12n
0803
(K12n
0803
)
A knot diagram
1
Linearized knot diagam
4 6 10 12 2 9 12 11 3 7 5 7
Solving Sequence
5,11 7,12
8 9 1 4 2 6 10 3
c
11
c
7
c
8
c
12
c
4
c
1
c
6
c
10
c
3
c
2
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−20967u
23
+ 422302u
22
+ ··· + 119758b + 1936892,
333347u
23
+ 3142111u
22
+ ··· + 119758a + 1463683, u
24
+ 8u
23
+ ··· + 34u + 4i
I
u
2
= h20658081418u
25
a + 11852435996417u
25
+ ··· 20658081418a + 1592388657005,
34939904896u
25
a + 44997972497u
25
+ ··· + 97240087620a + 132117488383,
u
26
3u
25
+ ··· + 6u
2
+ 1i
I
u
3
= h−u
11
2u
10
5u
9
5u
8
7u
7
2u
6
2u
5
+ 4u
4
+ u
3
+ 3u
2
+ b u + 1,
u
11
4u
10
11u
9
20u
8
30u
7
34u
6
32u
5
23u
4
13u
3
6u
2
+ a 3u 3,
u
12
+ 3u
11
+ 8u
10
+ 13u
9
+ 20u
8
+ 21u
7
+ 22u
6
+ 15u
5
+ 12u
4
+ 5u
3
+ 5u
2
+ u + 1i
I
u
4
= hu
5
a + 3u
5
+ 3u
3
a 5u
4
4u
2
a + 9u
3
+ 4au 7u
2
+ 5b a + 7u + 2,
u
4
a + 2u
5
2u
3
a 3u
4
+ 3u
2
a + 6u
3
+ a
2
3au 6u
2
+ 2a + 5u, u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1i
* 4 irreducible components of dim
C
= 0, with total 100 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.10 × 10
4
u
23
+ 4.22 × 10
5
u
22
+ · · · + 1.20 × 10
5
b + 1.94 × 10
6
, 3.33 ×
10
5
u
23
+3.14×10
6
u
22
+· · ·+1.20×10
5
a+1.46×10
6
, u
24
+8u
23
+· · ·+34u+4i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
7
=
2.78351u
23
26.2372u
22
+ ··· 145.274u 12.2220
0.175078u
23
3.52629u
22
+ ··· 106.512u 16.1734
a
12
=
1
u
2
a
8
=
8.01248u
23
+ 53.3038u
22
+ ··· + 107.322u + 19.8279
3.96913u
23
20.7820u
22
+ ··· + 82.4172u + 11.1340
a
9
=
4.04335u
23
+ 32.5218u
22
+ ··· + 189.739u + 30.9619
3.96913u
23
20.7820u
22
+ ··· + 82.4172u + 11.1340
a
1
=
8.35351u
23
+ 54.4948u
22
+ ··· 21.7233u 14.7332
7.47725u
23
+ 53.9440u
22
+ ··· + 159.286u + 21.2134
a
4
=
u
u
3
+ u
a
2
=
5.30335u
23
34.9495u
22
+ ··· 94.8437u 20.0274
18.2073u
23
140.297u
22
+ ··· 532.766u 63.3231
a
6
=
0.615082u
23
+ 4.89107u
22
+ ··· + 95.0362u + 24.8300
11.8092u
23
78.8511u
22
+ ··· 94.1786u 11.2650
a
10
=
2.17390u
23
+ 18.9945u
22
+ ··· + 64.4428u + 1.18601
0.810526u
23
+ 8.98427u
22
+ ··· + 96.0801u + 14.8004
a
3
=
3.08556u
23
21.2898u
22
+ ··· 85.1959u 19.1276
4.41553u
23
33.4970u
22
+ ··· 93.2357u 7.87618
(ii) Obstruction class = 1
(iii) Cusp Shapes =
248067
59879
u
23
+
1208199
59879
u
22
+ ···
6272226
59879
u
1406970
59879
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
29u
23
+ ··· + 8704u 1024
c
2
, c
3
, c
5
c
9
u
24
12u
22
+ ··· + 4u 1
c
4
, c
11
u
24
+ 8u
23
+ ··· + 34u + 4
c
6
u
24
+ 19u
23
+ ··· + 480u + 16
c
7
, c
12
u
24
+ u
23
+ ··· + 2u + 1
c
8
u
24
+ u
23
+ ··· + 241u + 38
c
10
u
24
+ 2u
23
+ ··· + 66u + 7
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
19y
23
+ ··· + 52690944y + 1048576
c
2
, c
3
, c
5
c
9
y
24
24y
23
+ ··· 2y + 1
c
4
, c
11
y
24
+ 8y
23
+ ··· 268y + 16
c
6
y
24
5y
23
+ ··· 88736y + 256
c
7
, c
12
y
24
37y
23
+ ··· 26y + 1
c
8
y
24
+ 27y
23
+ ··· 37637y + 1444
c
10
y
24
+ 14y
23
+ ··· 548y + 49
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.328897 + 0.963555I
a = 0.910844 + 0.484743I
b = 0.766113 + 0.751089I
4.13392 1.43705I 8.07864 + 3.13596I
u = 0.328897 0.963555I
a = 0.910844 0.484743I
b = 0.766113 0.751089I
4.13392 + 1.43705I 8.07864 3.13596I
u = 0.939855 + 0.071846I
a = 0.404510 + 0.906423I
b = 0.691190 + 1.173450I
7.64599 + 2.14568I 13.26685 1.01150I
u = 0.939855 0.071846I
a = 0.404510 0.906423I
b = 0.691190 1.173450I
7.64599 2.14568I 13.26685 + 1.01150I
u = 0.746626 + 0.871724I
a = 1.08140 + 1.18930I
b = 0.239897 + 0.846639I
10.39910 + 0.71995I 14.8370 + 0.2681I
u = 0.746626 0.871724I
a = 1.08140 1.18930I
b = 0.239897 0.846639I
10.39910 0.71995I 14.8370 0.2681I
u = 0.778661 + 0.901540I
a = 0.34330 1.73842I
b = 0.437819 1.055850I
10.32800 + 5.07117I 14.4995 5.6581I
u = 0.778661 0.901540I
a = 0.34330 + 1.73842I
b = 0.437819 + 1.055850I
10.32800 5.07117I 14.4995 + 5.6581I
u = 0.973000 + 0.794755I
a = 0.434212 + 0.833754I
b = 0.310872 + 1.186700I
3.59091 + 0.70472I 5.59047 + 0.17704I
u = 0.973000 0.794755I
a = 0.434212 0.833754I
b = 0.310872 1.186700I
3.59091 0.70472I 5.59047 0.17704I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.306537 + 0.623051I
a = 0.22994 1.50030I
b = 1.000310 0.279529I
1.86738 1.10899I 2.50012 + 5.93987I
u = 0.306537 0.623051I
a = 0.22994 + 1.50030I
b = 1.000310 + 0.279529I
1.86738 + 1.10899I 2.50012 5.93987I
u = 0.143155 + 1.299360I
a = 0.335755 0.304928I
b = 0.292872 + 0.366676I
3.50852 + 1.95287I 10.85589 6.35743I
u = 0.143155 1.299360I
a = 0.335755 + 0.304928I
b = 0.292872 0.366676I
3.50852 1.95287I 10.85589 + 6.35743I
u = 0.867739 + 1.076530I
a = 0.617487 1.083160I
b = 0.735051 1.110270I
2.71430 + 6.07423I 4.21792 5.12279I
u = 0.867739 1.076530I
a = 0.617487 + 1.083160I
b = 0.735051 + 1.110270I
2.71430 6.07423I 4.21792 + 5.12279I
u = 1.124970 + 0.818587I
a = 0.772531 0.690664I
b = 0.92580 1.72837I
13.8026 8.9954I 11.74034 + 3.92566I
u = 1.124970 0.818587I
a = 0.772531 + 0.690664I
b = 0.92580 + 1.72837I
13.8026 + 8.9954I 11.74034 3.92566I
u = 0.31884 + 1.40808I
a = 0.445331 + 0.435914I
b = 0.006177 1.106850I
2.95010 7.04627I 12.05914 + 3.57746I
u = 0.31884 1.40808I
a = 0.445331 0.435914I
b = 0.006177 + 1.106850I
2.95010 + 7.04627I 12.05914 3.57746I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.91822 + 1.13051I
a = 0.71706 + 1.35307I
b = 1.25897 + 1.53619I
12.7586 + 16.3728I 10.30097 7.90933I
u = 0.91822 1.13051I
a = 0.71706 1.35307I
b = 1.25897 1.53619I
12.7586 16.3728I 10.30097 + 7.90933I
u = 0.429045
a = 0.412338
b = 0.233949
0.678253 14.6600
u = 0.254478
a = 4.25274
b = 1.17623
8.31112 10.4470
7
II. I
u
2
= h2.07 × 10
10
au
25
+ 1.19 × 10
13
u
25
+ · · · 2.07 × 10
10
a + 1.59 ×
10
12
, 3.49 × 10
10
au
25
+ 4.50 × 10
10
u
25
+ · · · + 9.72 × 10
10
a + 1.32 ×
10
11
, u
26
3u
25
+ · · · + 6u
2
+ 1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
7
=
a
0.00257732au
25
1.47872u
25
+ ··· + 0.00257732a 0.198668
a
12
=
1
u
2
a
8
=
0.00257732au
25
+ 1.47872u
25
+ ··· + 0.997423a + 0.198668
2.02614u
25
+ 4.93564u
24
+ ··· 2.35356u 0.845672
a
9
=
0.00257732au
25
0.547418u
25
+ ··· + 0.997423a 0.647004
2.02614u
25
+ 4.93564u
24
+ ··· 2.35356u 0.845672
a
1
=
0.647004au
25
0.0669635u
25
+ ··· 1.47872a 0.0221495
0.151236au
25
0.930203u
25
+ ··· 0.931302a + 1.59748
a
4
=
u
u
3
+ u
a
2
=
0.647004au
25
+ 0.0150165u
25
+ ··· 1.47872a 0.0947257
0.151236au
25
1.17846u
25
+ ··· 0.931302a + 1.70643
a
6
=
0.198084au
25
0.0227350u
25
+ ··· + 0.518890a + 1.13733
0.349848au
25
0.457338u
25
+ ··· + 0.00892927a + 1.26221
a
10
=
0.495767au
25
+ 0.647416u
25
+ ··· + 0.547418a + 0.138652
0.304060au
25
0.977539u
25
+ ··· 0.923265a + 1.73692
a
3
=
0.00515464au
25
+ 0.448336u
25
+ ··· + 0.994845a 0.603879
0.187775au
25
+ 1.12169u
25
+ ··· + 0.470801a 3.06193
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
66478862888
10329040709
u
25
+
217968421278
10329040709
u
24
+ ···
74797871360
10329040709
u +
51959996001
10329040709
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
26
+ 7u
25
+ ··· + 104u + 1)
2
c
2
, c
3
, c
5
c
9
u
52
+ u
51
+ ··· + 9u + 1
c
4
, c
11
(u
26
3u
25
+ ··· + 6u
2
+ 1)
2
c
6
(u
26
5u
25
+ ··· 114u + 31)
2
c
7
, c
12
u
52
+ 2u
51
+ ··· + 26027u + 12491
c
8
u
52
+ 4u
51
+ ··· 283294u + 74171
c
10
u
52
5u
51
+ ··· 453512u + 54833
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
26
31y
25
+ ··· 4608y + 1)
2
c
2
, c
3
, c
5
c
9
y
52
37y
51
+ ··· 13y + 1
c
4
, c
11
(y
26
+ 7y
25
+ ··· + 12y + 1)
2
c
6
(y
26
+ 17y
25
+ ··· + 11618y + 961)
2
c
7
, c
12
y
52
42y
51
+ ··· 2616007929y + 156025081
c
8
y
52
+ 38y
51
+ ··· + 245786133074y + 5501337241
c
10
y
52
+ 27y
51
+ ··· 49791469092y + 3006657889
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.131355 + 0.894729I
a = 0.451077 0.150456I
b = 0.998984 0.827868I
3.87482 + 4.61379I 6.13572 1.30037I
u = 0.131355 + 0.894729I
a = 1.91778 + 1.70748I
b = 0.443117 0.656912I
3.87482 + 4.61379I 6.13572 1.30037I
u = 0.131355 0.894729I
a = 0.451077 + 0.150456I
b = 0.998984 + 0.827868I
3.87482 4.61379I 6.13572 + 1.30037I
u = 0.131355 0.894729I
a = 1.91778 1.70748I
b = 0.443117 + 0.656912I
3.87482 4.61379I 6.13572 + 1.30037I
u = 0.398785 + 0.702857I
a = 0.02931 + 1.44387I
b = 0.514475 + 0.867181I
0.83541 + 4.01832I 5.46093 8.67700I
u = 0.398785 + 0.702857I
a = 1.43554 0.33694I
b = 0.856528 0.541924I
0.83541 + 4.01832I 5.46093 8.67700I
u = 0.398785 0.702857I
a = 0.02931 1.44387I
b = 0.514475 0.867181I
0.83541 4.01832I 5.46093 + 8.67700I
u = 0.398785 0.702857I
a = 1.43554 + 0.33694I
b = 0.856528 + 0.541924I
0.83541 4.01832I 5.46093 + 8.67700I
u = 0.874874 + 0.827469I
a = 0.419640 0.908306I
b = 0.485265 1.142940I
6.97798 4.77378I 9.07326 + 3.55688I
u = 0.874874 + 0.827469I
a = 0.21817 + 1.45332I
b = 0.539013 + 1.157240I
6.97798 4.77378I 9.07326 + 3.55688I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.874874 0.827469I
a = 0.419640 + 0.908306I
b = 0.485265 + 1.142940I
6.97798 + 4.77378I 9.07326 3.55688I
u = 0.874874 0.827469I
a = 0.21817 1.45332I
b = 0.539013 1.157240I
6.97798 + 4.77378I 9.07326 3.55688I
u = 0.509450 + 0.561310I
a = 0.40989 + 1.82180I
b = 0.36665 + 1.55437I
5.31435 7.28077I 10.22138 + 9.25036I
u = 0.509450 + 0.561310I
a = 1.92175 + 0.40718I
b = 0.842568 + 0.445418I
5.31435 7.28077I 10.22138 + 9.25036I
u = 0.509450 0.561310I
a = 0.40989 1.82180I
b = 0.36665 1.55437I
5.31435 + 7.28077I 10.22138 9.25036I
u = 0.509450 0.561310I
a = 1.92175 0.40718I
b = 0.842568 0.445418I
5.31435 + 7.28077I 10.22138 9.25036I
u = 0.808196 + 1.014370I
a = 0.854481 0.716975I
b = 0.180742 1.005440I
6.39464 1.51730I 7.78325 + 2.91717I
u = 0.808196 + 1.014370I
a = 0.79050 + 1.22544I
b = 0.785952 + 0.988947I
6.39464 1.51730I 7.78325 + 2.91717I
u = 0.808196 1.014370I
a = 0.854481 + 0.716975I
b = 0.180742 + 1.005440I
6.39464 + 1.51730I 7.78325 2.91717I
u = 0.808196 1.014370I
a = 0.79050 1.22544I
b = 0.785952 0.988947I
6.39464 + 1.51730I 7.78325 2.91717I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.244374 + 0.651478I
a = 0.296687 0.874288I
b = 1.159890 0.155610I
1.95982 1.10736I 0.80753 + 5.92917I
u = 0.244374 + 0.651478I
a = 0.06047 2.05027I
b = 0.735414 0.089381I
1.95982 1.10736I 0.80753 + 5.92917I
u = 0.244374 0.651478I
a = 0.296687 + 0.874288I
b = 1.159890 + 0.155610I
1.95982 + 1.10736I 0.80753 5.92917I
u = 0.244374 0.651478I
a = 0.06047 + 2.05027I
b = 0.735414 + 0.089381I
1.95982 + 1.10736I 0.80753 5.92917I
u = 1.078600 + 0.784353I
a = 0.968849 0.380572I
b = 1.79712 1.86504I
11.92070 + 4.73378I 13.8664 3.7620I
u = 1.078600 + 0.784353I
a = 0.134340 1.178040I
b = 0.619451 1.219200I
11.92070 + 4.73378I 13.8664 3.7620I
u = 1.078600 0.784353I
a = 0.968849 + 0.380572I
b = 1.79712 + 1.86504I
11.92070 4.73378I 13.8664 + 3.7620I
u = 1.078600 0.784353I
a = 0.134340 + 1.178040I
b = 0.619451 + 1.219200I
11.92070 4.73378I 13.8664 + 3.7620I
u = 0.068095 + 1.374870I
a = 0.594304 1.280230I
b = 0.50000 + 1.73847I
1.97394 + 0.78097I 7.54315 + 6.50608I
u = 0.068095 + 1.374870I
a = 0.135613 + 0.044884I
b = 0.445532 0.369804I
1.97394 + 0.78097I 7.54315 + 6.50608I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.068095 1.374870I
a = 0.594304 + 1.280230I
b = 0.50000 1.73847I
1.97394 0.78097I 7.54315 6.50608I
u = 0.068095 1.374870I
a = 0.135613 0.044884I
b = 0.445532 + 0.369804I
1.97394 0.78097I 7.54315 6.50608I
u = 0.551572 + 0.242043I
a = 0.91561 1.39579I
b = 0.85997 1.58919I
2.14593 + 2.04473I 11.96352 3.36744I
u = 0.551572 + 0.242043I
a = 0.25837 + 2.23090I
b = 0.869517 + 0.406486I
2.14593 + 2.04473I 11.96352 3.36744I
u = 0.551572 0.242043I
a = 0.91561 + 1.39579I
b = 0.85997 + 1.58919I
2.14593 2.04473I 11.96352 + 3.36744I
u = 0.551572 0.242043I
a = 0.25837 2.23090I
b = 0.869517 0.406486I
2.14593 2.04473I 11.96352 + 3.36744I
u = 1.118310 + 0.840130I
a = 0.933066 + 0.658847I
b = 1.02920 + 2.15726I
8.03647 + 2.93288I 11.16553 3.09783I
u = 1.118310 + 0.840130I
a = 0.414460 0.736911I
b = 0.280289 1.187630I
8.03647 + 2.93288I 11.16553 3.09783I
u = 1.118310 0.840130I
a = 0.933066 0.658847I
b = 1.02920 2.15726I
8.03647 2.93288I 11.16553 + 3.09783I
u = 1.118310 0.840130I
a = 0.414460 + 0.736911I
b = 0.280289 + 1.187630I
8.03647 2.93288I 11.16553 + 3.09783I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.94165 + 1.11572I
a = 0.506918 + 1.031830I
b = 0.723488 + 1.136400I
7.12929 10.36590I 8.80055 + 7.37004I
u = 0.94165 + 1.11572I
a = 0.76431 1.34870I
b = 1.39425 1.81521I
7.12929 10.36590I 8.80055 + 7.37004I
u = 0.94165 1.11572I
a = 0.506918 1.031830I
b = 0.723488 1.136400I
7.12929 + 10.36590I 8.80055 7.37004I
u = 0.94165 1.11572I
a = 0.76431 + 1.34870I
b = 1.39425 + 1.81521I
7.12929 + 10.36590I 8.80055 7.37004I
u = 0.91859 + 1.17812I
a = 0.640700 + 0.507931I
b = 0.129200 + 1.118780I
10.69780 + 2.56112I 14.5817 1.8830I
u = 0.91859 + 1.17812I
a = 0.79513 + 1.47363I
b = 2.17348 + 1.56361I
10.69780 + 2.56112I 14.5817 1.8830I
u = 0.91859 1.17812I
a = 0.640700 0.507931I
b = 0.129200 1.118780I
10.69780 2.56112I 14.5817 + 1.8830I
u = 0.91859 1.17812I
a = 0.79513 1.47363I
b = 2.17348 1.56361I
10.69780 2.56112I 14.5817 + 1.8830I
u = 0.112565 + 0.479367I
a = 0.241569 0.802021I
b = 1.22650 + 0.71556I
1.46888 1.74074I 7.09706 4.27417I
u = 0.112565 + 0.479367I
a = 2.13374 + 2.67787I
b = 0.332607 0.020427I
1.46888 1.74074I 7.09706 4.27417I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.112565 0.479367I
a = 0.241569 + 0.802021I
b = 1.22650 0.71556I
1.46888 + 1.74074I 7.09706 + 4.27417I
u = 0.112565 0.479367I
a = 2.13374 2.67787I
b = 0.332607 + 0.020427I
1.46888 + 1.74074I 7.09706 + 4.27417I
16
III.
I
u
3
= h−u
11
2u
10
+· · ·+b+1, u
11
4u
10
+· · ·+a3, u
12
+3u
11
+· · ·+u+1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
7
=
u
11
+ 4u
10
+ ··· + 3u + 3
u
11
+ 2u
10
+ 5u
9
+ 5u
8
+ 7u
7
+ 2u
6
+ 2u
5
4u
4
u
3
3u
2
+ u 1
a
12
=
1
u
2
a
8
=
u
10
+ 3u
9
+ 8u
8
+ 12u
7
+ 18u
6
+ 16u
5
+ 16u
4
+ 7u
3
+ 6u
2
+ 3
u
11
+ 3u
10
+ 7u
9
+ 10u
8
+ 13u
7
+ 10u
6
+ 8u
5
+ u
4
+ u
3
2u
2
+ 2u 1
a
9
=
u
11
+ 4u
10
+ ··· + 2u + 2
u
11
+ 3u
10
+ 7u
9
+ 10u
8
+ 13u
7
+ 10u
6
+ 8u
5
+ u
4
+ u
3
2u
2
+ 2u 1
a
1
=
4u
11
+ 11u
10
+ ··· + 9u + 1
u
10
3u
9
7u
8
11u
7
15u
6
15u
5
13u
4
9u
3
4u
2
3u 2
a
4
=
u
u
3
+ u
a
2
=
2u
11
+ 6u
10
+ ··· + 2u
2
+ 5u
2u
11
7u
10
+ ··· 6u 4
a
6
=
2u
11
+ 5u
10
+ ··· + 6u 1
2u
11
8u
10
+ ··· 7u 4
a
10
=
2u
11
+ 5u
10
+ ··· + 2u 2
u
11
3u
10
+ ··· 4u 1
a
3
=
u
11
2u
10
5u
9
5u
8
7u
7
2u
6
3u
5
+ 3u
4
u
3
+ 2u
2
2u + 2
u
11
+ 3u
10
+ 8u
9
+ 12u
8
+ 18u
7
+ 16u
6
+ 16u
5
+ 7u
4
+ 7u
3
+ 4u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
11
+ 27u
10
+ 67u
9
+ 97u
8
+ 140u
7
+ 127u
6
+ 122u
5
+ 64u
4
+ 46u
3
+ 7u
2
+ 16u 9
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
12
+ 9u
9
+ ··· 56u + 8
c
2
, c
9
u
12
5u
10
+ 11u
8
+ u
7
12u
6
3u
5
+ 7u
4
+ 4u
3
2u
2
2u + 1
c
3
, c
5
u
12
5u
10
+ 11u
8
u
7
12u
6
+ 3u
5
+ 7u
4
4u
3
2u
2
+ 2u + 1
c
4
u
12
3u
11
+ ··· u + 1
c
6
u
12
+ 6u
11
+ ··· + 55u + 13
c
7
u
12
+ u
11
+ ··· + 2u + 1
c
8
u
12
+ u
11
+ ··· + 26u + 11
c
10
u
12
2u
11
+ ··· 2u + 1
c
11
u
12
+ 3u
11
+ ··· + u + 1
c
12
u
12
u
11
+ ··· 2u + 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
12
+ 28y
10
+ ··· 1760y + 64
c
2
, c
3
, c
5
c
9
y
12
10y
11
+ ··· 8y + 1
c
4
, c
11
y
12
+ 7y
11
+ ··· + 9y + 1
c
6
y
12
+ 6y
11
+ ··· 607y + 169
c
7
, c
12
y
12
3y
11
+ ··· + 12y + 1
c
8
y
12
+ 5y
11
+ ··· 346y + 121
c
10
y
12
+ 4y
11
+ ··· + 2y + 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.901514 + 0.798418I
a = 0.140034 1.182110I
b = 0.100088 1.238220I
8.12777 + 6.33189I 12.25726 6.68709I
u = 0.901514 0.798418I
a = 0.140034 + 1.182110I
b = 0.100088 + 1.238220I
8.12777 6.33189I 12.25726 + 6.68709I
u = 0.195818 + 1.216330I
a = 0.178072 0.559998I
b = 0.652612 + 0.317914I
3.97699 1.74972I 4.29079 + 0.86004I
u = 0.195818 1.216330I
a = 0.178072 + 0.559998I
b = 0.652612 0.317914I
3.97699 + 1.74972I 4.29079 0.86004I
u = 0.218380 + 1.219800I
a = 0.335448 + 0.853839I
b = 0.313935 0.677604I
1.91415 + 7.37706I 3.90229 6.46992I
u = 0.218380 1.219800I
a = 0.335448 0.853839I
b = 0.313935 + 0.677604I
1.91415 7.37706I 3.90229 + 6.46992I
u = 0.388421 + 0.538359I
a = 0.16183 1.70410I
b = 1.164420 0.293382I
1.55954 0.78130I 10.36782 6.44455I
u = 0.388421 0.538359I
a = 0.16183 + 1.70410I
b = 1.164420 + 0.293382I
1.55954 + 0.78130I 10.36782 + 6.44455I
u = 0.865258 + 1.024720I
a = 0.855063 + 0.838948I
b = 0.193415 + 1.176310I
7.46101 + 0.19387I 11.77490 + 0.97916I
u = 0.865258 1.024720I
a = 0.855063 0.838948I
b = 0.193415 1.176310I
7.46101 0.19387I 11.77490 0.97916I
20
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.099086 + 0.602834I
a = 2.39583 + 0.78317I
b = 0.596419 + 0.848698I
4.48294 5.85264I 8.48852 + 6.46269I
u = 0.099086 0.602834I
a = 2.39583 0.78317I
b = 0.596419 0.848698I
4.48294 + 5.85264I 8.48852 6.46269I
21
IV. I
u
4
=
hu
5
a+3u
5
+· · ·a +2, u
4
a+2u
5
+· · ·+a
2
+2a, u
6
u
5
+3u
4
2u
3
+3u
2
+1i
(i) Arc colorings
a
5
=
0
u
a
11
=
1
0
a
7
=
a
1
5
u
5
a
3
5
u
5
+ ··· +
1
5
a
2
5
a
12
=
1
u
2
a
8
=
1
5
u
5
a +
3
5
u
5
+ ··· +
4
5
a +
2
5
u
5
+ 2u
4
3u
3
au + 3u
2
2u
a
9
=
1
5
u
5
a
2
5
u
5
+ ··· +
4
5
a +
2
5
u
5
+ 2u
4
3u
3
au + 3u
2
2u
a
1
=
2
5
u
5
a
6
5
u
5
+ ···
3
5
a +
1
5
1
5
u
5
a +
3
5
u
5
+ ···
1
5
a
3
5
a
4
=
u
u
3
+ u
a
2
=
2
5
u
5
a
1
5
u
5
+ ···
3
5
a
4
5
1
5
u
5
a +
3
5
u
5
+ ···
1
5
a
8
5
a
6
=
3
5
u
5
a +
1
5
u
5
+ ··· +
3
5
a
1
5
1
5
u
5
a +
2
5
u
5
+ ···
4
5
a
7
5
a
10
=
3
5
u
5
a
1
5
u
5
+ ··· +
2
5
a
4
5
1
5
u
5
a +
7
5
u
5
+ ···
4
5
a
2
5
a
3
=
2
5
u
5
a +
4
5
u
5
+ ···
3
5
a
4
5
4
5
u
5
a +
7
5
u
5
+ ···
4
5
a
2
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
4
8u
3
+ 17u
2
9u + 3
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ u
5
4u
4
+ u
3
+ 5u
2
8u + 5)
2
c
2
, c
9
u
12
4u
10
+ u
9
+ 3u
8
7u
7
+ 7u
6
+ 17u
5
9u
4
18u
3
4u
2
+ 7u + 7
c
3
, c
5
u
12
4u
10
u
9
+ 3u
8
+ 7u
7
+ 7u
6
17u
5
9u
4
+ 18u
3
4u
2
7u + 7
c
4
(u
6
+ u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ 1)
2
c
6
(u
6
u
5
2u
3
+ 2u
2
+ 1)
2
c
7
u
12
u
11
+ ··· + 7u + 7
c
8
u
12
u
11
+ ··· + 10u
2
+ 11
c
10
u
12
+ 6u
11
+ ··· 4u + 1
c
11
(u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1)
2
c
12
u
12
+ u
11
+ ··· 7u + 7
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
9y
5
+ 24y
4
15y
3
+ y
2
14y + 25)
2
c
2
, c
3
, c
5
c
9
y
12
8y
11
+ ··· 105y + 49
c
4
, c
11
(y
6
+ 5y
5
+ 11y
4
+ 16y
3
+ 15y
2
+ 6y + 1)
2
c
6
(y
6
y
5
2y
3
+ 4y
2
+ 4y + 1)
2
c
7
, c
12
y
12
9y
11
+ ··· + 91y + 49
c
8
y
12
+ 3y
11
+ ··· + 220y + 121
c
10
y
12
+ 18y
10
+ ··· 16y + 1
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.751720 + 0.952459I
a = 0.636694 0.705384I
b = 0.573880 0.681770I
8.95401 2.84527I 10.14719 + 2.90828I
u = 0.751720 + 0.952459I
a = 0.60954 + 1.74781I
b = 1.17448 + 0.86290I
8.95401 2.84527I 10.14719 + 2.90828I
u = 0.751720 0.952459I
a = 0.636694 + 0.705384I
b = 0.573880 + 0.681770I
8.95401 + 2.84527I 10.14719 2.90828I
u = 0.751720 0.952459I
a = 0.60954 1.74781I
b = 1.17448 0.86290I
8.95401 + 2.84527I 10.14719 2.90828I
u = 0.081708 + 1.363140I
a = 0.53017 1.32661I
b = 1.01141 + 1.63879I
1.96943 1.24964I 7.73074 + 9.76401I
u = 0.081708 + 1.363140I
a = 0.310661 + 0.248175I
b = 0.313585 0.116939I
1.96943 1.24964I 7.73074 + 9.76401I
u = 0.081708 1.363140I
a = 0.53017 + 1.32661I
b = 1.01141 1.63879I
1.96943 + 1.24964I 7.73074 9.76401I
u = 0.081708 1.363140I
a = 0.310661 0.248175I
b = 0.313585 + 0.116939I
1.96943 + 1.24964I 7.73074 9.76401I
u = 0.170012 + 0.579072I
a = 0.463351 0.885770I
b = 1.25941 0.96832I
1.24009 + 2.32699I 1.62207 6.56254I
u = 0.170012 + 0.579072I
a = 1.77702 + 2.80509I
b = 0.705591 + 0.260082I
1.24009 + 2.32699I 1.62207 6.56254I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.170012 0.579072I
a = 0.463351 + 0.885770I
b = 1.25941 + 0.96832I
1.24009 2.32699I 1.62207 + 6.56254I
u = 0.170012 0.579072I
a = 1.77702 2.80509I
b = 0.705591 0.260082I
1.24009 2.32699I 1.62207 + 6.56254I
26
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
6
+ u
5
4u
4
+ u
3
+ 5u
2
8u + 5)
2
)(u
12
+ 9u
9
+ ··· 56u + 8)
· (u
24
29u
23
+ ··· + 8704u 1024)(u
26
+ 7u
25
+ ··· + 104u + 1)
2
c
2
, c
9
(u
12
5u
10
+ 11u
8
+ u
7
12u
6
3u
5
+ 7u
4
+ 4u
3
2u
2
2u + 1)
· (u
12
4u
10
+ u
9
+ 3u
8
7u
7
+ 7u
6
+ 17u
5
9u
4
18u
3
4u
2
+ 7u + 7)
· (u
24
12u
22
+ ··· + 4u 1)(u
52
+ u
51
+ ··· + 9u + 1)
c
3
, c
5
(u
12
5u
10
+ 11u
8
u
7
12u
6
+ 3u
5
+ 7u
4
4u
3
2u
2
+ 2u + 1)
· (u
12
4u
10
u
9
+ 3u
8
+ 7u
7
+ 7u
6
17u
5
9u
4
+ 18u
3
4u
2
7u + 7)
· (u
24
12u
22
+ ··· + 4u 1)(u
52
+ u
51
+ ··· + 9u + 1)
c
4
((u
6
+ u
5
+ 3u
4
+ 2u
3
+ 3u
2
+ 1)
2
)(u
12
3u
11
+ ··· u + 1)
· (u
24
+ 8u
23
+ ··· + 34u + 4)(u
26
3u
25
+ ··· + 6u
2
+ 1)
2
c
6
((u
6
u
5
2u
3
+ 2u
2
+ 1)
2
)(u
12
+ 6u
11
+ ··· + 55u + 13)
· (u
24
+ 19u
23
+ ··· + 480u + 16)(u
26
5u
25
+ ··· 114u + 31)
2
c
7
(u
12
u
11
+ ··· + 7u + 7)(u
12
+ u
11
+ ··· + 2u + 1)
· (u
24
+ u
23
+ ··· + 2u + 1)(u
52
+ 2u
51
+ ··· + 26027u + 12491)
c
8
(u
12
u
11
+ ··· + 10u
2
+ 11)(u
12
+ u
11
+ ··· + 26u + 11)
· (u
24
+ u
23
+ ··· + 241u + 38)(u
52
+ 4u
51
+ ··· 283294u + 74171)
c
10
(u
12
2u
11
+ ··· 2u + 1)(u
12
+ 6u
11
+ ··· 4u + 1)
· (u
24
+ 2u
23
+ ··· + 66u + 7)(u
52
5u
51
+ ··· 453512u + 54833)
c
11
((u
6
u
5
+ 3u
4
2u
3
+ 3u
2
+ 1)
2
)(u
12
+ 3u
11
+ ··· + u + 1)
· (u
24
+ 8u
23
+ ··· + 34u + 4)(u
26
3u
25
+ ··· + 6u
2
+ 1)
2
c
12
(u
12
u
11
+ ··· 2u + 1)(u
12
+ u
11
+ ··· 7u + 7)
· (u
24
+ u
23
+ ··· + 2u + 1)(u
52
+ 2u
51
+ ··· + 26027u + 12491)
27
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
6
9y
5
+ 24y
4
15y
3
+ y
2
14y + 25)
2
· (y
12
+ 28y
10
+ ··· 1760y + 64)
· (y
24
19y
23
+ ··· + 52690944y + 1048576)
· (y
26
31y
25
+ ··· 4608y + 1)
2
c
2
, c
3
, c
5
c
9
(y
12
10y
11
+ ··· 8y + 1)(y
12
8y
11
+ ··· 105y + 49)
· (y
24
24y
23
+ ··· 2y + 1)(y
52
37y
51
+ ··· 13y + 1)
c
4
, c
11
((y
6
+ 5y
5
+ ··· + 6y + 1)
2
)(y
12
+ 7y
11
+ ··· + 9y + 1)
· (y
24
+ 8y
23
+ ··· 268y + 16)(y
26
+ 7y
25
+ ··· + 12y + 1)
2
c
6
((y
6
y
5
2y
3
+ 4y
2
+ 4y + 1)
2
)(y
12
+ 6y
11
+ ··· 607y + 169)
· (y
24
5y
23
+ ··· 88736y + 256)
· (y
26
+ 17y
25
+ ··· + 11618y + 961)
2
c
7
, c
12
(y
12
9y
11
+ ··· + 91y + 49)(y
12
3y
11
+ ··· + 12y + 1)
· (y
24
37y
23
+ ··· 26y + 1)
· (y
52
42y
51
+ ··· 2616007929y + 156025081)
c
8
(y
12
+ 3y
11
+ ··· + 220y + 121)(y
12
+ 5y
11
+ ··· 346y + 121)
· (y
24
+ 27y
23
+ ··· 37637y + 1444)
· (y
52
+ 38y
51
+ ··· + 245786133074y + 5501337241)
c
10
(y
12
+ 18y
10
+ ··· 16y + 1)(y
12
+ 4y
11
+ ··· + 2y + 1)
· (y
24
+ 14y
23
+ ··· 548y + 49)
· (y
52
+ 27y
51
+ ··· 49791469092y + 3006657889)
28