12n
0798
(K12n
0798
)
A knot diagram
1
Linearized knot diagam
4 12 11 9 3 12 3 1 4 1 7 5
Solving Sequence
1,4 2,10
11 3 9 5 6 8 7 12
c
1
c
10
c
3
c
9
c
4
c
5
c
8
c
7
c
12
c
2
, c
6
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1283u
12
662u
11
+ ··· + 5739b + 1160, 630u
12
+ 3164u
11
+ ··· + 1913a 753,
u
13
3u
12
+ 8u
11
20u
10
+ 36u
9
61u
8
+ 84u
7
97u
6
+ 97u
5
68u
4
+ 41u
3
13u
2
+ 3u + 1i
I
u
2
= h−1.18123 × 10
153
u
55
4.51937 × 10
153
u
54
+ ··· + 2.08930 × 10
155
b 7.05789 × 10
155
,
8.87232 × 10
153
u
55
+ 3.38341 × 10
154
u
54
+ ··· + 6.26789 × 10
155
a + 3.97690 × 10
156
,
u
56
+ 4u
55
+ ··· + 1346u + 111i
I
u
3
= h−135214u
15
+ 515373u
14
+ ··· + 267063b + 30946,
570167u
15
+ 1972254u
14
+ ··· + 1335315a 4248919, u
16
4u
15
+ ··· u + 1i
I
u
4
= h−u
3
+ u
2
+ b u, u
2
+ a u + 2, u
4
u
3
+ 2u
2
+ 1i
I
u
5
= h−u
2
+ b + u, a + u, u
4
u
3
+ u
2
u + 1i
* 5 irreducible components of dim
C
= 0, with total 93 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1283u
12
662u
11
+ · · · + 5739b + 1160, 630u
12
+ 3164u
11
+ · · · +
1913a 753, u
13
3u
12
+ · · · + 3u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
10
=
0.329326u
12
1.65395u
11
+ ··· 12.3325u + 0.393623
0.223558u
12
+ 0.115351u
11
+ ··· 2.77749u 0.202126
a
11
=
0.552884u
12
1.76930u
11
+ ··· 9.55497u + 0.595748
0.223558u
12
+ 0.115351u
11
+ ··· 2.77749u 0.202126
a
3
=
0.744555u
12
+ 1.43562u
11
+ ··· 4.66423u + 0.635477
0.238021u
12
+ 0.958355u
11
+ ··· + 3.13870u + 0.798048
a
9
=
0.329326u
12
1.65395u
11
+ ··· 12.3325u + 0.393623
0.499042u
12
+ 1.07667u
11
+ ··· 1.10890u + 0.463844
a
5
=
1.02248u
12
2.20178u
11
+ ··· + 4.08207u 1.12075
0.110646u
12
+ 0.148284u
11
+ ··· 1.06290u 0.552884
a
6
=
0.905558u
12
2.55532u
11
+ ··· 1.63164u 1.70971
0.659697u
12
+ 2.22426u
11
+ ··· + 3.05646u + 0.706743
a
8
=
0.828367u
12
2.73062u
11
+ ··· 11.2236u 0.0702213
0.499042u
12
+ 1.07667u
11
+ ··· 1.10890u + 0.463844
a
7
=
1.44642u
12
3.28646u
11
+ ··· 1.18400u + 1.06691
0.158564u
12
1.31486u
11
+ ··· 7.38230u 1.25492
a
12
=
0.364523u
12
+ 1.83813u
11
+ ··· + 7.51403u + 3.57066
0.798048u
12
2.15612u
11
+ ··· 2.86914u 0.744555
(ii) Obstruction class = 1
(iii) Cusp Shapes =
27061
5739
u
12
84808
5739
u
11
+ ···
197266
5739
u +
6865
5739
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
13
+ 3u
12
+ ··· + 3u 1
c
3
, c
12
u
13
+ u
12
+ ··· 3u 1
c
4
, c
6
, c
9
c
11
u
13
2u
12
+ ··· + 7u
3
1
c
5
, c
10
u
13
u
12
+ ··· + 3u 3
c
7
, c
8
u
13
+ 3u
12
+ ··· 8u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
y
13
+ 7y
12
+ ··· + 35y 1
c
3
, c
12
y
13
+ 7y
12
+ ··· + 3y 1
c
4
, c
6
, c
9
c
11
y
13
+ 4y
11
+ ··· 2y
2
1
c
5
, c
10
y
13
+ 15y
12
+ ··· + 39y 9
c
7
, c
8
y
13
3y
12
+ ··· + 34y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.125889 + 0.791075I
a = 0.42819 + 1.60424I
b = 0.06421 + 1.99251I
3.78832 0.68098I 3.18600 + 10.56387I
u = 0.125889 0.791075I
a = 0.42819 1.60424I
b = 0.06421 1.99251I
3.78832 + 0.68098I 3.18600 10.56387I
u = 0.435895 + 1.153550I
a = 0.166988 0.397762I
b = 1.101790 0.664354I
1.60930 2.98509I 6.45992 + 2.62910I
u = 0.435895 1.153550I
a = 0.166988 + 0.397762I
b = 1.101790 + 0.664354I
1.60930 + 2.98509I 6.45992 2.62910I
u = 0.405751 + 0.538490I
a = 1.29934 1.45999I
b = 0.613689 0.351552I
8.20006 2.65719I 7.53293 + 6.11651I
u = 0.405751 0.538490I
a = 1.29934 + 1.45999I
b = 0.613689 + 0.351552I
8.20006 + 2.65719I 7.53293 6.11651I
u = 0.21582 + 1.42915I
a = 0.743610 + 0.701361I
b = 0.17608 + 1.54701I
9.07015 + 0.94105I 7.27747 1.09961I
u = 0.21582 1.42915I
a = 0.743610 0.701361I
b = 0.17608 1.54701I
9.07015 0.94105I 7.27747 + 1.09961I
u = 1.52678 + 0.05294I
a = 0.101352 + 0.424061I
b = 0.310928 + 0.347924I
3.37050 + 0.66803I 1.81891 10.95758I
u = 1.52678 0.05294I
a = 0.101352 0.424061I
b = 0.310928 0.347924I
3.37050 0.66803I 1.81891 + 10.95758I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.70010 + 1.56807I
a = 0.383909 0.789778I
b = 0.82111 1.72051I
7.2980 + 16.4758I 4.42093 8.40539I
u = 0.70010 1.56807I
a = 0.383909 + 0.789778I
b = 0.82111 + 1.72051I
7.2980 16.4758I 4.42093 + 8.40539I
u = 0.156796
a = 3.33128
b = 0.475252
0.851273 11.7390
6
II. I
u
2
= h−1.18 × 10
153
u
55
4.52 × 10
153
u
54
+ · · · + 2.09 × 10
155
b 7.06 ×
10
155
, 8.87 × 10
153
u
55
+ 3.38 × 10
154
u
54
+ · · · + 6.27 × 10
155
a + 3.98 ×
10
156
, u
56
+ 4u
55
+ · · · + 1346u + 111i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
10
=
0.0141552u
55
0.0539800u
54
+ ··· 28.3025u 6.34487
0.00565370u
55
+ 0.0216310u
54
+ ··· + 16.5561u + 3.37812
a
11
=
0.0198089u
55
0.0756110u
54
+ ··· 44.8585u 9.72299
0.00565370u
55
+ 0.0216310u
54
+ ··· + 16.5561u + 3.37812
a
3
=
0.0144678u
55
+ 0.0586721u
54
+ ··· + 73.1975u + 12.4499
0.00267933u
55
0.00908580u
54
+ ··· 12.7090u 3.57215
a
9
=
0.0141552u
55
0.0539800u
54
+ ··· 28.3025u 6.34487
0.00718179u
55
+ 0.0273575u
54
+ ··· + 14.5728u + 3.08499
a
5
=
0.00877254u
55
0.0387439u
54
+ ··· 48.2032u 6.38465
0.00314979u
55
+ 0.0134163u
54
+ ··· + 18.1770u + 2.89867
a
6
=
0.0116448u
55
0.0480523u
54
+ ··· 48.8452u + 1.49968
0.00331140u
55
+ 0.0134797u
54
+ ··· + 33.1904u + 2.23101
a
8
=
0.0213370u
55
0.0813374u
54
+ ··· 42.8753u 9.42987
0.00718179u
55
+ 0.0273575u
54
+ ··· + 14.5728u + 3.08499
a
7
=
0.0106076u
55
+ 0.0439229u
54
+ ··· + 51.7711u + 2.93855
0.00286600u
55
0.0111012u
54
+ ··· 25.2269u 2.36948
a
12
=
0.00420227u
55
0.0147886u
54
+ ··· 32.7418u 2.34305
0.00309502u
55
+ 0.0110761u
54
+ ··· + 17.1401u + 2.03269
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.000431876u
55
0.00131056u
54
+ ··· 42.1688u + 5.52954
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
u
56
4u
55
+ ··· 1346u + 111
c
3
, c
12
u
56
+ 2u
54
+ ··· + 907u + 193
c
4
, c
6
, c
9
c
11
u
56
+ u
55
+ ··· + 13u + 3
c
5
, c
10
u
56
+ 2u
55
+ ··· + 82u + 37
c
7
, c
8
u
56
u
55
+ ··· + 29361u + 1951
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
y
56
+ 50y
55
+ ··· 249724y + 12321
c
3
, c
12
y
56
+ 4y
55
+ ··· 242491y + 37249
c
4
, c
6
, c
9
c
11
y
56
+ 15y
55
+ ··· + 275y + 9
c
5
, c
10
y
56
+ 52y
55
+ ··· 39284y + 1369
c
7
, c
8
y
56
31y
55
+ ··· 114413905y + 3806401
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.973175 + 0.358698I
a = 0.223686 + 0.715699I
b = 0.141495 0.212809I
2.35105 1.37665I 0. + 4.49216I
u = 0.973175 0.358698I
a = 0.223686 0.715699I
b = 0.141495 + 0.212809I
2.35105 + 1.37665I 0. 4.49216I
u = 0.847096 + 0.638226I
a = 0.404462 + 0.469747I
b = 0.15766 + 1.46714I
1.93596 + 5.90600I 0. 3.51945I
u = 0.847096 0.638226I
a = 0.404462 0.469747I
b = 0.15766 1.46714I
1.93596 5.90600I 0. + 3.51945I
u = 0.561985 + 0.926870I
a = 0.331742 1.143620I
b = 0.25987 1.69030I
3.01211 + 5.08083I 8.72700 + 0.I
u = 0.561985 0.926870I
a = 0.331742 + 1.143620I
b = 0.25987 + 1.69030I
3.01211 5.08083I 8.72700 + 0.I
u = 0.401455 + 0.819963I
a = 0.524050 0.252083I
b = 0.232565 1.287120I
3.14992 0.89303I 3.36391 + 1.60851I
u = 0.401455 0.819963I
a = 0.524050 + 0.252083I
b = 0.232565 + 1.287120I
3.14992 + 0.89303I 3.36391 1.60851I
u = 0.428842 + 0.782748I
a = 1.39747 + 0.43456I
b = 0.093467 0.473397I
2.65912 0.69416I 5.49287 + 3.59719I
u = 0.428842 0.782748I
a = 1.39747 0.43456I
b = 0.093467 + 0.473397I
2.65912 + 0.69416I 5.49287 3.59719I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.293234 + 1.071580I
a = 0.398636 + 1.032790I
b = 0.105708 + 1.267210I
3.14992 + 0.89303I 4.00000 + 0.I
u = 0.293234 1.071580I
a = 0.398636 1.032790I
b = 0.105708 1.267210I
3.14992 0.89303I 4.00000 + 0.I
u = 0.087731 + 1.118910I
a = 0.686073 + 0.991907I
b = 0.06046 + 1.60533I
3.57949 + 0.97368I 7.35348 5.23167I
u = 0.087731 1.118910I
a = 0.686073 0.991907I
b = 0.06046 1.60533I
3.57949 0.97368I 7.35348 + 5.23167I
u = 0.683985 + 0.326867I
a = 0.76677 + 1.25863I
b = 0.876249 0.500129I
4.38515 0.94897I 10.21959 + 1.75938I
u = 0.683985 0.326867I
a = 0.76677 1.25863I
b = 0.876249 + 0.500129I
4.38515 + 0.94897I 10.21959 1.75938I
u = 0.463157 + 1.179820I
a = 0.692781 0.317187I
b = 0.447756 0.568276I
2.65912 0.69416I 0
u = 0.463157 1.179820I
a = 0.692781 + 0.317187I
b = 0.447756 + 0.568276I
2.65912 + 0.69416I 0
u = 1.250640 + 0.306528I
a = 0.350610 + 0.608692I
b = 0.076204 + 0.243308I
3.22350 + 2.16516I 0
u = 1.250640 0.306528I
a = 0.350610 0.608692I
b = 0.076204 0.243308I
3.22350 2.16516I 0
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.150720 + 1.306260I
a = 0.728240 + 0.063856I
b = 1.105270 + 0.474638I
0.60047 5.02443I 0
u = 0.150720 1.306260I
a = 0.728240 0.063856I
b = 1.105270 0.474638I
0.60047 + 5.02443I 0
u = 0.118150 + 1.326950I
a = 0.824150 + 0.704249I
b = 0.25793 + 1.46755I
7.25514 0
u = 0.118150 1.326950I
a = 0.824150 0.704249I
b = 0.25793 1.46755I
7.25514 0
u = 0.855631 + 1.049130I
a = 0.036172 0.766616I
b = 0.62639 1.44617I
0.60047 5.02443I 0
u = 0.855631 1.049130I
a = 0.036172 + 0.766616I
b = 0.62639 + 1.44617I
0.60047 + 5.02443I 0
u = 0.110352 + 0.636373I
a = 2.55589 0.04098I
b = 0.423182 + 0.031837I
3.01211 + 5.08083I 8.72700 0.16788I
u = 0.110352 0.636373I
a = 2.55589 + 0.04098I
b = 0.423182 0.031837I
3.01211 5.08083I 8.72700 + 0.16788I
u = 0.002625 + 1.377270I
a = 0.508986 0.612116I
b = 0.09477 1.51750I
3.22350 2.16516I 0
u = 0.002625 1.377270I
a = 0.508986 + 0.612116I
b = 0.09477 + 1.51750I
3.22350 + 2.16516I 0
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.150210 + 0.569344I
a = 0.824610 0.889775I
b = 1.046740 + 0.070502I
2.35105 1.37665I 0.14056 + 4.49216I
u = 0.150210 0.569344I
a = 0.824610 + 0.889775I
b = 1.046740 0.070502I
2.35105 + 1.37665I 0.14056 4.49216I
u = 0.23885 + 1.42021I
a = 0.724589 0.727418I
b = 0.07102 1.58823I
8.32665 + 8.69653I 0
u = 0.23885 1.42021I
a = 0.724589 + 0.727418I
b = 0.07102 + 1.58823I
8.32665 8.69653I 0
u = 0.46400 + 1.40989I
a = 0.467280 + 0.871972I
b = 0.93856 + 1.51643I
2.96962 6.50699I 0
u = 0.46400 1.40989I
a = 0.467280 0.871972I
b = 0.93856 1.51643I
2.96962 + 6.50699I 0
u = 0.12171 + 1.48953I
a = 0.732149 0.618254I
b = 0.02724 1.64380I
8.61168 6.87817I 0
u = 0.12171 1.48953I
a = 0.732149 + 0.618254I
b = 0.02724 + 1.64380I
8.61168 + 6.87817I 0
u = 0.46868 + 1.43810I
a = 0.529642 + 0.769097I
b = 0.656517 + 1.172790I
1.93596 5.90600I 0
u = 0.46868 1.43810I
a = 0.529642 0.769097I
b = 0.656517 1.172790I
1.93596 + 5.90600I 0
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.61255 + 1.47138I
a = 0.411818 + 0.844957I
b = 0.66961 + 1.79906I
8.32665 + 8.69653I 0
u = 0.61255 1.47138I
a = 0.411818 0.844957I
b = 0.66961 1.79906I
8.32665 8.69653I 0
u = 0.57163 + 1.63667I
a = 0.425730 0.627977I
b = 0.67894 1.58354I
2.19558 8.29138I 0
u = 0.57163 1.63667I
a = 0.425730 + 0.627977I
b = 0.67894 + 1.58354I
2.19558 + 8.29138I 0
u = 0.021719 + 0.263335I
a = 0.31401 + 2.13706I
b = 1.29778 0.84140I
3.57949 0.97368I 7.35348 + 5.23167I
u = 0.021719 0.263335I
a = 0.31401 2.13706I
b = 1.29778 + 0.84140I
3.57949 + 0.97368I 7.35348 5.23167I
u = 0.37410 + 1.70455I
a = 0.285913 0.668539I
b = 0.58599 1.56113I
9.99346 0
u = 0.37410 1.70455I
a = 0.285913 + 0.668539I
b = 0.58599 + 1.56113I
9.99346 0
u = 1.78299 + 0.07540I
a = 0.258059 0.376840I
b = 0.170261 + 0.007329I
2.19558 + 8.29138I 0
u = 1.78299 0.07540I
a = 0.258059 + 0.376840I
b = 0.170261 0.007329I
2.19558 8.29138I 0
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.47184 + 1.75013I
a = 0.252592 + 0.650075I
b = 0.71080 + 1.36535I
8.61168 + 6.87817I 0
u = 0.47184 1.75013I
a = 0.252592 0.650075I
b = 0.71080 1.36535I
8.61168 6.87817I 0
u = 0.76269 + 1.66617I
a = 0.168983 + 0.041887I
b = 0.580641 + 0.363782I
4.38515 0.94897I 0
u = 0.76269 1.66617I
a = 0.168983 0.041887I
b = 0.580641 0.363782I
4.38515 + 0.94897I 0
u = 0.148356 + 0.045126I
a = 3.00896 2.49575I
b = 1.95470 + 0.87168I
2.96962 + 6.50699I 13.7787 5.9700I
u = 0.148356 0.045126I
a = 3.00896 + 2.49575I
b = 1.95470 0.87168I
2.96962 6.50699I 13.7787 + 5.9700I
15
III.
I
u
3
= h−1.35 × 10
5
u
15
+ 5.15 × 10
5
u
14
+ · · · + 2.67 × 10
5
b + 3.09 × 10
4
, 5.70 ×
10
5
u
15
+ 1.97× 10
6
u
14
+ · · · + 1.34 × 10
6
a 4.25 × 10
6
, u
16
4u
15
+ · · · u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
10
=
0.426991u
15
1.47700u
14
+ ··· 1.64833u + 3.18196
0.506300u
15
1.92978u
14
+ ··· + 0.204210u 0.115875
a
11
=
0.0793094u
15
+ 0.452785u
14
+ ··· 1.85254u + 3.29784
0.506300u
15
1.92978u
14
+ ··· + 0.204210u 0.115875
a
3
=
1.66162u
15
+ 5.75525u
14
+ ··· 9.16104u 0.00841824
0.194335u
15
+ 1.26058u
14
+ ··· 0.801647u + 0.663182
a
9
=
0.426991u
15
1.47700u
14
+ ··· 1.64833u + 3.18196
0.510721u
15
1.77893u
14
+ ··· + 0.00818683u 0.346843
a
5
=
1.53255u
15
6.54843u
14
+ ··· + 13.1760u 1.49836
0.0802492u
15
0.689561u
14
+ ··· + 1.26250u 0.425375
a
6
=
1.07106u
15
+ 2.28793u
14
+ ··· + 12.6165u 5.85293
0.0709555u
15
+ 0.340250u
14
+ ··· + 2.32523u 1.20232
a
8
=
0.0837301u
15
+ 0.301938u
14
+ ··· 1.65651u + 3.52880
0.510721u
15
1.77893u
14
+ ··· + 0.00818683u 0.346843
a
7
=
0.636679u
15
3.36717u
14
+ ··· + 10.0876u 2.20527
0.0721897u
15
0.414518u
14
+ ··· + 1.95733u 0.879098
a
12
=
0.445408u
15
+ 0.788567u
14
+ ··· + 7.00998u 1.98390
0.287778u
15
1.19976u
14
+ ··· + 1.25399u 0.670117
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1668929
445105
u
15
+
8331783
445105
u
14
+ ···
10787371
445105
u +
3576652
445105
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
4u
15
+ ··· u + 1
c
2
u
16
+ 4u
15
+ ··· + u + 1
c
3
u
16
+ 2u
15
+ ··· + 2u + 1
c
4
, c
6
u
16
+ u
15
+ ··· 4u + 1
c
5
u
16
u
15
+ ··· + 9u + 9
c
7
u
16
+ u
15
+ ··· u + 1
c
8
u
16
u
15
+ ··· + u + 1
c
9
, c
11
u
16
u
15
+ ··· + 4u + 1
c
10
u
16
+ u
15
+ ··· 9u + 9
c
12
u
16
2u
15
+ ··· 2u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
y
16
+ 10y
15
+ ··· + 11y + 1
c
3
, c
12
y
16
+ 12y
15
+ ··· + 4y + 1
c
4
, c
6
, c
9
c
11
y
16
+ 7y
15
+ ··· + 2y + 1
c
5
, c
10
y
16
+ 13y
15
+ ··· 927y + 81
c
7
, c
8
y
16
y
15
+ ··· + 27y + 1
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.626932 + 0.939202I
a = 0.245461 + 1.107320I
b = 0.45758 + 1.67741I
3.44371 5.36963I 4.65919 + 8.71627I
u = 0.626932 0.939202I
a = 0.245461 1.107320I
b = 0.45758 1.67741I
3.44371 + 5.36963I 4.65919 8.71627I
u = 0.561928 + 0.646656I
a = 1.122090 + 0.719975I
b = 0.824183 0.541509I
3.98555 1.28538I 1.78219 + 9.46171I
u = 0.561928 0.646656I
a = 1.122090 0.719975I
b = 0.824183 + 0.541509I
3.98555 + 1.28538I 1.78219 9.46171I
u = 0.044845 + 0.844688I
a = 0.201470 1.383010I
b = 0.35203 1.95828I
4.11885 12.68263 + 0.I
u = 0.044845 0.844688I
a = 0.201470 + 1.383010I
b = 0.35203 + 1.95828I
4.11885 12.68263 + 0.I
u = 0.770410 + 0.331199I
a = 0.236785 + 0.596788I
b = 1.06833 + 1.33459I
2.42763 + 6.73512I 1.81921 10.54756I
u = 0.770410 0.331199I
a = 0.236785 0.596788I
b = 1.06833 1.33459I
2.42763 6.73512I 1.81921 + 10.54756I
u = 1.134980 + 0.398912I
a = 0.326610 0.608866I
b = 0.471617 + 0.101971I
3.98521 7.56704 + 0.I
u = 1.134980 0.398912I
a = 0.326610 + 0.608866I
b = 0.471617 0.101971I
3.98521 7.56704 + 0.I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.44558 + 1.49412I
a = 0.522013 0.746739I
b = 0.87827 1.36350I
2.42763 6.73512I 1.81921 + 10.54756I
u = 0.44558 1.49412I
a = 0.522013 + 0.746739I
b = 0.87827 + 1.36350I
2.42763 + 6.73512I 1.81921 10.54756I
u = 0.117840 + 0.420370I
a = 3.38072 1.31571I
b = 0.798526 0.197831I
3.44371 + 5.36963I 4.65919 8.71627I
u = 0.117840 0.420370I
a = 3.38072 + 1.31571I
b = 0.798526 + 0.197831I
3.44371 5.36963I 4.65919 + 8.71627I
u = 0.16367 + 1.77202I
a = 0.162097 + 0.279051I
b = 0.701667 + 0.382156I
3.98555 1.28538I 1.78219 + 9.46171I
u = 0.16367 1.77202I
a = 0.162097 0.279051I
b = 0.701667 0.382156I
3.98555 + 1.28538I 1.78219 9.46171I
20
IV. I
u
4
= h−u
3
+ u
2
+ b u, u
2
+ a u + 2, u
4
u
3
+ 2u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
10
=
u
2
+ u 2
u
3
u
2
+ u
a
11
=
u
3
2
u
3
u
2
+ u
a
3
=
2u
3
+ 3u
2
5u + 1
2u 1
a
9
=
u
2
+ u 2
u
3
u
2
+ u + 1
a
5
=
2u
3
2u
2
+ 3u + 1
u
3
+ 2u
2
2u + 1
a
6
=
2u
3
+ u + 4
2u
3
+ u
2
3u 1
a
8
=
u
3
3
u
3
u
2
+ u + 1
a
7
=
3u
3
+ 5u
2
7u + 1
2u
2
+ 2u 2
a
12
=
2u
2
3u + 5
u
3
+ u
2
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 3u
2
+ 4u + 7
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
u
3
+ 2u
2
+ 1
c
2
u
4
+ u
3
+ 2u
2
+ 1
c
3
u
4
+ u
3
+ 4u
2
+ 2u + 3
c
4
, c
6
u
4
+ 2u
2
+ u + 1
c
5
u
4
+ u
3
+ 1
c
7
u
4
3u
3
+ 3u
2
u + 1
c
8
u
4
+ 3u
3
+ 3u
2
+ u + 1
c
9
, c
11
u
4
+ 2u
2
u + 1
c
10
u
4
u
3
+ 1
c
12
u
4
u
3
+ 4u
2
2u + 3
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
y
4
+ 3y
3
+ 6y
2
+ 4y + 1
c
3
, c
12
y
4
+ 7y
3
+ 18y
2
+ 20y + 9
c
4
, c
6
, c
9
c
11
y
4
+ 4y
3
+ 6y
2
+ 3y + 1
c
5
, c
10
y
4
y
3
+ 2y
2
+ 1
c
7
, c
8
y
4
3y
3
+ 5y
2
+ 5y + 1
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.175098 + 0.691825I
a = 1.72714 + 0.93410I
b = 0.518913 + 0.666610I
7.71788 + 2.37936I 5.93992 + 0.97052I
u = 0.175098 0.691825I
a = 1.72714 0.93410I
b = 0.518913 0.666610I
7.71788 2.37936I 5.93992 0.97052I
u = 0.675098 + 1.227920I
a = 0.272864 0.430014I
b = 1.018910 0.602565I
2.15173 3.38562I 4.43992 + 9.19530I
u = 0.675098 1.227920I
a = 0.272864 + 0.430014I
b = 1.018910 + 0.602565I
2.15173 + 3.38562I 4.43992 9.19530I
24
V. I
u
5
= h−u
2
+ b + u, a + u, u
4
u
3
+ u
2
u + 1i
(i) Arc colorings
a
1
=
1
0
a
4
=
0
u
a
2
=
1
u
2
a
10
=
u
u
2
u
a
11
=
u
2
u
2
u
a
3
=
1
u
3
+ u
2
a
9
=
u
u
3
+ u
2
u
a
5
=
u
3
u
2
a
6
=
u
3
u
2
+ u 1
2u
2
2u + 1
a
8
=
u
3
u
2
u
3
+ u
2
u
a
7
=
u
3
u
2
+ u 1
u
2
2u + 1
a
12
=
0
u
3
u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6u
3
6u
2
1
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
9
c
11
u
4
u
3
+ u
2
u + 1
c
2
, c
4
, c
6
c
12
u
4
+ u
3
+ u
2
+ u + 1
c
5
u
4
+ 2u
3
+ 4u
2
+ 3u + 1
c
7
u
4
+ 3u
3
+ 4u
2
+ 2u + 1
c
8
u
4
3u
3
+ 4u
2
2u + 1
c
10
u
4
2u
3
+ 4u
2
3u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
9
c
11
, c
12
y
4
+ y
3
+ y
2
+ y + 1
c
5
, c
10
y
4
+ 4y
3
+ 6y
2
y + 1
c
7
, c
8
y
4
y
3
+ 6y
2
+ 4y + 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.309017 + 0.951057I
a = 0.309017 0.951057I
b = 0.50000 1.53884I
3.94784 8.70820 + 0.I
u = 0.309017 0.951057I
a = 0.309017 + 0.951057I
b = 0.50000 + 1.53884I
3.94784 8.70820 + 0.I
u = 0.809017 + 0.587785I
a = 0.809017 0.587785I
b = 0.500000 + 0.363271I
3.94784 4.70820 + 0.I
u = 0.809017 0.587785I
a = 0.809017 + 0.587785I
b = 0.500000 0.363271I
3.94784 4.70820 + 0.I
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
4
u
3
+ u
2
u + 1)(u
4
u
3
+ 2u
2
+ 1)(u
13
+ 3u
12
+ ··· + 3u 1)
· (u
16
4u
15
+ ··· u + 1)(u
56
4u
55
+ ··· 1346u + 111)
c
2
(u
4
+ u
3
+ u
2
+ u + 1)(u
4
+ u
3
+ 2u
2
+ 1)(u
13
+ 3u
12
+ ··· + 3u 1)
· (u
16
+ 4u
15
+ ··· + u + 1)(u
56
4u
55
+ ··· 1346u + 111)
c
3
(u
4
u
3
+ u
2
u + 1)(u
4
+ u
3
+ 4u
2
+ 2u + 3)(u
13
+ u
12
+ ··· 3u 1)
· (u
16
+ 2u
15
+ ··· + 2u + 1)(u
56
+ 2u
54
+ ··· + 907u + 193)
c
4
, c
6
(u
4
+ 2u
2
+ u + 1)(u
4
+ u
3
+ u
2
+ u + 1)(u
13
2u
12
+ ··· + 7u
3
1)
· (u
16
+ u
15
+ ··· 4u + 1)(u
56
+ u
55
+ ··· + 13u + 3)
c
5
(u
4
+ u
3
+ 1)(u
4
+ 2u
3
+ ··· + 3u + 1)(u
13
u
12
+ ··· + 3u 3)
· (u
16
u
15
+ ··· + 9u + 9)(u
56
+ 2u
55
+ ··· + 82u + 37)
c
7
(u
4
3u
3
+ 3u
2
u + 1)(u
4
+ 3u
3
+ 4u
2
+ 2u + 1)
· (u
13
+ 3u
12
+ ··· 8u 3)(u
16
+ u
15
+ ··· u + 1)
· (u
56
u
55
+ ··· + 29361u + 1951)
c
8
(u
4
3u
3
+ 4u
2
2u + 1)(u
4
+ 3u
3
+ 3u
2
+ u + 1)
· (u
13
+ 3u
12
+ ··· 8u 3)(u
16
u
15
+ ··· + u + 1)
· (u
56
u
55
+ ··· + 29361u + 1951)
c
9
, c
11
(u
4
+ 2u
2
u + 1)(u
4
u
3
+ u
2
u + 1)(u
13
2u
12
+ ··· + 7u
3
1)
· (u
16
u
15
+ ··· + 4u + 1)(u
56
+ u
55
+ ··· + 13u + 3)
c
10
(u
4
2u
3
+ ··· 3u + 1)(u
4
u
3
+ 1)(u
13
u
12
+ ··· + 3u 3)
· (u
16
+ u
15
+ ··· 9u + 9)(u
56
+ 2u
55
+ ··· + 82u + 37)
c
12
(u
4
u
3
+ 4u
2
2u + 3)(u
4
+ u
3
+ u
2
+ u + 1)(u
13
+ u
12
+ ··· 3u 1)
· (u
16
2u
15
+ ··· 2u + 1)(u
56
+ 2u
54
+ ··· + 907u + 193)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
(y
4
+ y
3
+ y
2
+ y + 1)(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
· (y
13
+ 7y
12
+ ··· + 35y 1)(y
16
+ 10y
15
+ ··· + 11y + 1)
· (y
56
+ 50y
55
+ ··· 249724y + 12321)
c
3
, c
12
(y
4
+ y
3
+ y
2
+ y + 1)(y
4
+ 7y
3
+ 18y
2
+ 20y + 9)
· (y
13
+ 7y
12
+ ··· + 3y 1)(y
16
+ 12y
15
+ ··· + 4y + 1)
· (y
56
+ 4y
55
+ ··· 242491y + 37249)
c
4
, c
6
, c
9
c
11
(y
4
+ y
3
+ y
2
+ y + 1)(y
4
+ 4y
3
+ ··· + 3y + 1)(y
13
+ 4y
11
+ ··· 2y
2
1)
· (y
16
+ 7y
15
+ ··· + 2y + 1)(y
56
+ 15y
55
+ ··· + 275y + 9)
c
5
, c
10
(y
4
y
3
+ 2y
2
+ 1)(y
4
+ 4y
3
+ 6y
2
y + 1)(y
13
+ 15y
12
+ ··· + 39y 9)
· (y
16
+ 13y
15
+ ··· 927y + 81)(y
56
+ 52y
55
+ ··· 39284y + 1369)
c
7
, c
8
(y
4
3y
3
+ 5y
2
+ 5y + 1)(y
4
y
3
+ 6y
2
+ 4y + 1)
· (y
13
3y
12
+ ··· + 34y 9)(y
16
y
15
+ ··· + 27y + 1)
· (y
56
31y
55
+ ··· 114413905y + 3806401)
30