61236I 6.30739 + 1.92987I
u = 0.429603 + 0.933534I
a = 1.62869 + 0.71121I
b = 1.52592 + 0.52069I
12.7949 + 7.4878I 5.12788 3.72934I
u = 0.429603 0.933534I
a = 1.62869 0.71121I
b = 1.52592 0.52069I
12.7949 7.4878I 5.12788 + 3.72934I
u = 0.935093 + 0.462361I
a = 0.633478 + 0.219321I
b = 0.112627 1.282310I
1.42561 3.60776I 3.00000 + 7.46646I
u = 0.935093 0.462361I
a = 0.633478 0.219321I
b = 0.112627 + 1.282310I
1.42561 + 3.60776I 3.00000 7.46646I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.861919 + 0.408962I
a = 0.508762 0.083121I
b = 0.521608 + 1.221570I
1.048050 + 0.087468I 1.42204 + 0.46193I
u = 0.861919 0.408962I
a = 0.508762 + 0.083121I
b = 0.521608 1.221570I
1.048050 0.087468I 1.42204 0.46193I
u = 0.469477 + 0.811158I
a = 1.016760 + 0.499666I
b = 1.154940 + 0.462231I
2.92925 + 1.64742I 0.497780 0.432754I
u = 0.469477 0.811158I
a = 1.016760 0.499666I
b = 1.154940 0.462231I
2.92925 1.64742I 0.497780 + 0.432754I
u = 0.632917 + 0.878463I
a = 1.205340 0.345103I
b = 1.089650 0.054007I
14.1472 2.8867I 6.24429 + 0.I
u = 0.632917 0.878463I
a = 1.205340 + 0.345103I
b = 1.089650 + 0.054007I
14.1472 + 2.8867I 6.24429 + 0.I
u = 0.947722 + 0.527766I
a = 1.90433 0.66549I
b = 1.091640 + 0.560170I
0.06909 + 4.84703I 0. 7.27549I
u = 0.947722 0.527766I
a = 1.90433 + 0.66549I
b = 1.091640 0.560170I
0.06909 4.84703I 0. + 7.27549I
u = 0.682129 + 0.592727I
a = 1.61933 + 1.77257I
b = 1.041110 + 0.419266I
8.58536 2.27131I 2.70256 + 0.I
u = 0.682129 0.592727I
a = 1.61933 1.77257I
b = 1.041110 0.419266I
8.58536 + 2.27131I 2.70256 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.957660 + 0.583300I
a = 2.17619 + 0.70245I
b = 1.33546 0.59049I
7.74509 + 6.95904I 0
u = 0.957660 0.583300I
a = 2.17619 0.70245I
b = 1.33546 + 0.59049I
7.74509 6.95904I 0
u = 1.123510 + 0.157529I
a = 0.550330 0.046161I
b = 0.309772 0.513002I
2.34402 + 0.36505I 0
u = 1.123510 0.157529I
a = 0.550330 + 0.046161I
b = 0.309772 + 0.513002I
2.34402 0.36505I 0
u = 0.803708 + 0.317036I
a = 0.479992 0.047063I
b = 0.96186 1.16924I
5.81553 + 2.38249I 3.49858 + 1.94330I
u = 0.803708 0.317036I
a = 0.479992 + 0.047063I
b = 0.96186 + 1.16924I
5.81553 2.38249I 3.49858 1.94330I
u = 1.027460 + 0.497180I
a = 0.894781 0.329352I
b = 0.41118 + 1.40760I
4.51917 5.78869I 0
u = 1.027460 0.497180I
a = 0.894781 + 0.329352I
b = 0.41118 1.40760I
4.51917 + 5.78869I 0
u = 0.701181 + 0.467599I
a = 1.30386 1.46602I
b = 0.748263 0.194492I
0.729964 0.675494I 1.06714 + 1.67748I
u = 0.701181 0.467599I
a = 1.30386 + 1.46602I
b = 0.748263 + 0.194492I
0.729964 + 0.675494I 1.06714 1.67748I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.131350 + 0.330216I
a = 1.100770 + 0.196944I
b = 0.101239 + 1.026310I
3.45731 + 1.19827I 0
u = 1.131350 0.330216I
a = 1.100770 0.196944I
b = 0.101239 1.026310I
3.45731 1.19827I 0
u = 1.036300 + 0.664231I
a = 0.840415 1.006820I
b = 0.822961 + 0.495838I
4.37658 4.22003I 0
u = 1.036300 0.664231I
a = 0.840415 + 1.006820I
b = 0.822961 0.495838I
4.37658 + 4.22003I 0
u = 1.251000 + 0.108910I
a = 0.284422 + 0.232631I
b = 0.871117 + 0.511779I
1.11589 2.48404I 0
u = 1.251000 0.108910I
a = 0.284422 0.232631I
b = 0.871117 0.511779I
1.11589 + 2.48404I 0
u = 1.028110 + 0.728538I
a = 0.69726 + 1.30827I
b = 0.829533 0.089406I
12.94610 3.03404I 0
u = 1.028110 0.728538I
a = 0.69726 1.30827I
b = 0.829533 + 0.089406I
12.94610 + 3.03404I 0
u = 1.100010 + 0.633178I
a = 1.17840 + 0.90974I
b = 1.17520 0.79670I
1.03930 7.06574I 0
u = 1.100010 0.633178I
a = 1.17840 0.90974I
b = 1.17520 + 0.79670I
1.03930 + 7.06574I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.133290 + 0.650060I
a = 1.34813 1.01237I
b = 1.43569 + 0.74867I
2.67414 10.86920I 0
u = 1.133290 0.650060I
a = 1.34813 + 1.01237I
b = 1.43569 0.74867I
2.67414 + 10.86920I 0
u = 1.311520 + 0.106975I
a = 0.125488 0.322812I
b = 1.176990 0.583698I
6.58516 4.39707I 0
u = 1.311520 0.106975I
a = 0.125488 + 0.322812I
b = 1.176990 + 0.583698I
6.58516 + 4.39707I 0
u = 1.154930 + 0.665889I
a = 1.46673 + 1.10969I
b = 1.62351 0.67827I
10.5867 13.3384I 0
u = 1.154930 0.665889I
a = 1.46673 1.10969I
b = 1.62351 + 0.67827I
10.5867 + 13.3384I 0
u = 0.004533 + 0.531412I
a = 0.34509 1.83693I
b = 0.385670 0.859631I
6.72549 + 2.13344I 2.98920 3.27411I
u = 0.004533 0.531412I
a = 0.34509 + 1.83693I
b = 0.385670 + 0.859631I
6.72549 2.13344I 2.98920 + 3.27411I
u = 0.101318 + 0.238648I
a = 0.87875 + 2.12555I
b = 0.149430 + 0.468790I
0.000511 + 1.051120I 0.14079 6.76805I
u = 0.101318 0.238648I
a = 0.87875 2.12555I
b = 0.149430 0.468790I
0.000511 1.051120I 0.14079 + 6.76805I
9
II. I
u
2
= hb
4
b
3
+ b
2
+ 1, a, u + 1i
(i) Arc colorings
a
2
=
0
1
a
5
=
1
0
a
4
=
1
1
a
1
=
1
0
a
3
=
1
1
a
9
=
0
b
a
8
=
b
b
a
7
=
b
b
a
11
=
1
b
2
a
6
=
b
2
+ 1
b
3
b
2
1
a
10
=
b
3
b
3
+ b
a
10
=
b
3
b
3
+ b
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4b
2
+ 3b 5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
7
u
4
c
5
, c
6
u
4
u
3
+ 3u
2
2u + 1
c
8
, c
11
u
4
+ u
3
+ u
2
+ 1
c
9
, c
10
u
4
+ u
3
+ 3u
2
+ 2u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
6
, c
9
c
10
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
8
, c
11
y
4
+ y
3
+ 3y
2
+ 2y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 0.351808 + 0.720342I
1.85594 1.41510I 4.47493 + 4.18840I
u = 1.00000
a = 0
b = 0.351808 0.720342I
1.85594 + 1.41510I 4.47493 4.18840I
u = 1.00000
a = 0
b = 0.851808 + 0.911292I
5.14581 + 3.16396I 2.02507 3.47609I
u = 1.00000
a = 0
b = 0.851808 0.911292I
5.14581 3.16396I 2.02507 + 3.47609I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
4
)(u
50
5u
49
+ ··· u + 1)
c
2
((u + 1)
4
)(u
50
+ 23u
49
+ ··· 15u + 1)
c
3
, c
7
u
4
(u
50
+ u
49
+ ··· + 24u + 16)
c
4
((u + 1)
4
)(u
50
5u
49
+ ··· u + 1)
c
5
, c
6
(u
4
u
3
+ 3u
2
2u + 1)(u
50
2u
49
+ ··· 3u + 1)
c
8
(u
4
+ u
3
+ u
2
+ 1)(u
50
2u
49
+ ··· 1491u + 445)
c
9
, c
10
(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
50
2u
49
+ ··· 3u + 1)
c
11
(u
4
+ u
3
+ u
2
+ 1)(u
50
+ 14u
49
+ ··· + 1257u + 131)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
4
)(y
50
23y
49
+ ··· + 15y + 1)
c
2
((y 1)
4
)(y
50
+ 13y
49
+ ··· + 3y + 1)
c
3
, c
7
y
4
(y
50
27y
49
+ ··· 2624y + 256)
c
5
, c
6
, c
9
c
10
(y
4
+ 5y
3
+ 7y
2
+ 2y + 1)(y
50
+ 58y
49
+ ··· + y + 1)
c
8
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
50
22y
49
+ ··· 648671y + 198025)
c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
50
10y
49
+ ··· + 86009y + 17161)
15