11a
38
(K11a
38
)
A knot diagram
1
Linearized knot diagam
4 1 8 2 9 11 3 6 5 7 10
Solving Sequence
3,7
8
4,11
6 9 5 10 1 2
c
7
c
3
c
6
c
8
c
5
c
10
c
11
c
2
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h1.39701 × 10
52
u
49
1.56890 × 10
52
u
48
+ ··· + 9.78680 × 10
53
b 2.06404 × 10
53
,
2.86648 × 10
52
u
49
4.68399 × 10
52
u
48
+ ··· + 9.78680 × 10
53
a 2.53995 × 10
54
, u
50
2u
49
+ ··· 80u + 64i
I
u
2
= h−36u
5
a
2
80u
4
a
2
+ 64u
3
a
2
+ 36u
5
7a
2
u
2
+ 80u
4
40a
2
u 64u
3
22a
2
276u
2
+ 283b + 40u + 22,
2u
5
a
2
+ u
5
a + ··· a 5, u
6
+ u
5
u
4
2u
3
+ u + 1i
I
u
3
= h−u
5
+ 2u
3
+ b u, u
4
+ 2u
3
3u
2
+ a 3u + 2, u
6
3u
4
+ 2u
2
+ 1i
I
v
1
= ha, 2v
3
+ 3v
2
+ 4b 8v + 3, 2v
4
v
3
+ 5v
2
+ v + 1i
* 4 irreducible components of dim
C
= 0, with total 78 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h1.40×10
52
u
49
1.57×10
52
u
48
+· · ·+9.79×10
53
b2.06×10
53
, 2.87×10
52
u
49
4.68 × 10
52
u
48
+ · · · + 9.79 × 10
53
a 2.54 × 10
54
, u
50
2u
49
+ · · · 80u + 64i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
0.0292893u
49
+ 0.0478602u
48
+ ··· + 0.349631u + 2.59529
0.0142744u
49
+ 0.0160307u
48
+ ··· 0.546290u + 0.210900
a
6
=
0.0506276u
49
0.0564076u
48
+ ··· + 1.79590u 3.09324
0.0101755u
49
+ 0.0132424u
48
+ ··· + 0.365267u + 1.43307
a
9
=
0.0251404u
49
0.0341614u
48
+ ··· 0.178601u 0.734921
0.0178177u
49
0.0204546u
48
+ ··· 0.655163u + 0.0702679
a
5
=
0.0359682u
49
0.0375079u
48
+ ··· + 0.971454u 2.70728
0.0171934u
49
+ 0.0404449u
48
+ ··· + 1.08010u + 1.42517
a
10
=
0.0435637u
49
+ 0.0638909u
48
+ ··· 0.196658u + 2.80619
0.0142744u
49
+ 0.0160307u
48
+ ··· 0.546290u + 0.210900
a
1
=
0.0341694u
49
+ 0.0511276u
48
+ ··· + 0.560955u + 1.92903
0.00179875u
49
+ 0.0136197u
48
+ ··· + 1.53241u 0.778251
a
2
=
0.0608849u
49
+ 0.0808601u
48
+ ··· 0.638959u + 4.29539
0.0126196u
49
+ 0.0224728u
48
+ ··· + 0.518576u + 0.0714096
a
2
=
0.0608849u
49
+ 0.0808601u
48
+ ··· 0.638959u + 4.29539
0.0126196u
49
+ 0.0224728u
48
+ ··· + 0.518576u + 0.0714096
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0626913u
49
+ 0.0376218u
48
+ ··· 2.19058u + 7.82840
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
50
4u
49
+ ··· + 3u + 4
c
2
u
50
+ 24u
49
+ ··· 255u + 16
c
3
, c
7
u
50
2u
49
+ ··· 80u + 64
c
5
, c
8
, c
9
u
50
+ 2u
49
+ ··· + 76u + 17
c
6
, c
10
u
50
+ 2u
49
+ ··· + 72u + 17
c
11
u
50
20u
49
+ ··· 4370u + 289
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
50
24y
49
+ ··· + 255y + 16
c
2
y
50
+ 8y
49
+ ··· + 29791y + 256
c
3
, c
7
y
50
24y
49
+ ··· 19712y + 4096
c
5
, c
8
, c
9
y
50
+ 52y
49
+ ··· 846y + 289
c
6
, c
10
y
50
+ 20y
49
+ ··· + 4370y + 289
c
11
y
50
+ 28y
49
+ ··· 180694y + 83521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.907272 + 0.392918I
a = 0.420194 + 0.002697I
b = 0.699224 0.714437I
0.744870 + 0.584560I 0.202019 0.958990I
u = 0.907272 0.392918I
a = 0.420194 0.002697I
b = 0.699224 + 0.714437I
0.744870 0.584560I 0.202019 + 0.958990I
u = 0.936602 + 0.118293I
a = 0.318743 0.218959I
b = 0.620116 0.388367I
0.08204 3.21276I 0.42949 + 6.66311I
u = 0.936602 0.118293I
a = 0.318743 + 0.218959I
b = 0.620116 + 0.388367I
0.08204 + 3.21276I 0.42949 6.66311I
u = 0.473630 + 0.961275I
a = 0.323168 0.723326I
b = 0.711410 + 0.630048I
5.28661 1.41187I 2.51524 + 3.36613I
u = 0.473630 0.961275I
a = 0.323168 + 0.723326I
b = 0.711410 0.630048I
5.28661 + 1.41187I 2.51524 3.36613I
u = 0.449533 + 0.975399I
a = 0.509462 + 0.216523I
b = 0.517652 1.021650I
0.28876 5.04770I 1.29595 + 6.45390I
u = 0.449533 0.975399I
a = 0.509462 0.216523I
b = 0.517652 + 1.021650I
0.28876 + 5.04770I 1.29595 6.45390I
u = 0.815974 + 0.347535I
a = 1.49469 + 2.72833I
b = 0.468151 0.953658I
1.11120 + 2.63706I 2.56560 6.52941I
u = 0.815974 0.347535I
a = 1.49469 2.72833I
b = 0.468151 + 0.953658I
1.11120 2.63706I 2.56560 + 6.52941I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.697235 + 0.535365I
a = 0.315606 + 0.602693I
b = 0.954432 0.777792I
9.12170 + 4.13349I 4.37982 7.84583I
u = 0.697235 0.535365I
a = 0.315606 0.602693I
b = 0.954432 + 0.777792I
9.12170 4.13349I 4.37982 + 7.84583I
u = 0.953458 + 0.598229I
a = 0.949740 0.081078I
b = 0.813160 0.543764I
8.29977 + 0.42603I 4.99238 0.29759I
u = 0.953458 0.598229I
a = 0.949740 + 0.081078I
b = 0.813160 + 0.543764I
8.29977 0.42603I 4.99238 + 0.29759I
u = 0.024298 + 0.854586I
a = 0.679350 0.293209I
b = 0.329331 + 0.976215I
0.969303 + 1.022450I 4.86262 1.22345I
u = 0.024298 0.854586I
a = 0.679350 + 0.293209I
b = 0.329331 0.976215I
0.969303 1.022450I 4.86262 + 1.22345I
u = 0.232434 + 1.128490I
a = 0.171601 0.671528I
b = 0.613539 + 0.992173I
4.19193 3.67253I 1.22751 + 2.31471I
u = 0.232434 1.128490I
a = 0.171601 + 0.671528I
b = 0.613539 0.992173I
4.19193 + 3.67253I 1.22751 2.31471I
u = 1.083130 + 0.424102I
a = 0.51370 + 2.44482I
b = 0.653200 1.057010I
6.75514 5.91277I 2.21392 + 5.18403I
u = 1.083130 0.424102I
a = 0.51370 2.44482I
b = 0.653200 + 1.057010I
6.75514 + 5.91277I 2.21392 5.18403I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.643203 + 1.007070I
a = 0.426141 + 0.701622I
b = 0.850297 0.462719I
7.77183 3.25304I 5.27621 + 1.64998I
u = 0.643203 1.007070I
a = 0.426141 0.701622I
b = 0.850297 + 0.462719I
7.77183 + 3.25304I 5.27621 1.64998I
u = 1.089060 + 0.646090I
a = 0.400714 + 0.040363I
b = 0.874960 + 0.339779I
3.37785 4.34752I 0.97473 + 2.40737I
u = 1.089060 0.646090I
a = 0.400714 0.040363I
b = 0.874960 0.339779I
3.37785 + 4.34752I 0.97473 2.40737I
u = 0.538092 + 1.149580I
a = 0.144817 + 0.630742I
b = 0.646329 1.107890I
5.83333 + 8.80963I 2.37769 6.43347I
u = 0.538092 1.149580I
a = 0.144817 0.630742I
b = 0.646329 + 1.107890I
5.83333 8.80963I 2.37769 + 6.43347I
u = 1.174390 + 0.484424I
a = 0.96122 1.70050I
b = 0.536868 + 1.111540I
4.31618 5.59634I 6.06047 + 4.87396I
u = 1.174390 0.484424I
a = 0.96122 + 1.70050I
b = 0.536868 1.111540I
4.31618 + 5.59634I 6.06047 4.87396I
u = 1.266720 + 0.096929I
a = 0.02752 + 1.80946I
b = 0.280639 1.152600I
6.04456 + 2.16278I 8.79757 2.89733I
u = 1.266720 0.096929I
a = 0.02752 1.80946I
b = 0.280639 + 1.152600I
6.04456 2.16278I 8.79757 + 2.89733I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.595443 + 0.355867I
a = 0.228768 + 0.590040I
b = 0.871755 0.998829I
8.47083 + 2.48602I 1.45090 + 5.51453I
u = 0.595443 0.355867I
a = 0.228768 0.590040I
b = 0.871755 + 0.998829I
8.47083 2.48602I 1.45090 5.51453I
u = 1.264420 + 0.377230I
a = 0.33373 1.58630I
b = 0.170537 + 1.148410I
5.10728 + 3.38490I 7.93360 3.33034I
u = 1.264420 0.377230I
a = 0.33373 + 1.58630I
b = 0.170537 1.148410I
5.10728 3.38490I 7.93360 + 3.33034I
u = 1.117610 + 0.748018I
a = 0.293611 0.238740I
b = 1.007530 0.362892I
6.21564 + 9.65095I 0. 5.84415I
u = 1.117610 0.748018I
a = 0.293611 + 0.238740I
b = 1.007530 + 0.362892I
6.21564 9.65095I 0. + 5.84415I
u = 1.175850 + 0.667191I
a = 1.12100 + 1.42946I
b = 0.621576 1.109980I
1.99477 + 11.04250I 0. 8.76647I
u = 1.175850 0.667191I
a = 1.12100 1.42946I
b = 0.621576 + 1.109980I
1.99477 11.04250I 0. + 8.76647I
u = 0.399787 + 0.467256I
a = 1.67834 1.67643I
b = 0.114999 0.542444I
1.97039 + 0.78230I 5.45253 + 2.09256I
u = 0.399787 0.467256I
a = 1.67834 + 1.67643I
b = 0.114999 + 0.542444I
1.97039 0.78230I 5.45253 2.09256I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.27251 + 0.63129I
a = 0.67000 1.80811I
b = 0.616422 + 1.164310I
0.91239 + 9.84583I 0
u = 1.27251 0.63129I
a = 0.67000 + 1.80811I
b = 0.616422 1.164310I
0.91239 9.84583I 0
u = 1.22350 + 0.76980I
a = 0.88939 + 1.67143I
b = 0.662987 1.206930I
3.6196 15.6826I 0
u = 1.22350 0.76980I
a = 0.88939 1.67143I
b = 0.662987 + 1.206930I
3.6196 + 15.6826I 0
u = 0.257076 + 0.420882I
a = 0.990050 0.003127I
b = 0.223361 + 0.753004I
0.426067 + 1.178950I 4.63590 6.06198I
u = 0.257076 0.420882I
a = 0.990050 + 0.003127I
b = 0.223361 0.753004I
0.426067 1.178950I 4.63590 + 6.06198I
u = 1.51280 + 0.01490I
a = 0.22721 1.58372I
b = 0.435520 + 0.951672I
2.35249 + 4.91231I 0
u = 1.51280 0.01490I
a = 0.22721 + 1.58372I
b = 0.435520 0.951672I
2.35249 4.91231I 0
u = 1.49474 + 0.29701I
a = 0.409690 1.327970I
b = 0.387075 + 0.830148I
1.85024 1.51739I 0
u = 1.49474 0.29701I
a = 0.409690 + 1.327970I
b = 0.387075 0.830148I
1.85024 + 1.51739I 0
9
II. I
u
2
= h−36u
5
a
2
+ 36u
5
+ · · · 22a
2
+ 22, 2u
5
a
2
+ u
5
a + · · · a 5, u
6
+
u
5
u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
a
0.127208a
2
u
5
0.127208u
5
+ ··· + 0.0777385a
2
0.0777385
a
6
=
0.127208a
2
u
5
+ 0.127208u
5
+ ··· + a + 2.07774
0.127208a
2
u
5
+ 0.127208u
5
+ ··· 0.0777385a
2
+ 0.0777385
a
9
=
a
0.127208a
2
u
5
+ 0.127208u
5
+ ··· 0.0777385a
2
+ 0.0777385
a
5
=
1
0
a
10
=
0.127208a
2
u
5
0.127208u
5
+ ··· + a 0.0777385
0.127208a
2
u
5
0.127208u
5
+ ··· + 0.0777385a
2
0.0777385
a
1
=
u
2
1
u
2
a
2
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
2
=
u
5
2u
3
+ u
u
5
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 4u
2
+ 4u 2
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
c
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
c
3
, c
7
(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
c
5
, c
6
, c
8
c
9
, c
10
u
18
+ 6u
16
+ ··· u + 1
c
11
u
18
12u
17
+ ··· 3u + 1
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
c
7
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
c
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
c
5
, c
6
, c
8
c
9
, c
10
y
18
+ 12y
17
+ ··· + 3y + 1
c
11
y
18
12y
17
+ ··· + 15y + 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.002190 + 0.295542I
a = 0.158981 + 0.210049I
b = 0.700352 + 0.245687I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 1.28821 1.33402I
b = 0.461864 + 1.032610I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 + 0.295542I
a = 0.09163 + 2.11799I
b = 0.238488 1.278300I
1.89061 + 0.92430I 3.71672 0.79423I
u = 1.002190 0.295542I
a = 0.158981 0.210049I
b = 0.700352 0.245687I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 1.28821 + 1.33402I
b = 0.461864 1.032610I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.002190 0.295542I
a = 0.09163 2.11799I
b = 0.238488 + 1.278300I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 + 0.664531I
a = 1.404780 + 0.070635I
b = 0.414097 0.427367I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 0.19096 1.40605I
b = 0.339178 0.790848I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 + 0.664531I
a = 2.53589 1.57875I
b = 0.074919 + 1.218220I
1.89061 + 0.92430I 3.71672 0.79423I
u = 0.428243 0.664531I
a = 1.404780 0.070635I
b = 0.414097 + 0.427367I
1.89061 0.92430I 3.71672 + 0.79423I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.428243 0.664531I
a = 0.19096 + 1.40605I
b = 0.339178 + 0.790848I
1.89061 0.92430I 3.71672 + 0.79423I
u = 0.428243 0.664531I
a = 2.53589 + 1.57875I
b = 0.074919 1.218220I
1.89061 0.92430I 3.71672 + 0.79423I
u = 1.073950 + 0.558752I
a = 1.16030 + 0.89772I
b = 0.624190 0.955200I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 0.008039 0.301999I
b = 0.798654 0.441445I
5.69302I 0. + 5.51057I
u = 1.073950 + 0.558752I
a = 0.36901 1.71323I
b = 0.174464 + 1.396650I
5.69302I 0. + 5.51057I
u = 1.073950 0.558752I
a = 1.16030 0.89772I
b = 0.624190 + 0.955200I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 0.008039 + 0.301999I
b = 0.798654 + 0.441445I
5.69302I 0. 5.51057I
u = 1.073950 0.558752I
a = 0.36901 + 1.71323I
b = 0.174464 1.396650I
5.69302I 0. 5.51057I
14
III. I
u
3
= h−u
5
+ 2u
3
+ b u, u
4
+ 2u
3
3u
2
+ a 3u + 2, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
3
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
4
=
u
u
3
+ u
a
11
=
u
4
2u
3
+ 3u
2
+ 3u 2
u
5
2u
3
+ u
a
6
=
u
5
+ u
4
4u
3
3u
2
+ 4u + 2
1
a
9
=
u
5
u
4
4u
3
+ 3u
2
+ 4u 1
u
5
2u
3
u
2
+ u
a
5
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
10
=
u
5
u
4
4u
3
+ 3u
2
+ 4u 2
u
5
2u
3
+ u
a
1
=
u
5
+ 2u
3
u
0
a
2
=
u
u
a
2
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
+ 8u
2
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)
2
c
2
(u
3
+ u
2
+ 2u + 1)
2
c
3
, c
7
u
6
3u
4
+ 2u
2
+ 1
c
4
(u
3
u
2
+ 1)
2
c
5
, c
6
, c
8
c
9
, c
10
(u
2
+ 1)
3
c
11
(u 1)
6
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)
2
c
2
(y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
7
(y
3
3y
2
+ 2y + 1)
2
c
5
, c
6
, c
8
c
9
, c
10
(y + 1)
6
c
11
(y 1)
6
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.35722 1.72238I
b = 1.000000I
3.02413 + 2.82812I 3.50976 2.97945I
u = 1.307140 0.215080I
a = 0.35722 + 1.72238I
b = 1.000000I
3.02413 2.82812I 3.50976 + 2.97945I
u = 1.307140 + 0.215080I
a = 0.72238 1.35722I
b = 1.000000I
3.02413 2.82812I 3.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.72238 + 1.35722I
b = 1.000000I
3.02413 + 2.82812I 3.50976 2.97945I
u = 0.569840I
a = 3.07960 + 2.07960I
b = 1.000000I
1.11345 3.01950
u = 0.569840I
a = 3.07960 2.07960I
b = 1.000000I
1.11345 3.01950
18
IV. I
v
1
= ha, 2v
3
+ 3v
2
+ 4b 8v + 3, 2v
4
v
3
+ 5v
2
+ v + 1i
(i) Arc colorings
a
3
=
v
0
a
7
=
1
0
a
8
=
1
0
a
4
=
v
0
a
11
=
0
1
2
v
3
3
4
v
2
+ 2v
3
4
a
6
=
1
3
2
v
3
5
4
v
2
+
7
2
v +
1
4
a
9
=
3
2
v
3
+
5
4
v
2
7
2
v +
3
4
v
2
1
2
v +
5
2
a
5
=
3
2
v
3
+
1
4
v
2
3v
7
4
2v
3
+ v
2
5v 1
a
10
=
1
2
v
3
3
4
v
2
+ 2v
3
4
1
2
v
3
3
4
v
2
+ 2v
3
4
a
1
=
3
2
v
3
1
4
v
2
+ 3v +
7
4
2v
3
v
2
+ 5v + 1
a
2
=
3
2
v
3
1
4
v
2
+ 4v +
7
4
2v
3
v
2
+ 5v + 1
a
2
=
3
2
v
3
1
4
v
2
+ 4v +
7
4
2v
3
v
2
+ 5v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6v
3
+ 4v
2
12v 2
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
c
2
, c
4
(u + 1)
4
c
3
, c
7
u
4
c
5
u
4
+ u
3
+ 3u
2
+ 2u + 1
c
6
u
4
+ u
3
+ u
2
+ 1
c
8
, c
9
, c
11
u
4
u
3
+ 3u
2
2u + 1
c
10
u
4
u
3
+ u
2
+ 1
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
4
c
3
, c
7
y
4
c
5
, c
8
, c
9
c
11
y
4
+ 5y
3
+ 7y
2
+ 2y + 1
c
6
, c
10
y
4
+ y
3
+ 3y
2
+ 2y + 1
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.130534 + 0.427872I
a = 0
b = 0.851808 + 0.911292I
8.43568 + 3.16396I 1.51454 5.24252I
v = 0.130534 0.427872I
a = 0
b = 0.851808 0.911292I
8.43568 3.16396I 1.51454 + 5.24252I
v = 0.38053 + 1.53420I
a = 0
b = 0.351808 + 0.720342I
1.43393 1.41510I 0.38954 + 3.92814I
v = 0.38053 1.53420I
a = 0
b = 0.351808 0.720342I
1.43393 + 1.41510I 0.38954 3.92814I
22
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)
4
(u
3
+ u
2
1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
50
4u
49
+ ··· + 3u + 4)
c
2
(u + 1)
4
(u
3
+ u
2
+ 2u + 1)
2
(u
6
+ 3u
5
+ 5u
4
+ 4u
3
+ 2u
2
+ u + 1)
3
· (u
50
+ 24u
49
+ ··· 255u + 16)
c
3
, c
7
u
4
(u
6
3u
4
+ 2u
2
+ 1)(u
6
+ u
5
u
4
2u
3
+ u + 1)
3
· (u
50
2u
49
+ ··· 80u + 64)
c
4
(u + 1)
4
(u
3
u
2
+ 1)
2
(u
6
u
5
u
4
+ 2u
3
u + 1)
3
· (u
50
4u
49
+ ··· + 3u + 4)
c
5
((u
2
+ 1)
3
)(u
4
+ u
3
+ 3u
2
+ 2u + 1)(u
18
+ 6u
16
+ ··· u + 1)
· (u
50
+ 2u
49
+ ··· + 76u + 17)
c
6
((u
2
+ 1)
3
)(u
4
+ u
3
+ u
2
+ 1)(u
18
+ 6u
16
+ ··· u + 1)
· (u
50
+ 2u
49
+ ··· + 72u + 17)
c
8
, c
9
((u
2
+ 1)
3
)(u
4
u
3
+ 3u
2
2u + 1)(u
18
+ 6u
16
+ ··· u + 1)
· (u
50
+ 2u
49
+ ··· + 76u + 17)
c
10
((u
2
+ 1)
3
)(u
4
u
3
+ u
2
+ 1)(u
18
+ 6u
16
+ ··· u + 1)
· (u
50
+ 2u
49
+ ··· + 72u + 17)
c
11
((u 1)
6
)(u
4
u
3
+ 3u
2
2u + 1)(u
18
12u
17
+ ··· 3u + 1)
· (u
50
20u
49
+ ··· 4370u + 289)
23
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y 1)
4
(y
3
y
2
+ 2y 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
50
24y
49
+ ··· + 255y + 16)
c
2
(y 1)
4
(y
3
+ 3y
2
+ 2y 1)
2
(y
6
+ y
5
+ 5y
4
+ 6y
2
+ 3y + 1)
3
· (y
50
+ 8y
49
+ ··· + 29791y + 256)
c
3
, c
7
y
4
(y
3
3y
2
+ 2y + 1)
2
(y
6
3y
5
+ 5y
4
4y
3
+ 2y
2
y + 1)
3
· (y
50
24y
49
+ ··· 19712y + 4096)
c
5
, c
8
, c
9
((y + 1)
6
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
18
+ 12y
17
+ ··· + 3y + 1)
· (y
50
+ 52y
49
+ ··· 846y + 289)
c
6
, c
10
((y + 1)
6
)(y
4
+ y
3
+ 3y
2
+ 2y + 1)(y
18
+ 12y
17
+ ··· + 3y + 1)
· (y
50
+ 20y
49
+ ··· + 4370y + 289)
c
11
((y 1)
6
)(y
4
+ 5y
3
+ ··· + 2y + 1)(y
18
12y
17
+ ··· + 15y + 1)
· (y
50
+ 28y
49
+ ··· 180694y + 83521)
24