12n
0792
(K12n
0792
)
A knot diagram
1
Linearized knot diagam
4 5 11 9 3 12 1 5 1 4 6 7
Solving Sequence
6,11
12 7
1,4
3 5 2 10 9 8
c
11
c
6
c
12
c
3
c
5
c
2
c
10
c
9
c
8
c
1
, c
4
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= h3.07628 × 10
46
u
52
1.00351 × 10
47
u
51
+ ··· + 3.48741 × 10
47
b + 1.73101 × 10
48
,
1.34583 × 10
48
u
52
+ 5.85153 × 10
47
u
51
+ ··· + 6.62608 × 10
48
a 2.02004 × 10
48
, u
53
+ u
52
+ ··· + 2u + 19i
I
u
2
= hu
10
7u
8
+ u
7
+ 17u
6
5u
5
16u
4
+ 7u
3
+ 4u
2
+ b 2u,
u
10
+ 7u
8
u
7
17u
6
+ 5u
5
+ 16u
4
7u
3
5u
2
+ a + 2u + 2,
u
14
10u
12
+ u
11
+ 39u
10
8u
9
74u
8
+ 23u
7
+ 69u
6
28u
5
28u
4
+ 13u
3
+ 4u
2
2u + 1i
* 2 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.08×10
46
u
52
1.00×10
47
u
51
+· · ·+3.49×10
47
b+1.73×10
48
, 1.35×
10
48
u
52
+5.85×10
47
u
51
+· · ·+6.63×10
48
a2.02×10
48
, u
53
+u
52
+· · ·+2u+19i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
0.203111u
52
0.0883105u
51
+ ··· 9.46298u + 0.304862
0.0882110u
52
+ 0.287753u
51
+ ··· 1.72583u 4.96359
a
3
=
0.114900u
52
+ 0.199442u
51
+ ··· 11.1888u 4.65873
0.0882110u
52
+ 0.287753u
51
+ ··· 1.72583u 4.96359
a
5
=
0.0908917u
52
+ 0.0768978u
51
+ ··· 7.10988u 3.08929
0.0260187u
52
+ 0.0838960u
51
+ ··· 5.33771u 3.10420
a
2
=
0.0279811u
52
+ 0.0401943u
51
+ ··· + 3.61598u + 4.82383
0.0143374u
52
0.198875u
51
+ ··· + 4.54528u + 3.00459
a
10
=
0.109349u
52
+ 0.187204u
51
+ ··· 5.22764u 4.01238
0.272728u
52
+ 0.00219298u
51
+ ··· 4.61603u 0.998578
a
9
=
0.0602843u
52
+ 0.218936u
51
+ ··· 9.13144u 3.51075
0.120808u
52
0.0288635u
51
+ ··· 1.02731u 0.112491
a
8
=
u
3
2u
u
5
+ 3u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.0556426u
52
+ 0.289899u
51
+ ··· + 16.8530u + 6.93721
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
8u
52
+ ··· 25u + 1
c
2
, c
5
u
53
18u
51
+ ··· u + 683
c
3
, c
10
u
53
u
52
+ ··· + 996u 745
c
4
, c
8
u
53
+ 2u
52
+ ··· 13u 1
c
6
, c
7
, c
11
c
12
u
53
u
52
+ ··· + 2u 19
c
9
u
53
+ 3u
52
+ ··· + 26u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
36y
52
+ ··· + 47y 1
c
2
, c
5
y
53
36y
52
+ ··· + 10124793y 466489
c
3
, c
10
y
53
+ 31y
52
+ ··· 10501844y 555025
c
4
, c
8
y
53
+ 22y
52
+ ··· + 167y 1
c
6
, c
7
, c
11
c
12
y
53
65y
52
+ ··· + 5324y 361
c
9
y
53
33y
52
+ ··· + 392y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.976765 + 0.204315I
a = 0.695066 1.196400I
b = 0.341850 + 0.765716I
3.70234 + 2.85475I 7.56242 7.71874I
u = 0.976765 0.204315I
a = 0.695066 + 1.196400I
b = 0.341850 0.765716I
3.70234 2.85475I 7.56242 + 7.71874I
u = 0.830103 + 0.663239I
a = 0.622792 + 0.940843I
b = 0.68077 1.27126I
1.17909 + 10.63840I 4.37034 8.18411I
u = 0.830103 0.663239I
a = 0.622792 0.940843I
b = 0.68077 + 1.27126I
1.17909 10.63840I 4.37034 + 8.18411I
u = 0.672364 + 0.631114I
a = 0.755869 0.889133I
b = 0.567716 + 1.241920I
0.25800 4.19233I 2.11175 + 4.57513I
u = 0.672364 0.631114I
a = 0.755869 + 0.889133I
b = 0.567716 1.241920I
0.25800 + 4.19233I 2.11175 4.57513I
u = 0.161033 + 0.868640I
a = 0.204873 0.301193I
b = 0.433829 1.023470I
0.84645 5.58131I 2.80981 + 5.18997I
u = 0.161033 0.868640I
a = 0.204873 + 0.301193I
b = 0.433829 + 1.023470I
0.84645 + 5.58131I 2.80981 5.18997I
u = 0.583775 + 0.645996I
a = 0.843622 0.123449I
b = 0.267716 0.980072I
5.12894 2.24975I 9.33045 + 6.74363I
u = 0.583775 0.645996I
a = 0.843622 + 0.123449I
b = 0.267716 + 0.980072I
5.12894 + 2.24975I 9.33045 6.74363I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.15898
a = 0.0546397
b = 0.526356
2.43214 4.06270
u = 0.339714 + 0.732403I
a = 0.493441 + 0.206248I
b = 0.444967 + 0.968163I
1.276670 0.383611I 1.90948 + 0.44922I
u = 0.339714 0.732403I
a = 0.493441 0.206248I
b = 0.444967 0.968163I
1.276670 + 0.383611I 1.90948 0.44922I
u = 1.24740
a = 0.350546
b = 0.846371
2.39687 0
u = 1.155310 + 0.491746I
a = 0.678424 + 0.467706I
b = 0.016892 0.866092I
3.21605 + 0.86609I 0
u = 1.155310 0.491746I
a = 0.678424 0.467706I
b = 0.016892 + 0.866092I
3.21605 0.86609I 0
u = 0.605946 + 0.390778I
a = 0.00427 2.23076I
b = 0.582765 + 0.683402I
2.25202 + 4.47982I 2.34770 7.54811I
u = 0.605946 0.390778I
a = 0.00427 + 2.23076I
b = 0.582765 0.683402I
2.25202 4.47982I 2.34770 + 7.54811I
u = 0.586170 + 0.296342I
a = 0.123031 + 0.435024I
b = 1.287910 0.486685I
1.61768 3.77662I 4.85409 + 6.48122I
u = 0.586170 0.296342I
a = 0.123031 0.435024I
b = 1.287910 + 0.486685I
1.61768 + 3.77662I 4.85409 6.48122I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.554932 + 0.317475I
a = 1.47164 + 1.23287I
b = 0.06112 1.65085I
7.37545 + 1.13740I 0.82605 7.31172I
u = 0.554932 0.317475I
a = 1.47164 1.23287I
b = 0.06112 + 1.65085I
7.37545 1.13740I 0.82605 + 7.31172I
u = 0.575786 + 0.115234I
a = 2.26792 0.59441I
b = 0.322176 + 0.846567I
4.61254 + 0.39900I 8.15479 + 2.26046I
u = 0.575786 0.115234I
a = 2.26792 + 0.59441I
b = 0.322176 0.846567I
4.61254 0.39900I 8.15479 2.26046I
u = 1.41745 + 0.25332I
a = 0.761883 0.551649I
b = 0.350041 + 0.716405I
4.28909 + 3.91504I 0
u = 1.41745 0.25332I
a = 0.761883 + 0.551649I
b = 0.350041 0.716405I
4.28909 3.91504I 0
u = 0.339035 + 0.441644I
a = 0.355817 0.338282I
b = 1.014180 + 0.427589I
3.02796 1.52327I 0.96904 2.19439I
u = 0.339035 0.441644I
a = 0.355817 + 0.338282I
b = 1.014180 0.427589I
3.02796 + 1.52327I 0.96904 + 2.19439I
u = 1.44940
a = 0.732573
b = 1.34519
2.55697 0
u = 0.437530 + 0.311081I
a = 0.50768 + 2.81489I
b = 0.600329 0.687466I
2.04690 + 1.54353I 2.73867 + 2.39570I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.437530 0.311081I
a = 0.50768 2.81489I
b = 0.600329 + 0.687466I
2.04690 1.54353I 2.73867 2.39570I
u = 1.53217 + 0.05661I
a = 0.47460 + 2.01391I
b = 0.137826 1.140700I
4.62893 0.36463I 0
u = 1.53217 0.05661I
a = 0.47460 2.01391I
b = 0.137826 + 1.140700I
4.62893 + 0.36463I 0
u = 1.58165 + 0.08978I
a = 0.45673 + 2.22859I
b = 0.21483 1.85848I
14.7556 2.6131I 0
u = 1.58165 0.08978I
a = 0.45673 2.22859I
b = 0.21483 + 1.85848I
14.7556 + 2.6131I 0
u = 1.58814 + 0.03812I
a = 0.298490 1.206380I
b = 0.771676 + 1.000330I
12.15160 0.98530I 0
u = 1.58814 0.03812I
a = 0.298490 + 1.206380I
b = 0.771676 1.000330I
12.15160 + 0.98530I 0
u = 0.186420 + 0.366698I
a = 0.872470 0.246646I
b = 0.207209 + 0.429467I
0.043197 0.918878I 0.91856 + 7.38780I
u = 0.186420 0.366698I
a = 0.872470 + 0.246646I
b = 0.207209 0.429467I
0.043197 + 0.918878I 0.91856 7.38780I
u = 1.59148 + 0.08142I
a = 1.024970 + 0.427099I
b = 1.73010 0.47903I
5.91981 + 5.13315I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.59148 0.08142I
a = 1.024970 0.427099I
b = 1.73010 + 0.47903I
5.91981 5.13315I 0
u = 1.59036 + 0.10324I
a = 0.30768 2.00866I
b = 0.244184 + 1.036970I
5.27677 6.23867I 0
u = 1.59036 0.10324I
a = 0.30768 + 2.00866I
b = 0.244184 1.036970I
5.27677 + 6.23867I 0
u = 1.58933 + 0.17527I
a = 0.218478 + 1.130000I
b = 0.758755 1.104590I
12.49110 + 5.20174I 0
u = 1.58933 0.17527I
a = 0.218478 1.130000I
b = 0.758755 + 1.104590I
12.49110 5.20174I 0
u = 1.59648 + 0.19044I
a = 0.24628 1.91486I
b = 0.64701 + 1.53101I
7.34850 + 7.24137I 0
u = 1.59648 0.19044I
a = 0.24628 + 1.91486I
b = 0.64701 1.53101I
7.34850 7.24137I 0
u = 1.65850 + 0.20486I
a = 0.11064 + 1.82637I
b = 0.83022 1.52276I
9.5991 13.9965I 0
u = 1.65850 0.20486I
a = 0.11064 1.82637I
b = 0.83022 + 1.52276I
9.5991 + 13.9965I 0
u = 1.70641 + 0.05300I
a = 0.16970 1.44726I
b = 0.601076 + 0.977119I
13.21480 3.88400I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.70641 0.05300I
a = 0.16970 + 1.44726I
b = 0.601076 0.977119I
13.21480 + 3.88400I 0
u = 1.74373 + 0.08356I
a = 0.007459 + 1.240060I
b = 0.609167 1.102060I
13.60250 + 1.24707I 0
u = 1.74373 0.08356I
a = 0.007459 1.240060I
b = 0.609167 + 1.102060I
13.60250 1.24707I 0
10
II.
I
u
2
= hu
10
7u
8
+· · ·+b2u, u
10
+7u
8
+· · ·+a+2, u
14
10u
12
+· · ·2u+1i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
u
10
7u
8
+ u
7
+ 17u
6
5u
5
16u
4
+ 7u
3
+ 5u
2
2u 2
u
10
+ 7u
8
u
7
17u
6
+ 5u
5
+ 16u
4
7u
3
4u
2
+ 2u
a
3
=
u
2
2
u
10
+ 7u
8
u
7
17u
6
+ 5u
5
+ 16u
4
7u
3
4u
2
+ 2u
a
5
=
u
5
+ 4u
3
4u
u
13
9u
11
+ ··· + 4u
2
+ u
a
2
=
u
8
+ 6u
6
12u
4
+ 9u
2
2
u
4
3u
2
+ 1
a
10
=
u
12
9u
10
+ ··· + 6u + 1
u
6
4u
4
+ u
3
+ 4u
2
2u
a
9
=
u
12
9u
10
+ u
9
+ 31u
8
7u
7
50u
6
+ 17u
5
+ 36u
4
17u
3
8u
2
+ 6u
u
8
+ 6u
6
11u
4
+ u
3
+ 6u
2
2u
a
8
=
u
3
+ 2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
12
+ 2u
11
+ 8u
10
17u
9
24u
8
+ 51u
7
+ 35u
6
64u
5
28u
4
+ 35u
3
+ 12u
2
14u + 6
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
3u
13
+ ··· + u + 3
c
2
u
14
+ 3u
13
+ ··· + 3u + 1
c
3
u
14
+ 4u
12
2u
11
+ 4u
10
5u
9
u
8
+ 2u
6
+ 2u
5
3u
4
+ 2u
3
2u + 1
c
4
u
14
+ u
13
+ ··· + u + 1
c
5
u
14
3u
13
+ ··· 3u + 1
c
6
, c
7
u
14
10u
12
+ ··· + 2u + 1
c
8
u
14
u
13
+ ··· u + 1
c
9
u
14
+ 2u
13
2u
11
3u
10
2u
9
+ 2u
8
u
6
+ 5u
5
+ 4u
4
+ 2u
3
+ 4u
2
+ 1
c
10
u
14
+ 4u
12
+ 2u
11
+ 4u
10
+ 5u
9
u
8
+ 2u
6
2u
5
3u
4
2u
3
+ 2u + 1
c
11
, c
12
u
14
10u
12
+ ··· 2u + 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
3y
13
+ ··· + 29y + 9
c
2
, c
5
y
14
11y
13
+ ··· + 3y + 1
c
3
, c
10
y
14
+ 8y
13
+ ··· 4y + 1
c
4
, c
8
y
14
+ 11y
13
+ ··· + 13y + 1
c
6
, c
7
, c
11
c
12
y
14
20y
13
+ ··· + 4y + 1
c
9
y
14
4y
13
+ ··· + 8y + 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.740673 + 0.377978I
a = 1.370460 0.189280I
b = 0.223815 + 0.749196I
4.48989 + 1.36379I 6.88457 3.36739I
u = 0.740673 0.377978I
a = 1.370460 + 0.189280I
b = 0.223815 0.749196I
4.48989 1.36379I 6.88457 + 3.36739I
u = 1.281420 + 0.169138I
a = 0.311837 + 0.481666I
b = 0.698412 0.048193I
1.64857 0.94774I 1.25930 + 3.51308I
u = 1.281420 0.169138I
a = 0.311837 0.481666I
b = 0.698412 + 0.048193I
1.64857 + 0.94774I 1.25930 3.51308I
u = 0.652748 + 0.218469I
a = 1.44503 + 1.25753I
b = 0.17662 1.54274I
7.87230 0.75737I 12.39129 1.00527I
u = 0.652748 0.218469I
a = 1.44503 1.25753I
b = 0.17662 + 1.54274I
7.87230 + 0.75737I 12.39129 + 1.00527I
u = 1.45319 + 0.14529I
a = 0.854026 0.775035I
b = 0.763381 + 0.352765I
3.23638 4.38255I 2.20346 + 3.96328I
u = 1.45319 0.14529I
a = 0.854026 + 0.775035I
b = 0.763381 0.352765I
3.23638 + 4.38255I 2.20346 3.96328I
u = 1.64929 + 0.07227I
a = 0.25018 + 1.82900I
b = 0.46476 1.59062I
16.0636 + 1.9139I 11.41509 0.37585I
u = 1.64929 0.07227I
a = 0.25018 1.82900I
b = 0.46476 + 1.59062I
16.0636 1.9139I 11.41509 + 0.37585I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.131123 + 0.302892I
a = 2.85944 0.08111I
b = 0.784890 + 0.160547I
2.23411 + 2.69440I 1.91591 3.21763I
u = 0.131123 0.302892I
a = 2.85944 + 0.08111I
b = 0.784890 0.160547I
2.23411 2.69440I 1.91591 + 3.21763I
u = 1.69657 + 0.08296I
a = 0.258886 1.138930I
b = 0.612578 + 0.857416I
13.33660 3.11372I 9.93038 0.27629I
u = 1.69657 0.08296I
a = 0.258886 + 1.138930I
b = 0.612578 0.857416I
13.33660 + 3.11372I 9.93038 + 0.27629I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
14
3u
13
+ ··· + u + 3)(u
53
8u
52
+ ··· 25u + 1)
c
2
(u
14
+ 3u
13
+ ··· + 3u + 1)(u
53
18u
51
+ ··· u + 683)
c
3
(u
14
+ 4u
12
2u
11
+ 4u
10
5u
9
u
8
+ 2u
6
+ 2u
5
3u
4
+ 2u
3
2u + 1)
· (u
53
u
52
+ ··· + 996u 745)
c
4
(u
14
+ u
13
+ ··· + u + 1)(u
53
+ 2u
52
+ ··· 13u 1)
c
5
(u
14
3u
13
+ ··· 3u + 1)(u
53
18u
51
+ ··· u + 683)
c
6
, c
7
(u
14
10u
12
+ ··· + 2u + 1)(u
53
u
52
+ ··· + 2u 19)
c
8
(u
14
u
13
+ ··· u + 1)(u
53
+ 2u
52
+ ··· 13u 1)
c
9
(u
14
+ 2u
13
2u
11
3u
10
2u
9
+ 2u
8
u
6
+ 5u
5
+ 4u
4
+ 2u
3
+ 4u
2
+ 1)
· (u
53
+ 3u
52
+ ··· + 26u 1)
c
10
(u
14
+ 4u
12
+ 2u
11
+ 4u
10
+ 5u
9
u
8
+ 2u
6
2u
5
3u
4
2u
3
+ 2u + 1)
· (u
53
u
52
+ ··· + 996u 745)
c
11
, c
12
(u
14
10u
12
+ ··· 2u + 1)(u
53
u
52
+ ··· + 2u 19)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
14
3y
13
+ ··· + 29y + 9)(y
53
36y
52
+ ··· + 47y 1)
c
2
, c
5
(y
14
11y
13
+ ··· + 3y + 1)
· (y
53
36y
52
+ ··· + 10124793y 466489)
c
3
, c
10
(y
14
+ 8y
13
+ ··· 4y + 1)(y
53
+ 31y
52
+ ··· 1.05018 × 10
7
y 555025)
c
4
, c
8
(y
14
+ 11y
13
+ ··· + 13y + 1)(y
53
+ 22y
52
+ ··· + 167y 1)
c
6
, c
7
, c
11
c
12
(y
14
20y
13
+ ··· + 4y + 1)(y
53
65y
52
+ ··· + 5324y 361)
c
9
(y
14
4y
13
+ ··· + 8y + 1)(y
53
33y
52
+ ··· + 392y 1)
17