12n
0794
(K12n
0794
)
A knot diagram
1
Linearized knot diagam
4 5 11 9 3 1 12 5 1 4 6 7
Solving Sequence
1,6 3,7
5 2 12 8 9 11 4 10
c
6
c
5
c
2
c
12
c
7
c
8
c
11
c
3
c
10
c
1
, c
4
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h3.64825 × 10
60
u
67
+ 2.17531 × 10
61
u
66
+ ··· + 2.27197 × 10
61
b + 3.17348 × 10
62
,
3.41778 × 10
61
u
67
+ 4.19437 × 10
61
u
66
+ ··· + 4.31675 × 10
62
a 8.54844 × 10
62
,
u
68
+ 32u
66
+ ··· 17u + 19i
I
u
2
= hu
17
+ u
16
+ ··· + b + 3u, u
16
u
15
+ ··· + a 1, u
18
+ u
17
+ ··· + 2u + 1i
* 2 irreducible components of dim
C
= 0, with total 86 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h3.65 × 10
60
u
67
+ 2.18 × 10
61
u
66
+ · · · + 2.27 × 10
61
b + 3.17 ×
10
62
, 3.42 × 10
61
u
67
+ 4.19 × 10
61
u
66
+ · · · + 4.32 × 10
62
a 8.55 ×
10
62
, u
68
+ 32u
66
+ · · · 17u + 19i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
3
=
0.0791748u
67
0.0971649u
66
+ ··· + 7.13718u + 1.98030
0.160576u
67
0.957454u
66
+ ··· + 5.17375u 13.9679
a
7
=
1
u
2
a
5
=
0.434570u
67
+ 0.198997u
66
+ ··· 3.14705u 2.64483
0.802804u
67
0.137974u
66
+ ··· 6.93147u 0.143677
a
2
=
0.221569u
67
0.256066u
66
+ ··· 4.45414u 5.67050
0.431397u
67
0.300463u
66
+ ··· + 0.0481534u 2.05464
a
12
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
0.0300223u
67
0.192535u
66
+ ··· + 1.41247u 0.794270
0.541452u
67
+ 1.19433u
66
+ ··· 21.1227u + 14.5984
a
11
=
u
3
2u
u
3
+ u
a
4
=
0.254863u
67
0.559737u
66
+ ··· + 5.39514u 4.47736
0.0427600u
67
1.30834u
66
+ ··· + 10.9051u 18.4670
a
10
=
0.0300223u
67
0.192535u
66
+ ··· + 1.41247u 0.794270
0.757625u
67
+ 1.35968u
66
+ ··· 24.9663u + 18.2566
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.759415u
67
2.10567u
66
+ ··· + 23.3339u 15.4588
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
68
6u
67
+ ··· 27u + 1
c
2
, c
5
u
68
2u
67
+ ··· 2106u + 1161
c
3
, c
10
u
68
u
67
+ ··· + 430u + 55
c
4
, c
8
u
68
+ 2u
67
+ ··· + 157u + 31
c
6
, c
7
, c
12
u
68
+ 32u
66
+ ··· + 17u + 19
c
9
u
68
+ 4u
67
+ ··· u + 1
c
11
u
68
2u
65
+ ··· 109361u + 34447
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
68
54y
67
+ ··· + 189y + 1
c
2
, c
5
y
68
34y
67
+ ··· 27367308y + 1347921
c
3
, c
10
y
68
+ 25y
67
+ ··· + 220450y + 3025
c
4
, c
8
y
68
+ 24y
67
+ ··· + 22223y + 961
c
6
, c
7
, c
12
y
68
+ 64y
67
+ ··· 2075y + 361
c
9
y
68
50y
67
+ ··· + 217y + 1
c
11
y
68
+ 46y
66
+ ··· + 15032565303y + 1186595809
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.585021 + 0.839577I
a = 0.653745 + 0.824312I
b = 1.156370 0.575904I
0.92653 6.48550I 0
u = 0.585021 0.839577I
a = 0.653745 0.824312I
b = 1.156370 + 0.575904I
0.92653 + 6.48550I 0
u = 0.844238 + 0.314098I
a = 2.05637 + 0.11980I
b = 1.29281 + 0.70336I
0.71987 + 11.42660I 2.99478 7.86086I
u = 0.844238 0.314098I
a = 2.05637 0.11980I
b = 1.29281 0.70336I
0.71987 11.42660I 2.99478 + 7.86086I
u = 0.774174 + 0.442382I
a = 1.73133 0.65078I
b = 1.280470 0.119995I
4.56836 2.47145I 9.7968 + 11.8051I
u = 0.774174 0.442382I
a = 1.73133 + 0.65078I
b = 1.280470 + 0.119995I
4.56836 + 2.47145I 9.7968 11.8051I
u = 0.601969 + 0.651291I
a = 0.198331 + 0.799993I
b = 0.865200 0.503209I
1.65284 0.01935I 0.571143 + 0.160005I
u = 0.601969 0.651291I
a = 0.198331 0.799993I
b = 0.865200 + 0.503209I
1.65284 + 0.01935I 0.571143 0.160005I
u = 0.878561 + 0.090514I
a = 1.54583 0.41382I
b = 0.864053 0.090063I
3.96123 0.33995I 6.36296 1.08101I
u = 0.878561 0.090514I
a = 1.54583 + 0.41382I
b = 0.864053 + 0.090063I
3.96123 + 0.33995I 6.36296 + 1.08101I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.761968 + 0.375228I
a = 1.51651 + 0.13278I
b = 1.057950 + 0.707192I
0.72761 4.58564I 1.01495 + 4.58399I
u = 0.761968 0.375228I
a = 1.51651 0.13278I
b = 1.057950 0.707192I
0.72761 + 4.58564I 1.01495 4.58399I
u = 0.087906 + 1.195280I
a = 1.036050 0.725247I
b = 1.336380 0.253283I
4.71460 + 0.88214I 0
u = 0.087906 1.195280I
a = 1.036050 + 0.725247I
b = 1.336380 + 0.253283I
4.71460 0.88214I 0
u = 0.046584 + 1.212660I
a = 0.563907 + 1.049470I
b = 0.263145 + 1.187020I
4.47402 2.56568I 0
u = 0.046584 1.212660I
a = 0.563907 1.049470I
b = 0.263145 1.187020I
4.47402 + 2.56568I 0
u = 0.776255 + 0.084754I
a = 1.96737 + 0.45778I
b = 1.044090 0.751566I
4.20666 + 3.23614I 6.34201 8.24044I
u = 0.776255 0.084754I
a = 1.96737 0.45778I
b = 1.044090 + 0.751566I
4.20666 3.23614I 6.34201 + 8.24044I
u = 0.109251 + 1.214890I
a = 0.80584 + 2.16972I
b = 0.484418 0.064884I
4.41125 + 1.64954I 0
u = 0.109251 1.214890I
a = 0.80584 2.16972I
b = 0.484418 + 0.064884I
4.41125 1.64954I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.320207 + 1.177390I
a = 0.418143 0.634187I
b = 1.087520 + 0.478535I
0.881245 + 0.747708I 0
u = 0.320207 1.177390I
a = 0.418143 + 0.634187I
b = 1.087520 0.478535I
0.881245 0.747708I 0
u = 0.489550 + 1.132460I
a = 0.845195 0.209506I
b = 0.961776 0.091917I
0.75256 4.50250I 0
u = 0.489550 1.132460I
a = 0.845195 + 0.209506I
b = 0.961776 + 0.091917I
0.75256 + 4.50250I 0
u = 0.168395 + 1.254750I
a = 0.909624 0.738354I
b = 1.68054 + 0.07433I
1.09519 + 2.03459I 0
u = 0.168395 1.254750I
a = 0.909624 + 0.738354I
b = 1.68054 0.07433I
1.09519 2.03459I 0
u = 0.622042 + 0.266962I
a = 0.333728 + 1.061650I
b = 0.328416 1.217050I
2.34650 + 4.70127I 1.66541 6.89019I
u = 0.622042 0.266962I
a = 0.333728 1.061650I
b = 0.328416 + 1.217050I
2.34650 4.70127I 1.66541 + 6.89019I
u = 0.201780 + 1.344270I
a = 0.47779 1.40922I
b = 1.357800 0.380695I
0.11696 + 3.16123I 0
u = 0.201780 1.344270I
a = 0.47779 + 1.40922I
b = 1.357800 + 0.380695I
0.11696 3.16123I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.331726 + 1.319540I
a = 1.35514 0.94546I
b = 1.019720 0.935363I
0.19484 + 7.23478I 0
u = 0.331726 1.319540I
a = 1.35514 + 0.94546I
b = 1.019720 + 0.935363I
0.19484 7.23478I 0
u = 0.380858 + 1.315350I
a = 0.930411 0.962245I
b = 0.739624 0.217715I
0.42239 4.83795I 0
u = 0.380858 1.315350I
a = 0.930411 + 0.962245I
b = 0.739624 + 0.217715I
0.42239 + 4.83795I 0
u = 0.580317 + 0.214057I
a = 3.38471 0.40273I
b = 0.891148 + 0.455999I
1.63250 3.94273I 3.88858 + 5.95678I
u = 0.580317 0.214057I
a = 3.38471 + 0.40273I
b = 0.891148 0.455999I
1.63250 + 3.94273I 3.88858 5.95678I
u = 0.084571 + 1.382930I
a = 0.054497 + 0.537587I
b = 0.045186 + 0.944137I
5.41837 1.91442I 0
u = 0.084571 1.382930I
a = 0.054497 0.537587I
b = 0.045186 0.944137I
5.41837 + 1.91442I 0
u = 0.562673 + 0.242422I
a = 0.55392 + 1.40968I
b = 0.920370 + 0.284651I
7.32966 + 1.28471I 0.07472 6.09575I
u = 0.562673 0.242422I
a = 0.55392 1.40968I
b = 0.920370 0.284651I
7.32966 1.28471I 0.07472 + 6.09575I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.235874 + 1.386730I
a = 1.69465 + 0.80471I
b = 1.178050 + 0.518685I
6.75272 6.96733I 0
u = 0.235874 1.386730I
a = 1.69465 0.80471I
b = 1.178050 0.518685I
6.75272 + 6.96733I 0
u = 0.190501 + 1.394310I
a = 0.048935 0.246393I
b = 0.90235 1.14942I
7.39171 0.99406I 0
u = 0.190501 1.394310I
a = 0.048935 + 0.246393I
b = 0.90235 + 1.14942I
7.39171 + 0.99406I 0
u = 0.420221 + 0.405604I
a = 2.51276 0.10334I
b = 0.464174 + 0.701970I
3.13089 1.54804I 1.36292 1.90908I
u = 0.420221 0.405604I
a = 2.51276 + 0.10334I
b = 0.464174 0.701970I
3.13089 + 1.54804I 1.36292 + 1.90908I
u = 0.23300 + 1.40172I
a = 0.136138 + 1.020950I
b = 0.642226 + 0.477177I
2.04560 + 4.25350I 0
u = 0.23300 1.40172I
a = 0.136138 1.020950I
b = 0.642226 0.477177I
2.04560 4.25350I 0
u = 0.25005 + 1.40302I
a = 0.452465 0.063748I
b = 0.51101 1.40622I
7.67530 + 7.91631I 0
u = 0.25005 1.40302I
a = 0.452465 + 0.063748I
b = 0.51101 + 1.40622I
7.67530 7.91631I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.16140 + 1.41858I
a = 1.24247 + 0.74107I
b = 0.915024 + 0.747286I
8.91641 + 0.61969I 0
u = 0.16140 1.41858I
a = 1.24247 0.74107I
b = 0.915024 0.747286I
8.91641 0.61969I 0
u = 0.537783 + 0.087841I
a = 2.96586 1.04036I
b = 1.52148 0.18593I
4.68996 + 0.46786I 7.22305 + 1.64442I
u = 0.537783 0.087841I
a = 2.96586 + 1.04036I
b = 1.52148 + 0.18593I
4.68996 0.46786I 7.22305 1.64442I
u = 0.462909 + 0.260608I
a = 1.080330 + 0.319178I
b = 0.662469 0.970115I
2.09947 + 1.48120I 2.08400 + 2.14333I
u = 0.462909 0.260608I
a = 1.080330 0.319178I
b = 0.662469 + 0.970115I
2.09947 1.48120I 2.08400 2.14333I
u = 0.33871 + 1.44643I
a = 1.15336 + 1.08090I
b = 1.34420 + 0.82627I
4.9007 + 15.7068I 0
u = 0.33871 1.44643I
a = 1.15336 1.08090I
b = 1.34420 0.82627I
4.9007 15.7068I 0
u = 0.30870 + 1.45326I
a = 0.867601 0.899252I
b = 1.274760 0.368438I
1.42486 6.45156I 0
u = 0.30870 1.45326I
a = 0.867601 + 0.899252I
b = 1.274760 + 0.368438I
1.42486 + 6.45156I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.29407 + 1.45891I
a = 0.812866 + 0.905342I
b = 1.08796 + 0.91104I
6.61106 8.42932I 0
u = 0.29407 1.45891I
a = 0.812866 0.905342I
b = 1.08796 0.91104I
6.61106 + 8.42932I 0
u = 0.15940 + 1.55376I
a = 0.323360 + 0.186562I
b = 0.528474 0.501666I
8.96596 2.72922I 0
u = 0.15940 1.55376I
a = 0.323360 0.186562I
b = 0.528474 + 0.501666I
8.96596 + 2.72922I 0
u = 0.226546 + 0.361814I
a = 0.207356 + 0.203335I
b = 0.236794 + 0.345165I
0.028670 0.891534I 0.60339 + 7.68948I
u = 0.226546 0.361814I
a = 0.207356 0.203335I
b = 0.236794 0.345165I
0.028670 + 0.891534I 0.60339 7.68948I
u = 0.05123 + 1.58208I
a = 0.0639758 + 0.0036631I
b = 0.792248 0.599111I
9.31745 4.59027I 0
u = 0.05123 1.58208I
a = 0.0639758 0.0036631I
b = 0.792248 + 0.599111I
9.31745 + 4.59027I 0
11
II.
I
u
2
= hu
17
+ u
16
+ · · · + b + 3u, u
16
u
15
+ · · · + a 1, u
18
+ u
17
+ · · · + 2u + 1i
(i) Arc colorings
a
1
=
0
u
a
6
=
1
0
a
3
=
u
16
+ u
15
+ ··· + 9u + 1
u
17
u
16
+ ··· 2u
2
3u
a
7
=
1
u
2
a
5
=
u
17
u
16
+ ··· 8u
2
+ 3
u
17
+ u
16
+ ··· + u + 1
a
2
=
2u
17
+ 18u
15
+ ··· 12u
2
+ 15u
u
17
3u
16
+ ··· 5u 1
a
12
=
u
u
3
+ u
a
8
=
u
2
+ 1
u
4
2u
2
a
9
=
2u
17
2u
16
+ ··· 12u 2
u
17
+ u
16
+ ··· 2u
2
+ 2u
a
11
=
u
3
2u
u
3
+ u
a
4
=
u
16
+ u
15
+ ··· + 10u + 1
u
15
u
14
+ ··· u
3
3u
a
10
=
2u
17
2u
16
+ ··· 12u 2
2u
17
+ 2u
16
+ ··· + 7u
3
+ 4u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
17
+ 10u
16
+ 2u
15
+ 84u
14
+ 52u
13
+ 276u
12
+ 194u
11
+
420u
10
+ 292u
9
+ 227u
8
+ 135u
7
85u
6
84u
5
67u
4
54u
3
+ 53u
2
+ 25u + 11
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
18
3u
17
+ ··· + 4u
2
+ 1
c
2
u
18
+ 3u
17
+ ··· + 3u + 1
c
3
u
18
+ 6u
16
+ ··· u + 1
c
4
u
18
+ u
17
+ ··· + 9u
2
+ 1
c
5
u
18
3u
17
+ ··· 3u + 1
c
6
, c
7
u
18
+ u
17
+ ··· + 2u + 1
c
8
u
18
u
17
+ ··· + 9u
2
+ 1
c
9
u
18
+ u
17
+ ··· + 6u
2
+ 1
c
10
u
18
+ 6u
16
+ ··· + u + 1
c
11
u
18
+ u
17
+ ··· + 7u
2
+ 1
c
12
u
18
u
17
+ ··· 2u + 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
18
11y
17
+ ··· + 8y + 1
c
2
, c
5
y
18
15y
17
+ ··· + 3y + 1
c
3
, c
10
y
18
+ 12y
17
+ ··· 3y + 1
c
4
, c
8
y
18
+ 15y
17
+ ··· + 18y + 1
c
6
, c
7
, c
12
y
18
+ 19y
17
+ ··· + 12y + 1
c
9
y
18
3y
17
+ ··· + 12y + 1
c
11
y
18
y
17
+ ··· + 14y + 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.773934 + 0.231488I
a = 2.08394 0.31153I
b = 1.282150 0.263447I
4.46749 1.83303I 7.57936 + 0.69386I
u = 0.773934 0.231488I
a = 2.08394 + 0.31153I
b = 1.282150 + 0.263447I
4.46749 + 1.83303I 7.57936 0.69386I
u = 0.214946 + 1.181900I
a = 0.677293 1.058070I
b = 1.59277 + 0.19212I
1.81304 1.52738I 7.36454 + 0.16276I
u = 0.214946 1.181900I
a = 0.677293 + 1.058070I
b = 1.59277 0.19212I
1.81304 + 1.52738I 7.36454 0.16276I
u = 0.207784 + 1.231320I
a = 1.113550 + 0.166807I
b = 1.303010 + 0.187111I
4.69100 + 1.96995I 2.62542 4.79081I
u = 0.207784 1.231320I
a = 1.113550 0.166807I
b = 1.303010 0.187111I
4.69100 1.96995I 2.62542 + 4.79081I
u = 0.038102 + 1.259780I
a = 0.48564 + 1.79761I
b = 0.318175 + 0.845570I
5.44116 + 2.12330I 7.44188 2.77053I
u = 0.038102 1.259780I
a = 0.48564 1.79761I
b = 0.318175 0.845570I
5.44116 2.12330I 7.44188 + 2.77053I
u = 0.622411 + 0.160441I
a = 1.46043 1.42137I
b = 1.086800 0.210154I
7.94870 + 0.94161I 11.28164 0.01284I
u = 0.622411 0.160441I
a = 1.46043 + 1.42137I
b = 1.086800 + 0.210154I
7.94870 0.94161I 11.28164 + 0.01284I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.370236 + 1.364330I
a = 1.119980 0.827045I
b = 1.088670 0.482755I
0.53522 6.08319I 2.90511 + 6.25752I
u = 0.370236 1.364330I
a = 1.119980 + 0.827045I
b = 1.088670 + 0.482755I
0.53522 + 6.08319I 2.90511 6.25752I
u = 0.27236 + 1.38898I
a = 0.169437 1.185730I
b = 0.899855 0.319836I
2.95502 + 4.25254I 5.77944 3.56884I
u = 0.27236 1.38898I
a = 0.169437 + 1.185730I
b = 0.899855 + 0.319836I
2.95502 4.25254I 5.77944 + 3.56884I
u = 0.07316 + 1.53250I
a = 0.048434 + 0.355139I
b = 0.205474 0.413665I
8.72912 3.55791I 0.20761 + 3.94043I
u = 0.07316 1.53250I
a = 0.048434 0.355139I
b = 0.205474 + 0.413665I
8.72912 + 3.55791I 0.20761 3.94043I
u = 0.132177 + 0.304356I
a = 0.60372 + 3.51396I
b = 0.302437 0.618636I
2.23494 2.68244I 2.11398 + 3.46850I
u = 0.132177 0.304356I
a = 0.60372 3.51396I
b = 0.302437 + 0.618636I
2.23494 + 2.68244I 2.11398 3.46850I
16
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
18
3u
17
+ ··· + 4u
2
+ 1)(u
68
6u
67
+ ··· 27u + 1)
c
2
(u
18
+ 3u
17
+ ··· + 3u + 1)(u
68
2u
67
+ ··· 2106u + 1161)
c
3
(u
18
+ 6u
16
+ ··· u + 1)(u
68
u
67
+ ··· + 430u + 55)
c
4
(u
18
+ u
17
+ ··· + 9u
2
+ 1)(u
68
+ 2u
67
+ ··· + 157u + 31)
c
5
(u
18
3u
17
+ ··· 3u + 1)(u
68
2u
67
+ ··· 2106u + 1161)
c
6
, c
7
(u
18
+ u
17
+ ··· + 2u + 1)(u
68
+ 32u
66
+ ··· + 17u + 19)
c
8
(u
18
u
17
+ ··· + 9u
2
+ 1)(u
68
+ 2u
67
+ ··· + 157u + 31)
c
9
(u
18
+ u
17
+ ··· + 6u
2
+ 1)(u
68
+ 4u
67
+ ··· u + 1)
c
10
(u
18
+ 6u
16
+ ··· + u + 1)(u
68
u
67
+ ··· + 430u + 55)
c
11
(u
18
+ u
17
+ ··· + 7u
2
+ 1)(u
68
2u
65
+ ··· 109361u + 34447)
c
12
(u
18
u
17
+ ··· 2u + 1)(u
68
+ 32u
66
+ ··· + 17u + 19)
17
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
18
11y
17
+ ··· + 8y + 1)(y
68
54y
67
+ ··· + 189y + 1)
c
2
, c
5
(y
18
15y
17
+ ··· + 3y + 1)
· (y
68
34y
67
+ ··· 27367308y + 1347921)
c
3
, c
10
(y
18
+ 12y
17
+ ··· 3y + 1)(y
68
+ 25y
67
+ ··· + 220450y + 3025)
c
4
, c
8
(y
18
+ 15y
17
+ ··· + 18y + 1)(y
68
+ 24y
67
+ ··· + 22223y + 961)
c
6
, c
7
, c
12
(y
18
+ 19y
17
+ ··· + 12y + 1)(y
68
+ 64y
67
+ ··· 2075y + 361)
c
9
(y
18
3y
17
+ ··· + 12y + 1)(y
68
50y
67
+ ··· + 217y + 1)
c
11
(y
18
y
17
+ ··· + 14y + 1)
· (y
68
+ 46y
66
+ ··· + 15032565303y + 1186595809)
18