12n
0795
(K12n
0795
)
A knot diagram
1
Linearized knot diagam
4 6 10 8 2 11 12 4 1 3 8 7
Solving Sequence
8,11
12 7 1
3,6
2 5 10 4 9
c
11
c
7
c
12
c
6
c
2
c
5
c
10
c
3
c
9
c
1
, c
4
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.02240 × 10
36
u
53
1.89768 × 10
37
u
52
+ ··· + 3.08931 × 10
37
b + 8.64765 × 10
37
,
3.79905 × 10
37
u
53
2.32864 × 10
37
u
52
+ ··· + 3.39824 × 10
38
a + 7.15973 × 10
38
,
u
54
+ 2u
53
+ ··· 68u 11i
I
u
2
= h−u
14
7u
12
18u
10
+ u
9
19u
8
+ 5u
7
4u
6
+ 7u
5
+ 3u
4
+ u
3
u
2
+ b 3u,
u
14
+ 2u
13
9u
12
+ 15u
11
31u
10
+ 43u
9
50u
8
+ 56u
7
35u
6
+ 26u
5
3u
4
6u
3
+ 7u
2
+ a 5u + 4,
u
15
u
14
+ 9u
13
8u
12
+ 32u
11
25u
10
+ 55u
9
37u
8
+ 42u
7
22u
6
+ 4u
5
+ 3u
4
8u
3
+ 7u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−1.02 × 10
36
u
53
1.90 × 10
37
u
52
+ · · · + 3.09 × 10
37
b + 8.65 ×
10
37
, 3.80 × 10
37
u
53
2.33 × 10
37
u
52
+ · · · + 3.40 × 10
38
a + 7.16 ×
10
38
, u
54
+ 2u
53
+ · · · 68u 11i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
0.111794u
53
+ 0.0685248u
52
+ ··· 6.32751u 2.10689
0.0330947u
53
+ 0.614273u
52
+ ··· 14.1115u 2.79922
a
6
=
u
3
+ 2u
u
3
+ u
a
2
=
0.0462518u
53
0.197231u
52
+ ··· + 18.3660u + 3.41252
0.0768640u
53
+ 0.598332u
52
+ ··· 7.25300u 0.884533
a
5
=
0.598411u
53
+ 0.724886u
52
+ ··· 4.83758u 2.53344
0.644293u
53
+ 0.0999628u
52
+ ··· + 2.37484u 0.981251
a
10
=
0.869370u
53
+ 1.10346u
52
+ ··· 57.0809u 12.2337
0.758825u
53
+ 2.10666u
52
+ ··· 76.2371u 14.3877
a
4
=
0.598411u
53
0.724886u
52
+ ··· + 4.83758u + 2.53344
0.0503708u
53
+ 0.206592u
52
+ ··· + 23.1342u + 6.17254
a
9
=
1.21296u
53
+ 1.80879u
52
+ ··· 76.8483u 15.7970
0.882160u
53
+ 2.58325u
52
+ ··· 91.2590u 17.2428
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.660515u
53
1.00096u
52
+ ··· 64.0934u 26.6095
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
54
u
53
+ ··· + 161u 7
c
2
, c
5
u
54
+ 4u
53
+ ··· + 100u 7
c
3
, c
10
u
54
+ u
53
+ ··· 24u + 79
c
4
, c
8
u
54
3u
53
+ ··· 1056u + 279
c
6
u
54
2u
53
+ ··· 9058u 3839
c
7
, c
11
, c
12
u
54
+ 2u
53
+ ··· 68u 11
c
9
u
54
+ u
53
+ ··· + 34u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
54
+ 53y
53
+ ··· 8141y + 49
c
2
, c
5
y
54
22y
53
+ ··· 10854y + 49
c
3
, c
10
y
54
+ 49y
53
+ ··· 26804y + 6241
c
4
, c
8
y
54
59y
53
+ ··· 3109428y + 77841
c
6
y
54
+ 4y
53
+ ··· + 184125862y + 14737921
c
7
, c
11
, c
12
y
54
+ 52y
53
+ ··· 1082y + 121
c
9
y
54
+ 55y
53
+ ··· 1762y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.881137 + 0.332755I
a = 0.54399 2.13485I
b = 0.39987 1.44588I
1.46224 + 9.75579I 6.92865 6.33368I
u = 0.881137 0.332755I
a = 0.54399 + 2.13485I
b = 0.39987 + 1.44588I
1.46224 9.75579I 6.92865 + 6.33368I
u = 0.661598 + 0.849697I
a = 0.701547 1.110120I
b = 0.308972 1.370990I
0.12696 4.49631I 5.88481 + 2.41612I
u = 0.661598 0.849697I
a = 0.701547 + 1.110120I
b = 0.308972 + 1.370990I
0.12696 + 4.49631I 5.88481 2.41612I
u = 0.862493 + 0.086515I
a = 0.43056 2.27902I
b = 0.194758 1.252480I
5.81257 2.56927I 8.23844 + 3.31387I
u = 0.862493 0.086515I
a = 0.43056 + 2.27902I
b = 0.194758 + 1.252480I
5.81257 + 2.56927I 8.23844 3.31387I
u = 0.034093 + 1.169890I
a = 0.694656 + 1.176320I
b = 0.07515 + 1.63362I
5.56210 0.29699I 0
u = 0.034093 1.169890I
a = 0.694656 1.176320I
b = 0.07515 1.63362I
5.56210 + 0.29699I 0
u = 0.061275 + 1.202860I
a = 1.171810 0.220502I
b = 0.682474 + 0.808517I
4.62735 + 2.61524I 0
u = 0.061275 1.202860I
a = 1.171810 + 0.220502I
b = 0.682474 0.808517I
4.62735 2.61524I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.703654 + 0.331302I
a = 0.449981 + 0.493740I
b = 0.953667 + 0.272713I
3.98978 4.89959I 3.74361 + 5.61016I
u = 0.703654 0.331302I
a = 0.449981 0.493740I
b = 0.953667 0.272713I
3.98978 + 4.89959I 3.74361 5.61016I
u = 0.517589 + 0.579128I
a = 0.432842 1.079910I
b = 0.686610 + 0.121861I
4.91286 + 0.83348I 0.991616 + 0.466967I
u = 0.517589 0.579128I
a = 0.432842 + 1.079910I
b = 0.686610 0.121861I
4.91286 0.83348I 0.991616 0.466967I
u = 0.660016 + 0.406956I
a = 1.06148 + 1.12929I
b = 0.127395 + 1.287570I
6.55286 + 2.04235I 7.25331 3.50673I
u = 0.660016 0.406956I
a = 1.06148 1.12929I
b = 0.127395 1.287570I
6.55286 2.04235I 7.25331 + 3.50673I
u = 0.152086 + 1.230400I
a = 2.21560 + 0.95171I
b = 0.022858 + 1.045750I
4.59893 0.06572I 0
u = 0.152086 1.230400I
a = 2.21560 0.95171I
b = 0.022858 1.045750I
4.59893 + 0.06572I 0
u = 0.464769 + 1.178440I
a = 0.444192 1.161940I
b = 0.045829 1.278020I
2.46094 2.14351I 0
u = 0.464769 1.178440I
a = 0.444192 + 1.161940I
b = 0.045829 + 1.278020I
2.46094 + 2.14351I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.718867
a = 0.234022
b = 0.516900
2.00172 2.11670
u = 0.618358 + 0.333206I
a = 1.21587 + 2.22737I
b = 0.07061 + 1.56445I
7.42325 1.74416I 4.39978 + 3.82440I
u = 0.618358 0.333206I
a = 1.21587 2.22737I
b = 0.07061 1.56445I
7.42325 + 1.74416I 4.39978 3.82440I
u = 0.300837 + 1.283390I
a = 0.334898 0.433885I
b = 0.533318 + 0.132363I
2.00821 + 3.67955I 0
u = 0.300837 1.283390I
a = 0.334898 + 0.433885I
b = 0.533318 0.132363I
2.00821 3.67955I 0
u = 0.154982 + 1.323550I
a = 0.726837 0.314235I
b = 0.614893 0.397811I
1.72966 2.23286I 0
u = 0.154982 1.323550I
a = 0.726837 + 0.314235I
b = 0.614893 + 0.397811I
1.72966 + 2.23286I 0
u = 0.094235 + 1.347490I
a = 0.883756 + 0.145148I
b = 0.620923 + 0.478168I
4.77656 + 2.05407I 0
u = 0.094235 1.347490I
a = 0.883756 0.145148I
b = 0.620923 0.478168I
4.77656 2.05407I 0
u = 0.376292 + 1.326680I
a = 1.34754 + 1.24800I
b = 0.310469 + 1.232490I
1.38617 7.00293I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.376292 1.326680I
a = 1.34754 1.24800I
b = 0.310469 1.232490I
1.38617 + 7.00293I 0
u = 0.229873 + 1.369020I
a = 1.07939 1.70290I
b = 0.34520 1.44114I
6.29624 + 5.50512I 0
u = 0.229873 1.369020I
a = 1.07939 + 1.70290I
b = 0.34520 + 1.44114I
6.29624 5.50512I 0
u = 0.201736 + 1.374670I
a = 0.069667 0.195301I
b = 0.77398 1.23082I
6.68190 + 1.90913I 0
u = 0.201736 1.374670I
a = 0.069667 + 0.195301I
b = 0.77398 + 1.23082I
6.68190 1.90913I 0
u = 0.569109 + 0.157556I
a = 0.21924 + 4.04070I
b = 0.271278 + 1.251950I
1.40834 + 2.55636I 7.88899 3.76167I
u = 0.569109 0.157556I
a = 0.21924 4.04070I
b = 0.271278 1.251950I
1.40834 2.55636I 7.88899 + 3.76167I
u = 0.26439 + 1.43158I
a = 1.176170 0.713113I
b = 0.20131 1.51219I
1.76307 5.05086I 0
u = 0.26439 1.43158I
a = 1.176170 + 0.713113I
b = 0.20131 + 1.51219I
1.76307 + 5.05086I 0
u = 0.27745 + 1.43289I
a = 0.482110 0.560176I
b = 1.128380 0.228809I
9.62901 8.48480I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.27745 1.43289I
a = 0.482110 + 0.560176I
b = 1.128380 + 0.228809I
9.62901 + 8.48480I 0
u = 0.501917 + 0.181939I
a = 0.02666 + 1.76555I
b = 0.658368 + 1.057790I
1.69160 0.71190I 8.63375 2.05858I
u = 0.501917 0.181939I
a = 0.02666 1.76555I
b = 0.658368 1.057790I
1.69160 + 0.71190I 8.63375 + 2.05858I
u = 0.27382 + 1.46493I
a = 1.043680 0.263678I
b = 0.267903 1.143590I
0.53926 + 5.52355I 0
u = 0.27382 1.46493I
a = 1.043680 + 0.263678I
b = 0.267903 + 1.143590I
0.53926 5.52355I 0
u = 0.35422 + 1.45911I
a = 1.24409 + 1.06931I
b = 0.48568 + 1.47325I
4.2552 + 14.2219I 0
u = 0.35422 1.45911I
a = 1.24409 1.06931I
b = 0.48568 1.47325I
4.2552 14.2219I 0
u = 0.14172 + 1.50342I
a = 0.239640 + 0.749072I
b = 0.722793 + 0.242786I
11.72290 1.51265I 0
u = 0.14172 1.50342I
a = 0.239640 0.749072I
b = 0.722793 0.242786I
11.72290 + 1.51265I 0
u = 0.475960
a = 1.20947
b = 0.452125
2.46570 2.76380
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.254809 + 0.273319I
a = 0.778345 0.766727I
b = 0.196995 0.477015I
0.216037 + 0.828510I 5.24914 8.37217I
u = 0.254809 0.273319I
a = 0.778345 + 0.766727I
b = 0.196995 + 0.477015I
0.216037 0.828510I 5.24914 + 8.37217I
u = 0.09766 + 1.65580I
a = 0.169231 + 0.249301I
b = 0.248336 + 1.196290I
8.90251 1.85529I 0
u = 0.09766 1.65580I
a = 0.169231 0.249301I
b = 0.248336 1.196290I
8.90251 + 1.85529I 0
10
II.
I
u
2
= h−u
14
7u
12
+· · ·+b3u, u
14
+2u
13
+· · ·+a+4, u
15
u
14
+· · ·+7u
2
+1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
7
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
3
=
u
14
2u
13
+ ··· + 5u 4
u
14
+ 7u
12
+ 18u
10
u
9
+ 19u
8
5u
7
+ 4u
6
7u
5
3u
4
u
3
+ u
2
+ 3u
a
6
=
u
3
+ 2u
u
3
+ u
a
2
=
u
13
+ u
12
+ ··· + 4u 4
u
14
+ 7u
12
+ 18u
10
u
9
+ 19u
8
5u
7
+ 4u
6
7u
5
2u
4
u
3
+ 3u
2
+ 3u
a
5
=
u
14
2u
13
+ ··· + 10u 1
2u
13
+ 2u
12
+ ··· + 2u 1
a
10
=
2u
14
+ 2u
13
+ ··· 11u + 1
u
13
u
12
+ ··· + 6u
2
2u
a
4
=
u
14
2u
13
+ ··· + 10u 1
u
13
+ u
12
+ ··· 5u
2
+ u
a
9
=
2u
14
+ 2u
13
+ ··· 14u + 1
u
13
u
12
+ ··· + 6u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
14
+ 6u
13
24u
12
+ 42u
11
71u
10
+ 108u
9
89u
8
+ 115u
7
33u
6
+ 25u
5
+ 9u
4
22u
3
4u
2
+ 2u 3
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
15
+ 3u
13
+ ··· 3u 1
c
2
u
15
+ 3u
14
+ ··· 3u
2
1
c
3
u
15
+ 9u
13
+ ··· 4u
2
+ 1
c
4
u
15
2u
14
+ ··· + 10u
2
1
c
5
u
15
3u
14
+ ··· + 3u
2
+ 1
c
6
u
15
u
14
+ ··· + 2u 1
c
7
u
15
+ u
14
+ ··· 7u
2
1
c
8
u
15
+ 2u
14
+ ··· 10u
2
+ 1
c
9
u
15
+ 6u
13
+ ··· + 3u
2
1
c
10
u
15
+ 9u
13
+ ··· + 4u
2
1
c
11
, c
12
u
15
u
14
+ ··· + 7u
2
+ 1
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
15
+ 6y
14
+ ··· + 9y 1
c
2
, c
5
y
15
9y
14
+ ··· 6y 1
c
3
, c
10
y
15
+ 18y
14
+ ··· + 8y 1
c
4
, c
8
y
15
6y
14
+ ··· + 20y 1
c
6
y
15
+ 5y
14
+ ··· 18y 1
c
7
, c
11
, c
12
y
15
+ 17y
14
+ ··· 14y 1
c
9
y
15
+ 12y
14
+ ··· + 6y 1
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.203897 + 1.182510I
a = 0.354319 1.221590I
b = 0.08173 1.61035I
5.71687 1.52845I 6.08651 + 4.82612I
u = 0.203897 1.182510I
a = 0.354319 + 1.221590I
b = 0.08173 + 1.61035I
5.71687 + 1.52845I 6.08651 4.82612I
u = 0.033799 + 1.247150I
a = 1.91300 + 0.07166I
b = 0.496329 + 0.968310I
5.47176 + 1.87806I 1.95765 1.95299I
u = 0.033799 1.247150I
a = 1.91300 0.07166I
b = 0.496329 0.968310I
5.47176 1.87806I 1.95765 + 1.95299I
u = 0.695741 + 0.257174I
a = 1.14939 2.10113I
b = 0.10467 1.48695I
8.37469 1.56439I 13.79063 + 1.52850I
u = 0.695741 0.257174I
a = 1.14939 + 2.10113I
b = 0.10467 + 1.48695I
8.37469 + 1.56439I 13.79063 1.52850I
u = 0.270202 + 1.313250I
a = 0.494443 + 0.091423I
b = 0.379327 + 0.243587I
1.19519 + 3.29133I 5.91213 2.50289I
u = 0.270202 1.313250I
a = 0.494443 0.091423I
b = 0.379327 0.243587I
1.19519 3.29133I 5.91213 + 2.50289I
u = 0.641026
a = 0.683428
b = 0.308804
2.98177 14.5200
u = 0.33142 + 1.43193I
a = 1.189210 + 0.727838I
b = 0.179540 + 1.396510I
2.94306 5.41071I 8.48695 + 4.16478I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.33142 1.43193I
a = 1.189210 0.727838I
b = 0.179540 1.396510I
2.94306 + 5.41071I 8.48695 4.16478I
u = 0.02900 + 1.58206I
a = 0.355078 0.312207I
b = 0.266182 0.998489I
9.41454 1.04650I 0.68107 1.40813I
u = 0.02900 1.58206I
a = 0.355078 + 0.312207I
b = 0.266182 + 0.998489I
9.41454 + 1.04650I 0.68107 + 1.40813I
u = 0.077540 + 0.352277I
a = 3.28030 + 1.82680I
b = 0.380983 + 0.977431I
2.44402 1.47765I 3.24037 + 1.97101I
u = 0.077540 0.352277I
a = 3.28030 1.82680I
b = 0.380983 0.977431I
2.44402 + 1.47765I 3.24037 1.97101I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
15
+ 3u
13
+ ··· 3u 1)(u
54
u
53
+ ··· + 161u 7)
c
2
(u
15
+ 3u
14
+ ··· 3u
2
1)(u
54
+ 4u
53
+ ··· + 100u 7)
c
3
(u
15
+ 9u
13
+ ··· 4u
2
+ 1)(u
54
+ u
53
+ ··· 24u + 79)
c
4
(u
15
2u
14
+ ··· + 10u
2
1)(u
54
3u
53
+ ··· 1056u + 279)
c
5
(u
15
3u
14
+ ··· + 3u
2
+ 1)(u
54
+ 4u
53
+ ··· + 100u 7)
c
6
(u
15
u
14
+ ··· + 2u 1)(u
54
2u
53
+ ··· 9058u 3839)
c
7
(u
15
+ u
14
+ ··· 7u
2
1)(u
54
+ 2u
53
+ ··· 68u 11)
c
8
(u
15
+ 2u
14
+ ··· 10u
2
+ 1)(u
54
3u
53
+ ··· 1056u + 279)
c
9
(u
15
+ 6u
13
+ ··· + 3u
2
1)(u
54
+ u
53
+ ··· + 34u 1)
c
10
(u
15
+ 9u
13
+ ··· + 4u
2
1)(u
54
+ u
53
+ ··· 24u + 79)
c
11
, c
12
(u
15
u
14
+ ··· + 7u
2
+ 1)(u
54
+ 2u
53
+ ··· 68u 11)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
15
+ 6y
14
+ ··· + 9y 1)(y
54
+ 53y
53
+ ··· 8141y + 49)
c
2
, c
5
(y
15
9y
14
+ ··· 6y 1)(y
54
22y
53
+ ··· 10854y + 49)
c
3
, c
10
(y
15
+ 18y
14
+ ··· + 8y 1)(y
54
+ 49y
53
+ ··· 26804y + 6241)
c
4
, c
8
(y
15
6y
14
+ ··· + 20y 1)(y
54
59y
53
+ ··· 3109428y + 77841)
c
6
(y
15
+ 5y
14
+ ··· 18y 1)
· (y
54
+ 4y
53
+ ··· + 184125862y + 14737921)
c
7
, c
11
, c
12
(y
15
+ 17y
14
+ ··· 14y 1)(y
54
+ 52y
53
+ ··· 1082y + 121)
c
9
(y
15
+ 12y
14
+ ··· + 6y 1)(y
54
+ 55y
53
+ ··· 1762y + 1)
17