12n
0802
(K12n
0802
)
A knot diagram
1
Linearized knot diagam
4 6 10 11 2 9 1 11 3 7 4 8
Solving Sequence
3,9
10
4,7
11 6 2 1 5 8 12
c
9
c
3
c
10
c
6
c
2
c
1
c
5
c
8
c
12
c
4
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h8.33978 × 10
205
u
76
1.08961 × 10
205
u
75
+ ··· + 1.57363 × 10
205
b + 1.04860 × 10
208
,
3.39045 × 10
208
u
76
4.06453 × 10
207
u
75
+ ··· + 2.18734 × 10
207
a + 4.26481 × 10
210
,
u
77
+ u
76
+ ··· + 792u + 139i
I
u
2
= h91110u
16
+ 162998u
15
+ ··· + 502439b + 111491,
283556u
16
+ 222982u
15
+ ··· + 502439a 280909, u
17
4u
15
+ ··· + 4u
2
1i
* 2 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h8.34 × 10
205
u
76
1.09 × 10
205
u
75
+ · · · + 1.57 × 10
205
b + 1.05 ×
10
208
, 3.39 × 10
208
u
76
4.06 × 10
207
u
75
+ · · · + 2.19 × 10
207
a + 4.26 ×
10
210
, u
77
+ u
76
+ · · · + 792u + 139i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
7
=
15.5003u
76
+ 1.85821u
75
+ ··· 9371.39u 1949.77
5.29972u
76
+ 0.692419u
75
+ ··· 3206.91u 666.357
a
11
=
61.0416u
76
7.07935u
75
+ ··· + 36598.3u + 7624.22
4.27107u
76
0.504359u
75
+ ··· + 2580.72u + 538.356
a
6
=
10.2006u
76
+ 1.16579u
75
+ ··· 6164.48u 1283.41
5.29972u
76
+ 0.692419u
75
+ ··· 3206.91u 666.357
a
2
=
49.9370u
76
+ 5.72890u
75
+ ··· 29859.0u 6221.64
5.17170u
76
+ 0.559340u
75
+ ··· 3087.83u 643.065
a
1
=
41.2329u
76
+ 4.69186u
75
+ ··· 24646.3u 5135.91
3.01842u
76
+ 0.279790u
75
+ ··· 1795.45u 374.782
a
5
=
179.435u
76
20.5873u
75
+ ··· + 107397.u + 22372.5
3.50440u
76
0.359571u
75
+ ··· + 2115.00u + 440.893
a
8
=
7.90952u
76
0.847855u
75
+ ··· + 4713.19u + 984.820
1.30653u
76
+ 0.126108u
75
+ ··· 789.550u 164.686
a
12
=
47.9834u
76
+ 5.56443u
75
+ ··· 28785.0u 5997.46
1.04849u
76
+ 0.133040u
75
+ ··· 667.193u 139.440
(ii) Obstruction class = 1
(iii) Cusp Shapes = 871.265u
76
+ 100.233u
75
+ ··· 521451.u 108615.
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
77
8u
76
+ ··· + 32311988u + 2239897
c
2
, c
5
u
77
+ u
76
+ ··· 40176u 5643
c
3
, c
9
u
77
+ u
76
+ ··· + 792u + 139
c
4
, c
11
u
77
2u
76
+ ··· + 4508u 1129
c
6
u
77
+ 3u
76
+ ··· 2292u 319
c
7
, c
12
u
77
u
76
+ ··· 37u 11
c
8
u
77
+ 6u
76
+ ··· + 195u 19
c
10
u
77
u
76
+ ··· 15u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
77
+ 44y
76
+ ··· + 727248075963258y 5017138570609
c
2
, c
5
y
77
63y
76
+ ··· + 793460772y 31843449
c
3
, c
9
y
77
51y
76
+ ··· + 189414y 19321
c
4
, c
11
y
77
66y
76
+ ··· + 58868382y 1274641
c
6
y
77
+ 23y
76
+ ··· 2243236y 101761
c
7
, c
12
y
77
+ 25y
76
+ ··· 2041y 121
c
8
y
77
108y
76
+ ··· + 382001y 361
c
10
y
77
19y
76
+ ··· 25y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.758997 + 0.616342I
a = 1.46817 0.34902I
b = 0.79967 1.26583I
1.32991 1.97035I 0
u = 0.758997 0.616342I
a = 1.46817 + 0.34902I
b = 0.79967 + 1.26583I
1.32991 + 1.97035I 0
u = 0.911703
a = 1.42882
b = 2.17200
3.05365 0
u = 0.010819 + 1.090530I
a = 0.191191 0.124778I
b = 0.734597 + 0.849848I
4.01664 + 4.54282I 0
u = 0.010819 1.090530I
a = 0.191191 + 0.124778I
b = 0.734597 0.849848I
4.01664 4.54282I 0
u = 1.065640 + 0.254276I
a = 0.480002 1.159030I
b = 0.292883 0.664587I
1.91191 + 1.13599I 0
u = 1.065640 0.254276I
a = 0.480002 + 1.159030I
b = 0.292883 + 0.664587I
1.91191 1.13599I 0
u = 1.11487
a = 2.43271
b = 0.374887
3.74100 0
u = 1.116270 + 0.007414I
a = 0.620793 0.148394I
b = 1.005310 0.198862I
3.83080 + 0.35334I 0
u = 1.116270 0.007414I
a = 0.620793 + 0.148394I
b = 1.005310 + 0.198862I
3.83080 0.35334I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.695591 + 0.874541I
a = 0.104081 0.102779I
b = 0.528202 0.116523I
0.95380 + 2.56825I 0
u = 0.695591 0.874541I
a = 0.104081 + 0.102779I
b = 0.528202 + 0.116523I
0.95380 2.56825I 0
u = 1.119770 + 0.088439I
a = 1.30975 + 1.24365I
b = 2.25028 + 1.34716I
0.31477 + 6.50480I 0
u = 1.119770 0.088439I
a = 1.30975 1.24365I
b = 2.25028 1.34716I
0.31477 6.50480I 0
u = 1.103770 + 0.223227I
a = 0.322545 + 0.190472I
b = 0.960347 + 0.441859I
6.03076 3.62911I 0
u = 1.103770 0.223227I
a = 0.322545 0.190472I
b = 0.960347 0.441859I
6.03076 + 3.62911I 0
u = 1.035260 + 0.465565I
a = 1.16999 1.22271I
b = 0.62849 1.67436I
0.58777 4.71952I 0
u = 1.035260 0.465565I
a = 1.16999 + 1.22271I
b = 0.62849 + 1.67436I
0.58777 + 4.71952I 0
u = 0.217467 + 0.833274I
a = 0.204278 0.401189I
b = 1.035260 0.397841I
5.89269 + 5.41568I 0
u = 0.217467 0.833274I
a = 0.204278 + 0.401189I
b = 1.035260 + 0.397841I
5.89269 5.41568I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.091030 + 0.347422I
a = 0.11223 1.63823I
b = 0.494694 1.137330I
1.10617 4.08847I 0
u = 1.091030 0.347422I
a = 0.11223 + 1.63823I
b = 0.494694 + 1.137330I
1.10617 + 4.08847I 0
u = 1.116810 + 0.335012I
a = 0.40003 + 1.95228I
b = 0.565199 + 0.678583I
3.30736 + 2.92566I 0
u = 1.116810 0.335012I
a = 0.40003 1.95228I
b = 0.565199 0.678583I
3.30736 2.92566I 0
u = 1.181340 + 0.003850I
a = 0.92722 + 1.76444I
b = 0.134594 + 1.072470I
7.66719 1.85639I 0
u = 1.181340 0.003850I
a = 0.92722 1.76444I
b = 0.134594 1.072470I
7.66719 + 1.85639I 0
u = 1.183980 + 0.202308I
a = 0.82439 1.52658I
b = 0.452462 0.812176I
1.38098 + 1.72001I 0
u = 1.183980 0.202308I
a = 0.82439 + 1.52658I
b = 0.452462 + 0.812176I
1.38098 1.72001I 0
u = 0.787886 + 0.099348I
a = 1.52773 2.14738I
b = 1.01856 1.19509I
3.17288 1.22575I 0
u = 0.787886 0.099348I
a = 1.52773 + 2.14738I
b = 1.01856 + 1.19509I
3.17288 + 1.22575I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.000804 + 1.208190I
a = 0.216880 + 0.347898I
b = 0.225684 0.704296I
3.05027 0.94756I 0
u = 0.000804 1.208190I
a = 0.216880 0.347898I
b = 0.225684 + 0.704296I
3.05027 + 0.94756I 0
u = 0.133250 + 1.220520I
a = 0.131494 0.101763I
b = 0.694787 + 0.844760I
2.85374 11.06360I 0
u = 0.133250 1.220520I
a = 0.131494 + 0.101763I
b = 0.694787 0.844760I
2.85374 + 11.06360I 0
u = 0.722758 + 0.238117I
a = 1.75262 + 2.18724I
b = 0.21833 + 1.90963I
1.55815 + 6.08582I 0
u = 0.722758 0.238117I
a = 1.75262 2.18724I
b = 0.21833 1.90963I
1.55815 6.08582I 0
u = 0.755834
a = 1.17517
b = 1.75003
3.09798 4.83340
u = 1.172280 + 0.417636I
a = 0.17453 + 1.80364I
b = 0.661781 + 0.694578I
2.92989 9.94785I 0
u = 1.172280 0.417636I
a = 0.17453 1.80364I
b = 0.661781 0.694578I
2.92989 + 9.94785I 0
u = 1.272770 + 0.184016I
a = 0.65660 1.47391I
b = 0.651251 0.990914I
3.05844 8.07962I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.272770 0.184016I
a = 0.65660 + 1.47391I
b = 0.651251 + 0.990914I
3.05844 + 8.07962I 0
u = 0.290588 + 0.637778I
a = 0.311030 0.501017I
b = 1.131460 0.351988I
5.82765 + 0.77594I 5.84300 2.67611I
u = 0.290588 0.637778I
a = 0.311030 + 0.501017I
b = 1.131460 + 0.351988I
5.82765 0.77594I 5.84300 + 2.67611I
u = 1.300670 + 0.104807I
a = 0.145206 1.109260I
b = 0.578994 0.801863I
6.47566 2.58505I 0
u = 1.300670 0.104807I
a = 0.145206 + 1.109260I
b = 0.578994 + 0.801863I
6.47566 + 2.58505I 0
u = 0.638923 + 0.237400I
a = 1.92039 0.14693I
b = 0.213109 0.365332I
2.17556 + 0.65395I 9.20343 5.27465I
u = 0.638923 0.237400I
a = 1.92039 + 0.14693I
b = 0.213109 + 0.365332I
2.17556 0.65395I 9.20343 + 5.27465I
u = 1.291130 + 0.352756I
a = 0.02607 1.87165I
b = 0.88563 1.75280I
8.67471 + 6.59602I 0
u = 1.291130 0.352756I
a = 0.02607 + 1.87165I
b = 0.88563 + 1.75280I
8.67471 6.59602I 0
u = 0.330805 + 0.513963I
a = 0.447914 0.085197I
b = 0.633023 + 0.390219I
1.170010 + 0.511271I 7.93499 2.10183I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.330805 0.513963I
a = 0.447914 + 0.085197I
b = 0.633023 0.390219I
1.170010 0.511271I 7.93499 + 2.10183I
u = 0.246079 + 0.526147I
a = 1.57072 + 0.38139I
b = 0.025841 + 1.081900I
2.60807 + 0.74898I 3.51716 0.31657I
u = 0.246079 0.526147I
a = 1.57072 0.38139I
b = 0.025841 1.081900I
2.60807 0.74898I 3.51716 + 0.31657I
u = 1.35457 + 0.52174I
a = 0.01207 1.55989I
b = 1.02876 1.43648I
0.26091 10.21520I 0
u = 1.35457 0.52174I
a = 0.01207 + 1.55989I
b = 1.02876 + 1.43648I
0.26091 + 10.21520I 0
u = 0.080850 + 0.537512I
a = 0.331378 0.654699I
b = 0.707167 + 0.980733I
4.48701 3.03669I 5.16104 + 7.39684I
u = 0.080850 0.537512I
a = 0.331378 + 0.654699I
b = 0.707167 0.980733I
4.48701 + 3.03669I 5.16104 7.39684I
u = 1.40085 + 0.40250I
a = 0.016309 + 1.193430I
b = 1.04169 + 1.29261I
8.68571 4.73560I 0
u = 1.40085 0.40250I
a = 0.016309 1.193430I
b = 1.04169 1.29261I
8.68571 + 4.73560I 0
u = 1.39036 + 0.57949I
a = 0.159041 + 1.141650I
b = 0.77534 + 1.38516I
7.31609 + 7.24715I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.39036 0.57949I
a = 0.159041 1.141650I
b = 0.77534 1.38516I
7.31609 7.24715I 0
u = 0.394801 + 0.288987I
a = 2.66235 + 1.07859I
b = 0.152342 + 1.354640I
1.61463 + 6.08143I 1.65363 3.54096I
u = 0.394801 0.288987I
a = 2.66235 1.07859I
b = 0.152342 1.354640I
1.61463 6.08143I 1.65363 + 3.54096I
u = 1.42831 + 0.53758I
a = 0.03870 1.46221I
b = 1.09850 1.41506I
2.0258 + 17.1703I 0
u = 1.42831 0.53758I
a = 0.03870 + 1.46221I
b = 1.09850 + 1.41506I
2.0258 17.1703I 0
u = 1.46502 + 0.49693I
a = 0.037413 + 1.171880I
b = 0.853847 + 1.061410I
7.05974 8.63532I 0
u = 1.46502 0.49693I
a = 0.037413 1.171880I
b = 0.853847 1.061410I
7.05974 + 8.63532I 0
u = 1.50322 + 0.49069I
a = 0.006370 + 1.080770I
b = 0.677127 + 1.140250I
7.01071 + 4.87145I 0
u = 1.50322 0.49069I
a = 0.006370 1.080770I
b = 0.677127 1.140250I
7.01071 4.87145I 0
u = 0.210525 + 0.311466I
a = 2.18028 + 1.43772I
b = 0.206538 + 0.269662I
1.90333 + 0.92139I 5.44582 + 1.92407I
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.210525 0.311466I
a = 2.18028 1.43772I
b = 0.206538 0.269662I
1.90333 0.92139I 5.44582 1.92407I
u = 1.70360 + 0.29340I
a = 0.021683 0.365141I
b = 0.406453 0.522497I
0.79210 + 1.62218I 0
u = 1.70360 0.29340I
a = 0.021683 + 0.365141I
b = 0.406453 + 0.522497I
0.79210 1.62218I 0
u = 1.94427 + 0.25926I
a = 0.191630 0.307980I
b = 0.708436 0.462080I
1.70623 + 3.05877I 0
u = 1.94427 0.25926I
a = 0.191630 + 0.307980I
b = 0.708436 + 0.462080I
1.70623 3.05877I 0
u = 0.25319 + 2.28522I
a = 0.0183860 + 0.0150818I
b = 0.070031 0.348268I
1.18900 + 2.18789I 0
u = 0.25319 2.28522I
a = 0.0183860 0.0150818I
b = 0.070031 + 0.348268I
1.18900 2.18789I 0
12
II. I
u
2
= h9.11 × 10
4
u
16
+ 1.63 × 10
5
u
15
+ · · · + 5.02 × 10
5
b + 1.11 × 10
5
, 2.84 ×
10
5
u
16
+2.23×10
5
u
15
+· · ·+5.02×10
5
a2.81×10
5
, u
17
4u
15
+· · ·+4u
2
1i
(i) Arc colorings
a
3
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
7
=
0.564359u
16
0.443799u
15
+ ··· + 0.499613u + 0.559091
0.181335u
16
0.324414u
15
+ ··· + 1.71782u 0.221900
a
11
=
0.523656u
16
+ 1.25267u
15
+ ··· 0.706948u + 0.869208
0.166132u
16
+ 0.102498u
15
+ ··· 2.58379u 1.39833
a
6
=
0.383024u
16
0.119386u
15
+ ··· 1.21821u + 0.780990
0.181335u
16
0.324414u
15
+ ··· + 1.71782u 0.221900
a
2
=
0.166693u
16
0.255010u
15
+ ··· + 0.0329612u 2.12171
1.18134u
16
0.324414u
15
+ ··· 1.28218u 0.221900
a
1
=
0.979729u
16
0.559953u
15
+ ··· 1.43071u 3.07725
0.565850u
16
0.255541u
15
+ ··· 0.964933u + 0.428689
a
5
=
2.22373u
16
2.33836u
15
+ ··· 2.59451u 3.02392
0.499460u
16
+ 0.149873u
15
+ ··· + 3.16482u + 0.900376
a
8
=
0.552909u
16
0.722456u
15
+ ··· 2.87988u + 1.54459
0.787403u
16
+ 0.296938u
15
+ ··· + 5.41888u + 0.897773
a
12
=
0.404270u
16
+ 1.13515u
15
+ ··· 1.48794u + 0.252232
0.0162587u
16
+ 0.0532403u
15
+ ··· 1.68341u 0.898869
(ii) Obstruction class = 1
(iii) Cusp Shapes =
7310202
502439
u
16
+
3456735
502439
u
15
+ ··· +
15933523
502439
u +
5895545
502439
13
(iv) u-Polynomials at the component
14
Crossings u-Polynomials at each crossing
c
1
u
17
+ 3u
16
+ ··· 94u + 31
c
2
u
17
+ 6u
16
+ ··· + 12u + 5
c
3
u
17
4u
15
+ ··· 4u
2
+ 1
c
4
u
17
+ u
16
+ ··· + 6u 1
c
5
u
17
6u
16
+ ··· + 12u 5
c
6
u
17
+ 3u
15
+ ··· 2u 1
c
7
u
17
2u
16
+ ··· + u 1
c
8
u
17
+ 7u
16
+ ··· + 221u + 23
c
9
u
17
4u
15
+ ··· + 4u
2
1
c
10
u
17
8u
15
+ ··· u + 1
c
11
u
17
u
16
+ ··· + 6u + 1
c
12
u
17
+ 2u
16
+ ··· + u + 1
15
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
17
5y
16
+ ··· 11376y 961
c
2
, c
5
y
17
28y
16
+ ··· 6y 25
c
3
, c
9
y
17
8y
16
+ ··· + 8y 1
c
4
, c
11
y
17
7y
16
+ ··· + 24y 1
c
6
y
17
+ 6y
16
+ ··· 14y 1
c
7
, c
12
y
17
+ 12y
16
+ ··· 3y 1
c
8
y
17
5y
16
+ ··· + 20459y 529
c
10
y
17
16y
16
+ ··· 43y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.10570
a = 2.70999
b = 0.375089
3.71205 178.710
u = 0.852456 + 0.254240I
a = 2.20438 + 2.03152I
b = 1.12246 + 1.74335I
1.30681 + 6.74725I 1.14602 11.82219I
u = 0.852456 0.254240I
a = 2.20438 2.03152I
b = 1.12246 1.74335I
1.30681 6.74725I 1.14602 + 11.82219I
u = 1.231690 + 0.050913I
a = 0.72795 1.70057I
b = 0.078174 1.030070I
8.23055 + 2.35568I 10.79846 4.11130I
u = 1.231690 0.050913I
a = 0.72795 + 1.70057I
b = 0.078174 + 1.030070I
8.23055 2.35568I 10.79846 + 4.11130I
u = 0.566286 + 0.419821I
a = 1.35242 + 0.75569I
b = 0.441137 0.361394I
1.78451 + 0.00683I 1.85797 0.92831I
u = 0.566286 0.419821I
a = 1.35242 0.75569I
b = 0.441137 + 0.361394I
1.78451 0.00683I 1.85797 + 0.92831I
u = 0.650959 + 0.103366I
a = 1.89640 + 0.91449I
b = 1.58700 + 0.40196I
3.63746 + 0.25672I 8.91479 1.78095I
u = 0.650959 0.103366I
a = 1.89640 0.91449I
b = 1.58700 0.40196I
3.63746 0.25672I 8.91479 + 1.78095I
u = 1.38326 + 0.38646I
a = 0.01656 + 1.52358I
b = 0.91943 + 1.58402I
10.21830 6.17160I 7.90077 + 4.40861I
18
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.38326 0.38646I
a = 0.01656 1.52358I
b = 0.91943 1.58402I
10.21830 + 6.17160I 7.90077 4.40861I
u = 0.257593 + 0.330900I
a = 0.74632 + 1.36587I
b = 0.727112 0.859807I
4.88208 + 2.61023I 4.10985 + 1.67367I
u = 0.257593 0.330900I
a = 0.74632 1.36587I
b = 0.727112 + 0.859807I
4.88208 2.61023I 4.10985 1.67367I
u = 1.47823 + 0.58873I
a = 0.098328 + 0.971018I
b = 0.766035 + 1.140450I
8.08979 + 6.54241I 6.90566 5.03669I
u = 1.47823 0.58873I
a = 0.098328 0.971018I
b = 0.766035 1.140450I
8.08979 6.54241I 6.90566 + 5.03669I
u = 0.66660 + 1.83006I
a = 0.0980715 + 0.0837570I
b = 0.084203 0.275603I
1.13677 2.14375I 11.4391 38.8291I
u = 0.66660 1.83006I
a = 0.0980715 0.0837570I
b = 0.084203 + 0.275603I
1.13677 + 2.14375I 11.4391 + 38.8291I
19
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
+ 3u
16
+ ··· 94u + 31)
· (u
77
8u
76
+ ··· + 32311988u + 2239897)
c
2
(u
17
+ 6u
16
+ ··· + 12u + 5)(u
77
+ u
76
+ ··· 40176u 5643)
c
3
(u
17
4u
15
+ ··· 4u
2
+ 1)(u
77
+ u
76
+ ··· + 792u + 139)
c
4
(u
17
+ u
16
+ ··· + 6u 1)(u
77
2u
76
+ ··· + 4508u 1129)
c
5
(u
17
6u
16
+ ··· + 12u 5)(u
77
+ u
76
+ ··· 40176u 5643)
c
6
(u
17
+ 3u
15
+ ··· 2u 1)(u
77
+ 3u
76
+ ··· 2292u 319)
c
7
(u
17
2u
16
+ ··· + u 1)(u
77
u
76
+ ··· 37u 11)
c
8
(u
17
+ 7u
16
+ ··· + 221u + 23)(u
77
+ 6u
76
+ ··· + 195u 19)
c
9
(u
17
4u
15
+ ··· + 4u
2
1)(u
77
+ u
76
+ ··· + 792u + 139)
c
10
(u
17
8u
15
+ ··· u + 1)(u
77
u
76
+ ··· 15u 1)
c
11
(u
17
u
16
+ ··· + 6u + 1)(u
77
2u
76
+ ··· + 4508u 1129)
c
12
(u
17
+ 2u
16
+ ··· + u + 1)(u
77
u
76
+ ··· 37u 11)
20
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
17
5y
16
+ ··· 11376y 961)
· (y
77
+ 44y
76
+ ··· + 727248075963258y 5017138570609)
c
2
, c
5
(y
17
28y
16
+ ··· 6y 25)
· (y
77
63y
76
+ ··· + 793460772y 31843449)
c
3
, c
9
(y
17
8y
16
+ ··· + 8y 1)(y
77
51y
76
+ ··· + 189414y 19321)
c
4
, c
11
(y
17
7y
16
+ ··· + 24y 1)
· (y
77
66y
76
+ ··· + 58868382y 1274641)
c
6
(y
17
+ 6y
16
+ ··· 14y 1)(y
77
+ 23y
76
+ ··· 2243236y 101761)
c
7
, c
12
(y
17
+ 12y
16
+ ··· 3y 1)(y
77
+ 25y
76
+ ··· 2041y 121)
c
8
(y
17
5y
16
+ ··· + 20459y 529)
· (y
77
108y
76
+ ··· + 382001y 361)
c
10
(y
17
16y
16
+ ··· 43y 1)(y
77
19y
76
+ ··· 25y 1)
21