12n
0785
(K12n
0785
)
A knot diagram
1
Linearized knot diagam
4 6 9 12 11 10 3 12 7 2 5 9
Solving Sequence
4,12 5,9
1 2 3 8 7 11 6 10
c
4
c
12
c
1
c
3
c
8
c
7
c
11
c
5
c
10
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−27u
23
304u
22
+ ··· + 32b 800, 25u
23
246u
22
+ ··· + 64a + 5312,
u
24
+ 12u
23
+ ··· + 736u + 64i
I
u
2
= h1.86388 × 10
20
a
11
u
2
7.50093 × 10
19
a
10
u
2
+ ··· + 1.24248 × 10
20
a + 1.90879 × 10
20
,
a
11
u
2
+ 13a
10
u
2
+ ··· + 2212a + 924, u
3
u
2
+ 2u 1i
I
u
3
= hu
13
+ u
12
+ 8u
11
+ 6u
10
+ 24u
9
+ 14u
8
+ 32u
7
+ 17u
6
+ 15u
5
+ 12u
4
u
3
+ 4u
2
+ b + 2u,
u
12
+ u
11
+ 8u
10
+ 6u
9
+ 24u
8
+ 14u
7
+ 32u
6
+ 17u
5
+ 15u
4
+ 12u
3
u
2
+ a + 4u + 2,
u
15
+ u
14
+ 10u
13
+ 8u
12
+ 40u
11
+ 26u
10
+ 80u
9
+ 44u
8
+ 78u
7
+ 40u
6
+ 25u
5
+ 16u
4
5u
3
+ 2u + 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−27u
23
304u
22
+ · · · + 32b 800, 25u
23
246u
22
+ · · · + 64a +
5312, u
24
+ 12u
23
+ · · · + 736u + 64i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
25
64
u
23
+
123
32
u
22
+ ···
2843
4
u 83
27
32
u
23
+
19
2
u
22
+ ··· +
741
2
u + 25
a
1
=
u
23
47
4
u
22
+ ··· 1008u
191
2
1
4
u
23
7
2
u
22
+ ···
1279
2
u 64
a
2
=
0.750000u
23
8.25000u
22
+ ··· 368.500u 31.5000
1
4
u
23
7
2
u
22
+ ···
1279
2
u 64
a
3
=
u
23
+
47
4
u
22
+ ··· + 1008u +
193
2
1
4
u
23
+
7
2
u
22
+ ··· +
1281
2
u + 64
a
8
=
25
64
u
23
+
123
32
u
22
+ ···
2843
4
u 83
47
32
u
23
+
133
8
u
22
+ ··· +
1933
2
u + 79
a
7
=
1
2
u
23
111
16
u
22
+ ··· 1654u 165
15
8
u
23
+
337
16
u
22
+ ··· + 868u + 64
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
7
4
u
23
81
4
u
22
+ ···
6717
4
u 160
5
4
u
23
+ 14u
22
+ ··· + 601u + 48
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
2
u
23
23
4
u
22
+ ··· 300u 34
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
19u
23
+ ··· 1308u + 680
c
2
, c
10
u
24
u
23
+ ··· 2u + 1
c
3
, c
8
, c
12
u
24
u
23
+ ··· u + 1
c
4
, c
5
, c
11
u
24
+ 12u
23
+ ··· + 736u + 64
c
6
, c
9
u
24
+ 11u
23
+ ··· + 116u + 8
c
7
u
24
+ u
23
+ ··· 38u + 21
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
23y
23
+ ··· 29904y + 462400
c
2
, c
10
y
24
+ y
23
+ ··· + 16y + 1
c
3
, c
8
, c
12
y
24
+ 31y
23
+ ··· + 23y + 1
c
4
, c
5
, c
11
y
24
+ 22y
23
+ ··· + 11264y + 4096
c
6
, c
9
y
24
+ 19y
23
+ ··· 464y + 64
c
7
y
24
+ 15y
23
+ ··· + 3344y + 441
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.010640 + 0.471333I
a = 0.44326 1.53014I
b = 0.27323 1.75534I
10.7115 + 10.0939I 0.04933 6.43639I
u = 1.010640 0.471333I
a = 0.44326 + 1.53014I
b = 0.27323 + 1.75534I
10.7115 10.0939I 0.04933 + 6.43639I
u = 0.503255 + 0.574177I
a = 0.835381 + 0.150338I
b = 0.506730 0.403999I
2.49625 + 3.04099I 1.32899 3.32840I
u = 0.503255 0.574177I
a = 0.835381 0.150338I
b = 0.506730 + 0.403999I
2.49625 3.04099I 1.32899 + 3.32840I
u = 1.180380 + 0.399451I
a = 0.295273 + 1.321890I
b = 0.17950 + 1.67829I
5.17987 + 4.24750I 3.02010 8.12803I
u = 1.180380 0.399451I
a = 0.295273 1.321890I
b = 0.17950 1.67829I
5.17987 4.24750I 3.02010 + 8.12803I
u = 1.004630 + 0.835014I
a = 0.759653 1.021870I
b = 0.09010 1.66092I
9.75365 3.54379I 0.99118 + 4.27014I
u = 1.004630 0.835014I
a = 0.759653 + 1.021870I
b = 0.09010 + 1.66092I
9.75365 + 3.54379I 0.99118 4.27014I
u = 0.308009 + 0.555063I
a = 0.449528 + 0.382050I
b = 0.073603 + 0.367191I
0.196861 + 1.129420I 2.90140 6.41925I
u = 0.308009 0.555063I
a = 0.449528 0.382050I
b = 0.073603 0.367191I
0.196861 1.129420I 2.90140 + 6.41925I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.516904 + 0.317864I
a = 0.256314 1.078460I
b = 0.475294 0.475988I
3.21746 + 0.49631I 0.08904 3.40641I
u = 0.516904 0.317864I
a = 0.256314 + 1.078460I
b = 0.475294 + 0.475988I
3.21746 0.49631I 0.08904 + 3.40641I
u = 0.21488 + 1.45533I
a = 0.517010 + 0.329331I
b = 0.590380 + 0.681655I
1.83425 + 1.78702I 1.23481 2.86773I
u = 0.21488 1.45533I
a = 0.517010 0.329331I
b = 0.590380 0.681655I
1.83425 1.78702I 1.23481 + 2.86773I
u = 0.13976 + 1.54947I
a = 0.236789 0.330108I
b = 0.544586 + 0.320761I
4.59873 + 5.35349I 4.00000 + 0.I
u = 0.13976 1.54947I
a = 0.236789 + 0.330108I
b = 0.544586 0.320761I
4.59873 5.35349I 4.00000 + 0.I
u = 0.10640 + 1.57603I
a = 0.285679 + 0.026175I
b = 0.071649 0.447453I
7.58277 + 2.71010I 1.02540 3.86743I
u = 0.10640 1.57603I
a = 0.285679 0.026175I
b = 0.071649 + 0.447453I
7.58277 2.71010I 1.02540 + 3.86743I
u = 0.43383 + 1.51943I
a = 0.868418 0.623221I
b = 0.57020 1.58987I
0.89209 + 9.87509I 6.51442 6.39656I
u = 0.43383 1.51943I
a = 0.868418 + 0.623221I
b = 0.57020 + 1.58987I
0.89209 9.87509I 6.51442 + 6.39656I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.39076 + 1.53782I
a = 0.947929 + 0.618450I
b = 0.58065 + 1.69940I
4.2980 + 15.1741I 4.00000 7.27803I
u = 0.39076 1.53782I
a = 0.947929 0.618450I
b = 0.58065 1.69940I
4.2980 15.1741I 4.00000 + 7.27803I
u = 0.62030 + 1.53231I
a = 0.739547 + 0.593643I
b = 0.45090 + 1.50145I
1.65465 + 3.46994I 7.08633 7.90223I
u = 0.62030 1.53231I
a = 0.739547 0.593643I
b = 0.45090 1.50145I
1.65465 3.46994I 7.08633 + 7.90223I
7
II. I
u
2
= h1.86 × 10
20
a
11
u
2
7.50 × 10
19
a
10
u
2
+ · · · + 1.24 × 10
20
a + 1.91 ×
10
20
, a
11
u
2
+ 13a
10
u
2
+ · · · + 2212a + 924, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
a
3.24277a
11
u
2
+ 1.30501a
10
u
2
+ ··· 2.16165a 3.32090
a
1
=
a
2
u
0.581414a
11
u
2
+ 3.43653a
10
u
2
+ ··· 7.52437a 2.00296
a
2
=
0.581414a
11
u
2
3.43653a
10
u
2
+ ··· + 7.52437a + 2.00296
0.581414a
11
u
2
+ 3.43653a
10
u
2
+ ··· 7.52437a 2.00296
a
3
=
3.13144a
11
u
2
+ 0.478770a
10
u
2
+ ··· 1.90212a + 2.66819
6.90860a
11
u
2
+ 7.51166a
10
u
2
+ ··· 16.6685a 8.90871
a
8
=
a
3.24277a
11
u
2
+ 1.30501a
10
u
2
+ ··· 2.16165a 3.32090
a
7
=
1.35924a
11
u
2
0.912568a
10
u
2
+ ··· + 2.14523a 1.30624
0.862884a
11
u
2
3.85601a
10
u
2
+ ··· + 6.58457a + 2.47234
a
11
=
u
u
2
u + 1
a
6
=
u
2
+ 1
u
2
u + 1
a
10
=
1.44285a
11
u
2
0.692279a
10
u
2
+ ··· + 1.99663a + 1.48796
2.28994a
11
u
2
+ 0.187392a
10
u
2
+ ··· 0.897794a + 2.62937
(ii) Obstruction class = 1
(iii) Cusp Shapes =
739013742275411059680
57478066342067795059
a
11
u
2
+
40574843941814876112
57478066342067795059
a
10
u
2
+ ··· +
328493151198246771284
57478066342067795059
a
454117950256466456506
57478066342067795059
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
6
c
2
, c
10
u
36
5u
35
+ ··· + 8u 1
c
3
, c
8
, c
12
u
36
u
35
+ ··· 7944u + 1231
c
4
, c
5
, c
11
(u
3
u
2
+ 2u 1)
12
c
6
, c
9
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
c
7
u
36
+ u
35
+ ··· + 4818u 3979
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
6
c
2
, c
10
y
36
5y
35
+ ··· + 2420y
2
+ 1
c
3
, c
8
, c
12
y
36
+ 35y
35
+ ··· 8165144y + 1515361
c
4
, c
5
, c
11
(y
3
+ 3y
2
+ 2y 1)
12
c
6
, c
9
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
6
c
7
y
36
+ 23y
35
+ ··· 900566708y + 15832441
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.292445 0.976914I
b = 0.010553 0.974222I
5.74941 2.82812I 7.77925 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.879256 + 0.628433I
b = 0.20795 + 1.64474I
1.17182 2.82812I 8.92653 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.835208 0.315914I
b = 0.22908 2.03181I
4.87092 0.85571I 0.085479 0.705331I
u = 0.215080 + 1.307140I
a = 0.818019 0.239393I
b = 1.59293 0.13103I
1.78490 7.42025I 4.09089 + 6.18427I
u = 0.215080 + 1.307140I
a = 1.103510 + 0.320281I
b = 1.04255 + 1.64876I
4.87092 4.80053I 0.08548 + 6.66423I
u = 0.215080 + 1.307140I
a = 0.097635 + 1.202570I
b = 0.136981 + 1.120760I
1.78490 7.42025I 4.09089 + 6.18427I
u = 0.215080 + 1.307140I
a = 1.199620 0.356474I
b = 0.63234 1.28448I
1.17182 2.82812I 8.92653 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.505561 + 0.535105I
b = 0.404790 + 0.730191I
1.78490 + 1.76400I 4.09089 0.22537I
u = 0.215080 + 1.307140I
a = 0.726954 + 0.111541I
b = 1.339860 0.172152I
5.74941 2.82812I 7.77925 + 2.97945I
u = 0.215080 + 1.307140I
a = 0.593503 + 0.212019I
b = 0.808193 + 0.545750I
1.78490 + 1.76400I 4.09089 0.22537I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 1.10032 0.97863I
b = 0.18131 1.51133I
4.87092 4.80053I 0.08548 + 6.66423I
u = 0.215080 + 1.307140I
a = 1.48534 + 0.41966I
b = 0.233308 + 1.159680I
4.87092 0.85571I 0.085479 0.705331I
u = 0.215080 1.307140I
a = 0.292445 + 0.976914I
b = 0.010553 + 0.974222I
5.74941 + 2.82812I 7.77925 2.97945I
u = 0.215080 1.307140I
a = 0.879256 0.628433I
b = 0.20795 1.64474I
1.17182 + 2.82812I 8.92653 2.97945I
u = 0.215080 1.307140I
a = 0.835208 + 0.315914I
b = 0.22908 + 2.03181I
4.87092 + 0.85571I 0.085479 + 0.705331I
u = 0.215080 1.307140I
a = 0.818019 + 0.239393I
b = 1.59293 + 0.13103I
1.78490 + 7.42025I 4.09089 6.18427I
u = 0.215080 1.307140I
a = 1.103510 0.320281I
b = 1.04255 1.64876I
4.87092 + 4.80053I 0.08548 6.66423I
u = 0.215080 1.307140I
a = 0.097635 1.202570I
b = 0.136981 1.120760I
1.78490 + 7.42025I 4.09089 6.18427I
u = 0.215080 1.307140I
a = 1.199620 + 0.356474I
b = 0.63234 + 1.28448I
1.17182 + 2.82812I 8.92653 2.97945I
u = 0.215080 1.307140I
a = 0.505561 0.535105I
b = 0.404790 0.730191I
1.78490 1.76400I 4.09089 + 0.22537I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.215080 1.307140I
a = 0.726954 0.111541I
b = 1.339860 + 0.172152I
5.74941 + 2.82812I 7.77925 2.97945I
u = 0.215080 1.307140I
a = 0.593503 0.212019I
b = 0.808193 0.545750I
1.78490 1.76400I 4.09089 + 0.22537I
u = 0.215080 1.307140I
a = 1.10032 + 0.97863I
b = 0.18131 + 1.51133I
4.87092 + 4.80053I 0.08548 6.66423I
u = 0.215080 1.307140I
a = 1.48534 0.41966I
b = 0.233308 1.159680I
4.87092 + 0.85571I 0.085479 + 0.705331I
u = 0.569840
a = 0.037672 + 0.791957I
b = 1.126600 + 0.574406I
2.35268 4.59213I 2.43837 + 3.20482I
u = 0.569840
a = 0.037672 0.791957I
b = 1.126600 0.574406I
2.35268 + 4.59213I 2.43837 3.20482I
u = 0.569840
a = 0.371632
b = 0.950019
1.61183 1.25000
u = 0.569840
a = 1.66717
b = 0.211771
1.61183 1.25000
u = 0.569840
a = 1.97705 + 1.00801I
b = 0.021467 + 0.451289I
2.35268 + 4.59213I 2.43837 3.20482I
u = 0.569840
a = 1.97705 1.00801I
b = 0.021467 0.451289I
2.35268 4.59213I 2.43837 + 3.20482I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.569840
a = 0.01895 + 2.50724I
b = 0.38309 + 1.86300I
9.00850 + 1.97241I 6.44379 3.68478I
u = 0.569840
a = 0.01895 2.50724I
b = 0.38309 1.86300I
9.00850 1.97241I 6.44379 + 3.68478I
u = 0.569840
a = 0.32036 + 2.66289I
b = 0.18256 + 1.51742I
5.30941 2.39727 + 0.I
u = 0.569840
a = 0.32036 2.66289I
b = 0.18256 1.51742I
5.30941 2.39727 + 0.I
u = 0.569840
a = 0.67227 + 3.26933I
b = 0.01080 + 1.42872I
9.00850 1.97241I 6.44379 + 3.68478I
u = 0.569840
a = 0.67227 3.26933I
b = 0.01080 1.42872I
9.00850 + 1.97241I 6.44379 3.68478I
14
III.
I
u
3
= hu
13
+ u
12
+ · · · + b + 2u, u
12
+ u
11
+ · · · + a + 2, u
15
+ u
14
+ · · · + 2u + 1i
(i) Arc colorings
a
4
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
9
=
u
12
u
11
+ ··· 4u 2
u
13
u
12
+ ··· 4u
2
2u
a
1
=
u
13
+ u
12
+ ··· 2u 1
u
14
+ u
13
+ ··· + 8u
3
2u
2
a
2
=
u
14
8u
12
+ ··· 2u 1
u
14
+ u
13
+ ··· + 8u
3
2u
2
a
3
=
u
13
+ u
12
+ ··· + 8u
2
2u
u
14
+ u
13
+ ··· 2u
2
u
a
8
=
u
12
u
11
+ ··· 4u 2
u
14
2u
13
+ ··· 6u
2
2u
a
7
=
u
14
10u
12
+ ··· + 4u 1
u
10
u
9
6u
8
4u
7
12u
6
5u
5
7u
4
u
3
+ 4u
2
+ 2u + 1
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
12
+ 8u
10
+ 26u
8
+ u
7
+ 40u
6
+ 6u
5
+ 24u
4
+ 12u
3
u
2
+ 6u
u
11
+ u
10
+ 7u
9
+ 5u
8
+ 18u
7
+ 10u
6
+ 20u
5
+ 10u
4
+ 7u
3
+ 4u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
14
4u
13
18u
12
27u
11
62u
10
71u
9
103u
8
86u
7
78u
6
42u
5
9u
4
10u
3
+ 17u
2
12u + 3
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
12u
14
+ ··· + 106u 7
c
2
, c
10
u
15
u
14
+ ··· 3u + 1
c
3
, c
8
u
15
+ u
14
+ ··· 5u
2
+ 1
c
4
, c
5
u
15
+ u
14
+ ··· + 2u + 1
c
6
u
15
+ 4u
14
+ ··· + 16u + 5
c
7
u
15
u
14
+ ··· + 19u 13
c
9
u
15
4u
14
+ ··· + 16u 5
c
11
u
15
u
14
+ ··· + 2u 1
c
12
u
15
u
14
+ ··· + 5u
2
1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
12y
14
+ ··· + 5160y 49
c
2
, c
10
y
15
3y
14
+ ··· + 13y 1
c
3
, c
8
, c
12
y
15
+ 11y
14
+ ··· + 10y 1
c
4
, c
5
, c
11
y
15
+ 19y
14
+ ··· + 4y 1
c
6
, c
9
y
15
+ 14y
14
+ ··· 84y 25
c
7
y
15
+ 11y
14
+ ··· + 517y 169
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.323844 + 1.269380I
a = 1.029620 + 0.553032I
b = 0.36857 + 1.48607I
2.53804 2.24615I 2.16387 + 0.54553I
u = 0.323844 1.269380I
a = 1.029620 0.553032I
b = 0.36857 1.48607I
2.53804 + 2.24615I 2.16387 0.54553I
u = 0.144598 + 1.313360I
a = 1.174410 0.519311I
b = 0.51223 1.61751I
4.36159 3.39759I 2.91969 + 0.94976I
u = 0.144598 1.313360I
a = 1.174410 + 0.519311I
b = 0.51223 + 1.61751I
4.36159 + 3.39759I 2.91969 0.94976I
u = 0.648777
a = 1.14669
b = 0.743944
2.16310 19.7840
u = 0.09083 + 1.51451I
a = 0.115298 + 0.423871I
b = 0.631485 0.213121I
4.83768 + 6.28589I 6.55684 7.16786I
u = 0.09083 1.51451I
a = 0.115298 0.423871I
b = 0.631485 + 0.213121I
4.83768 6.28589I 6.55684 + 7.16786I
u = 0.403094 + 0.263692I
a = 1.89519 2.58749I
b = 0.08164 1.54275I
8.01131 + 1.56669I 2.47871 0.14188I
u = 0.403094 0.263692I
a = 1.89519 + 2.58749I
b = 0.08164 + 1.54275I
8.01131 1.56669I 2.47871 + 0.14188I
u = 0.13670 + 1.53364I
a = 0.169899 0.313484I
b = 0.503998 0.217711I
8.19478 + 2.55021I 14.3952 0.7069I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.13670 1.53364I
a = 0.169899 + 0.313484I
b = 0.503998 + 0.217711I
8.19478 2.55021I 14.3952 + 0.7069I
u = 0.50718 + 1.50516I
a = 0.561674 + 0.312900I
b = 0.755832 + 0.686711I
2.15433 1.91136I 25.0958 + 12.5131I
u = 0.50718 1.50516I
a = 0.561674 0.312900I
b = 0.755832 0.686711I
2.15433 + 1.91136I 25.0958 12.5131I
u = 0.312435 + 0.251857I
a = 0.80984 1.74801I
b = 0.693274 + 0.342176I
1.35739 + 4.89958I 6.99805 6.23368I
u = 0.312435 0.251857I
a = 0.80984 + 1.74801I
b = 0.693274 0.342176I
1.35739 4.89958I 6.99805 + 6.23368I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
+ 5u
5
+ 7u
4
2u
2
+ 3u 1)
6
)(u
15
12u
14
+ ··· + 106u 7)
· (u
24
19u
23
+ ··· 1308u + 680)
c
2
, c
10
(u
15
u
14
+ ··· 3u + 1)(u
24
u
23
+ ··· 2u + 1)
· (u
36
5u
35
+ ··· + 8u 1)
c
3
, c
8
(u
15
+ u
14
+ ··· 5u
2
+ 1)(u
24
u
23
+ ··· u + 1)
· (u
36
u
35
+ ··· 7944u + 1231)
c
4
, c
5
((u
3
u
2
+ 2u 1)
12
)(u
15
+ u
14
+ ··· + 2u + 1)
· (u
24
+ 12u
23
+ ··· + 736u + 64)
c
6
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
+ 4u
14
+ ··· + 16u + 5)
· (u
24
+ 11u
23
+ ··· + 116u + 8)
c
7
(u
15
u
14
+ ··· + 19u 13)(u
24
+ u
23
+ ··· 38u + 21)
· (u
36
+ u
35
+ ··· + 4818u 3979)
c
9
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
4u
14
+ ··· + 16u 5)
· (u
24
+ 11u
23
+ ··· + 116u + 8)
c
11
((u
3
u
2
+ 2u 1)
12
)(u
15
u
14
+ ··· + 2u 1)
· (u
24
+ 12u
23
+ ··· + 736u + 64)
c
12
(u
15
u
14
+ ··· + 5u
2
1)(u
24
u
23
+ ··· u + 1)
· (u
36
u
35
+ ··· 7944u + 1231)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
11y
5
+ 45y
4
60y
3
10y
2
5y + 1)
6
· (y
15
12y
14
+ ··· + 5160y 49)
· (y
24
23y
23
+ ··· 29904y + 462400)
c
2
, c
10
(y
15
3y
14
+ ··· + 13y 1)(y
24
+ y
23
+ ··· + 16y + 1)
· (y
36
5y
35
+ ··· + 2420y
2
+ 1)
c
3
, c
8
, c
12
(y
15
+ 11y
14
+ ··· + 10y 1)(y
24
+ 31y
23
+ ··· + 23y + 1)
· (y
36
+ 35y
35
+ ··· 8165144y + 1515361)
c
4
, c
5
, c
11
((y
3
+ 3y
2
+ 2y 1)
12
)(y
15
+ 19y
14
+ ··· + 4y 1)
· (y
24
+ 22y
23
+ ··· + 11264y + 4096)
c
6
, c
9
((y
6
+ 5y
5
+ ··· 5y + 1)
6
)(y
15
+ 14y
14
+ ··· 84y 25)
· (y
24
+ 19y
23
+ ··· 464y + 64)
c
7
(y
15
+ 11y
14
+ ··· + 517y 169)(y
24
+ 15y
23
+ ··· + 3344y + 441)
· (y
36
+ 23y
35
+ ··· 900566708y + 15832441)
21