12n
0804
(K12n
0804
)
A knot diagram
1
Linearized knot diagam
4 7 10 1 11 3 1 12 6 4 8 9
Solving Sequence
9,12 1,4
2 5 8 7 11 6 10 3
c
12
c
1
c
4
c
8
c
7
c
11
c
5
c
10
c
3
c
2
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−15u
27
74u
26
+ ··· + 2b + 46, 7u
27
+ 28u
26
+ ··· + 4a 16, u
28
+ 6u
27
+ ··· 2u 4i
I
u
2
= h−26336u
8
a
3
36861u
8
a
2
+ ··· 5783a + 173926, 4u
8
a
2
11u
8
a + ··· 3a + 11,
u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1i
I
u
3
= hu
15
u
14
7u
13
+ 5u
12
+ 20u
11
7u
10
27u
9
4u
8
+ 12u
7
+ 15u
6
+ 8u
5
3u
4
7u
3
8u
2
+ b u,
u
16
+ u
15
+ ··· + a 1, u
17
u
16
+ ··· u + 1i
* 3 irreducible components of dim
C
= 0, with total 81 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−15u
27
74u
26
+ · · · + 2b + 46, 7u
27
+ 28u
26
+ · · · + 4a 16, u
28
+
6u
27
+ · · · 2u 4i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
7
4
u
27
7u
26
+ ···
5
4
u + 4
15
2
u
27
+ 37u
26
+ ··· +
11
2
u 23
a
2
=
6u
27
61
2
u
26
+ ··· 6u +
45
2
27
2
u
27
66u
26
+ ···
25
2
u + 46
a
5
=
65
4
u
27
72u
26
+ ···
27
4
u + 41
51
2
u
27
113u
26
+ ···
17
2
u + 65
a
8
=
u
u
a
7
=
u
3
+ 2u
u
5
+ u
3
+ u
a
11
=
u
2
+ 1
u
2
a
6
=
23
4
u
27
29u
26
+ ···
29
4
u + 20
23
2
u
27
56u
26
+ ···
17
2
u + 37
a
10
=
2u
27
+
17
2
u
26
+ ··· u
2
7
2
7
2
u
27
+ 14u
26
+ ···
1
2
u 6
a
3
=
2u
27
19
2
u
26
+ ··· 2u +
13
2
13
2
u
27
+ 31u
26
+ ··· +
13
2
u 20
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 25u
27
119u
26
+ 24u
25
+ 825u
24
+ 445u
23
2632u
22
1414u
21
+ 5532u
20
+ 700u
19
8560u
18
+ 4311u
17
+ 8407u
16
10994u
15
1234u
14
+ 11725u
13
8592u
12
3652u
11
+
9729u
10
5400u
9
2649u
8
+5362u
7
2247u
6
727u
5
+1376u
4
434u
3
+57u
2
28u +74
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
28
2u
27
+ ··· + 13u 1
c
2
, c
6
u
28
+ 20u
27
+ ··· 5888u 512
c
3
, c
9
, c
10
u
28
u
27
+ ··· + u + 1
c
5
u
28
+ 16u
26
+ ··· 4u 11
c
7
u
28
18u
27
+ ··· 990u + 52
c
8
, c
11
, c
12
u
28
+ 6u
27
+ ··· 2u 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
28
38y
27
+ ··· 43y + 1
c
2
, c
6
y
28
+ 10y
27
+ ··· 65536y + 262144
c
3
, c
9
, c
10
y
28
15y
27
+ ··· 7y + 1
c
5
y
28
+ 32y
27
+ ··· + 2096y + 121
c
7
y
28
2y
27
+ ··· 384700y + 2704
c
8
, c
11
, c
12
y
28
26y
27
+ ··· + 4y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.953650
a = 0.557977
b = 1.71191
2.95076 1.04180
u = 0.658308 + 0.612846I
a = 1.282020 0.481173I
b = 1.120110 0.609967I
0.15275 + 6.58351I 2.72995 3.03083I
u = 0.658308 0.612846I
a = 1.282020 + 0.481173I
b = 1.120110 + 0.609967I
0.15275 6.58351I 2.72995 + 3.03083I
u = 0.402654 + 0.774191I
a = 1.05898 1.82975I
b = 0.061414 0.574417I
1.01000 11.30550I 1.14807 + 7.82851I
u = 0.402654 0.774191I
a = 1.05898 + 1.82975I
b = 0.061414 + 0.574417I
1.01000 + 11.30550I 1.14807 7.82851I
u = 0.046469 + 0.849926I
a = 0.926104 0.236908I
b = 0.122562 + 0.203546I
6.61374 + 1.82301I 2.15341 3.95044I
u = 0.046469 0.849926I
a = 0.926104 + 0.236908I
b = 0.122562 0.203546I
6.61374 1.82301I 2.15341 + 3.95044I
u = 1.19440
a = 0.501244
b = 0.563490
2.49793 0.727600
u = 0.323728 + 0.735663I
a = 1.50512 + 1.36499I
b = 0.190601 + 0.251246I
1.82680 3.57508I 0.50281 + 5.56081I
u = 0.323728 0.735663I
a = 1.50512 1.36499I
b = 0.190601 0.251246I
1.82680 + 3.57508I 0.50281 5.56081I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.199900 + 0.405002I
a = 0.456093 0.265236I
b = 1.03504 0.98880I
3.05496 6.32046I 4.20827 + 7.87588I
u = 1.199900 0.405002I
a = 0.456093 + 0.265236I
b = 1.03504 + 0.98880I
3.05496 + 6.32046I 4.20827 7.87588I
u = 0.559106 + 0.438994I
a = 0.554411 + 1.068500I
b = 0.939165 + 0.581582I
2.96704 0.44419I 3.65164 1.30956I
u = 0.559106 0.438994I
a = 0.554411 1.068500I
b = 0.939165 0.581582I
2.96704 + 0.44419I 3.65164 + 1.30956I
u = 1.291540 + 0.383259I
a = 0.271704 + 0.642178I
b = 0.236794 + 1.202110I
2.45039 + 2.60036I 6.92230 0.38709I
u = 1.291540 0.383259I
a = 0.271704 0.642178I
b = 0.236794 1.202110I
2.45039 2.60036I 6.92230 + 0.38709I
u = 1.393630 + 0.056371I
a = 0.117598 + 0.610861I
b = 0.32341 + 2.06894I
5.35082 2.09473I 9.32900 + 3.91976I
u = 1.393630 0.056371I
a = 0.117598 0.610861I
b = 0.32341 2.06894I
5.35082 + 2.09473I 9.32900 3.91976I
u = 1.44514 + 0.28991I
a = 0.09541 1.48867I
b = 0.20048 3.17159I
7.50725 + 7.32315I 4.57096 5.41383I
u = 1.44514 0.28991I
a = 0.09541 + 1.48867I
b = 0.20048 + 3.17159I
7.50725 7.32315I 4.57096 + 5.41383I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.47470 + 0.16414I
a = 0.609161 0.895856I
b = 0.02962 2.05701I
9.43653 + 2.71269I 7.85713 + 0.I
u = 1.47470 0.16414I
a = 0.609161 + 0.895856I
b = 0.02962 + 2.05701I
9.43653 2.71269I 7.85713 + 0.I
u = 1.47870 + 0.29110I
a = 0.46176 + 1.47662I
b = 0.52784 + 3.55403I
5.0564 + 15.1855I 4.66281 7.85224I
u = 1.47870 0.29110I
a = 0.46176 1.47662I
b = 0.52784 3.55403I
5.0564 15.1855I 4.66281 + 7.85224I
u = 1.52541 + 0.15808I
a = 0.112693 + 0.750612I
b = 0.99764 + 1.57771I
7.05591 3.93502I 6.54817 + 3.13330I
u = 1.52541 0.15808I
a = 0.112693 0.750612I
b = 0.99764 1.57771I
7.05591 + 3.93502I 6.54817 3.13330I
u = 0.247934 + 0.324230I
a = 0.668275 0.831350I
b = 0.083982 0.333429I
0.143060 + 0.866290I 3.37260 7.97095I
u = 0.247934 0.324230I
a = 0.668275 + 0.831350I
b = 0.083982 + 0.333429I
0.143060 0.866290I 3.37260 + 7.97095I
7
II. I
u
2
= h−2.63 × 10
4
a
3
u
8
3.69 × 10
4
a
2
u
8
+ · · · 5783a + 1.74 ×
10
5
, 4u
8
a
2
11u
8
a + · · · 3a + 11, u
9
u
8
+ · · · + u 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
a
0.217680a
3
u
8
+ 0.304674a
2
u
8
+ ··· + 0.0477993a 1.43758
a
2
=
0.0388230a
3
u
8
+ 0.221854a
2
u
8
+ ··· + 0.325520a + 1.11376
0.487796a
3
u
8
0.886325a
2
u
8
+ ··· + 0.0427656a + 1.01842
a
5
=
0.217680a
3
u
8
0.304674a
2
u
8
+ ··· + 0.952201a + 1.43758
0.204720a
3
u
8
0.196619a
2
u
8
+ ··· + 0.127586a 0.334521
a
8
=
u
u
a
7
=
u
3
+ 2u
u
5
+ u
3
+ u
a
11
=
u
2
+ 1
u
2
a
6
=
0.00223995a
3
u
8
0.310129a
2
u
8
+ ··· + 0.227979a 0.929694
0.579593a
3
u
8
+ 0.0401868a
2
u
8
+ ··· + 0.201769a 2.52773
a
10
=
0.199330a
3
u
8
+ 0.0246477a
2
u
8
+ ··· + 0.744894a + 2.28670
0.991354a
3
u
8
+ 1.06644a
2
u
8
+ ··· + 1.13530a + 0.724503
a
3
=
0.0717692a
3
u
8
+ 0.0393107a
2
u
8
+ ··· + 0.243030a + 1.08904
0.482366a
3
u
8
2.04709a
2
u
8
+ ··· + 0.821375a + 0.907005
(ii) Obstruction class = 1
(iii) Cusp Shapes =
13960
24197
u
8
a
3
+
55088
24197
u
8
a
2
+ ···
10276
24197
a +
14766
24197
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
36
7u
35
+ ··· 5076u + 409
c
2
, c
6
(u
2
u + 1)
18
c
3
, c
9
, c
10
u
36
+ u
35
+ ··· 1924u + 1369
c
5
u
36
+ u
35
+ ··· + 270248u + 42439
c
7
(u
9
+ 3u
8
+ 2u
7
5u
6
u
5
+ 13u
4
+ 10u
3
2u
2
+ u + 3)
4
c
8
, c
11
, c
12
(u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1)
4
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
36
13y
35
+ ··· + 722700y + 167281
c
2
, c
6
(y
2
+ y + 1)
18
c
3
, c
9
, c
10
y
36
21y
35
+ ··· 24937704y + 1874161
c
5
y
36
+ 3y
35
+ ··· 30558823476y + 1801068721
c
7
(y
9
5y
8
+ 32y
7
87y
6
+ 185y
5
223y
4
+ 180y
3
62y
2
+ 13y 9)
4
c
8
, c
11
, c
12
(y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1)
4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.482242 + 0.666986I
a = 1.051030 + 0.210171I
b = 0.827471 + 0.256935I
2.12882 + 0.18400I 2.24115 + 0.41812I
u = 0.482242 + 0.666986I
a = 1.20765 1.03644I
b = 0.590198 0.907501I
2.12882 + 4.24376I 2.24115 6.51008I
u = 0.482242 + 0.666986I
a = 0.32978 + 1.74923I
b = 0.047751 + 0.476433I
2.12882 + 4.24376I 2.24115 6.51008I
u = 0.482242 + 0.666986I
a = 1.22939 1.32682I
b = 0.135181 0.593881I
2.12882 + 0.18400I 2.24115 + 0.41812I
u = 0.482242 0.666986I
a = 1.051030 0.210171I
b = 0.827471 0.256935I
2.12882 0.18400I 2.24115 0.41812I
u = 0.482242 0.666986I
a = 1.20765 + 1.03644I
b = 0.590198 + 0.907501I
2.12882 4.24376I 2.24115 + 6.51008I
u = 0.482242 0.666986I
a = 0.32978 1.74923I
b = 0.047751 0.476433I
2.12882 4.24376I 2.24115 + 6.51008I
u = 0.482242 0.666986I
a = 1.22939 + 1.32682I
b = 0.135181 + 0.593881I
2.12882 0.18400I 2.24115 0.41812I
u = 1.28056
a = 1.073610 + 0.310999I
b = 0.35482 + 1.72769I
2.09801 2.02988I 0.33330 + 3.46410I
u = 1.28056
a = 1.073610 0.310999I
b = 0.35482 1.72769I
2.09801 + 2.02988I 0.33330 3.46410I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.28056
a = 1.84588 + 1.02661I
b = 2.79563 + 2.49991I
2.09801 2.02988I 0.33330 + 3.46410I
u = 1.28056
a = 1.84588 1.02661I
b = 2.79563 2.49991I
2.09801 + 2.02988I 0.33330 3.46410I
u = 1.380230 + 0.162431I
a = 0.765740 0.299051I
b = 1.69716 2.22480I
0.22800 + 5.44061I 3.88238 7.86053I
u = 1.380230 + 0.162431I
a = 0.59954 + 1.33085I
b = 0.60116 + 3.08351I
0.22800 + 5.44061I 3.88238 7.86053I
u = 1.380230 + 0.162431I
a = 1.22002 + 0.90366I
b = 2.56008 + 2.51241I
0.227995 + 1.380850I 3.88238 0.93232I
u = 1.380230 + 0.162431I
a = 0.356182 0.237194I
b = 0.667250 0.951369I
0.227995 + 1.380850I 3.88238 0.93232I
u = 1.380230 0.162431I
a = 0.765740 + 0.299051I
b = 1.69716 + 2.22480I
0.22800 5.44061I 3.88238 + 7.86053I
u = 1.380230 0.162431I
a = 0.59954 1.33085I
b = 0.60116 3.08351I
0.22800 5.44061I 3.88238 + 7.86053I
u = 1.380230 0.162431I
a = 1.22002 0.90366I
b = 2.56008 2.51241I
0.227995 1.380850I 3.88238 + 0.93232I
u = 1.380230 0.162431I
a = 0.356182 + 0.237194I
b = 0.667250 + 0.951369I
0.227995 1.380850I 3.88238 + 0.93232I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.230908 + 0.456719I
a = 0.131464 + 0.571431I
b = 1.154890 0.321257I
4.89942 + 0.92019I 1.44626 + 2.77537I
u = 0.230908 + 0.456719I
a = 1.11828 + 2.44778I
b = 0.822161 + 0.979129I
4.89942 3.13958I 1.44626 + 9.70357I
u = 0.230908 + 0.456719I
a = 2.02069 2.00197I
b = 0.537114 + 0.030275I
4.89942 3.13958I 1.44626 + 9.70357I
u = 0.230908 + 0.456719I
a = 1.31486 3.51276I
b = 0.423243 0.430303I
4.89942 + 0.92019I 1.44626 + 2.77537I
u = 0.230908 0.456719I
a = 0.131464 0.571431I
b = 1.154890 + 0.321257I
4.89942 0.92019I 1.44626 2.77537I
u = 0.230908 0.456719I
a = 1.11828 2.44778I
b = 0.822161 0.979129I
4.89942 + 3.13958I 1.44626 9.70357I
u = 0.230908 0.456719I
a = 2.02069 + 2.00197I
b = 0.537114 0.030275I
4.89942 + 3.13958I 1.44626 9.70357I
u = 0.230908 0.456719I
a = 1.31486 + 3.51276I
b = 0.423243 + 0.430303I
4.89942 0.92019I 1.44626 2.77537I
u = 1.49128 + 0.23430I
a = 0.186213 + 0.985787I
b = 0.84640 + 2.46596I
8.52641 7.53037I 5.48937 + 6.43708I
u = 1.49128 + 0.23430I
a = 0.145881 + 1.246310I
b = 0.20347 + 3.14266I
8.52641 3.47060I 5.48937 0.49112I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.49128 + 0.23430I
a = 0.083099 0.678110I
b = 0.753793 1.188340I
8.52641 3.47060I 5.48937 0.49112I
u = 1.49128 + 0.23430I
a = 0.709680 1.215520I
b = 1.12126 2.96653I
8.52641 7.53037I 5.48937 + 6.43708I
u = 1.49128 0.23430I
a = 0.186213 0.985787I
b = 0.84640 2.46596I
8.52641 + 7.53037I 5.48937 6.43708I
u = 1.49128 0.23430I
a = 0.145881 1.246310I
b = 0.20347 3.14266I
8.52641 + 3.47060I 5.48937 + 0.49112I
u = 1.49128 0.23430I
a = 0.083099 + 0.678110I
b = 0.753793 + 1.188340I
8.52641 + 3.47060I 5.48937 + 0.49112I
u = 1.49128 0.23430I
a = 0.709680 + 1.215520I
b = 1.12126 + 2.96653I
8.52641 + 7.53037I 5.48937 6.43708I
14
III.
I
u
3
= hu
15
u
14
+ · · · + b u, u
16
+ u
15
+ · · · + a 1, u
17
u
16
+ · · · u + 1i
(i) Arc colorings
a
9
=
0
u
a
12
=
1
0
a
1
=
1
u
2
a
4
=
u
16
u
15
+ ··· + 10u + 1
u
15
+ u
14
+ ··· + 8u
2
+ u
a
2
=
u
16
u
15
+ ··· 5u 2
u
16
u
15
+ ··· 4u + 1
a
5
=
u
16
8u
14
+ ··· + 8u + 1
u
16
7u
14
+ 19u
12
23u
10
+ 9u
8
+ u
7
+ 3u
6
2u
5
u
4
+ u
2
+ 2u 1
a
8
=
u
u
a
7
=
u
3
+ 2u
u
5
+ u
3
+ u
a
11
=
u
2
+ 1
u
2
a
6
=
u
16
u
15
+ ··· + 9u
2
+ 10u
u
16
u
15
+ ··· + 2u 1
a
10
=
u
16
+ u
15
+ ··· 13u 1
u
14
u
13
+ ··· 3u + 1
a
3
=
u
16
+ 8u
14
+ ··· 6u 2
u
16
+ 8u
14
+ ··· 4u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
16
+ 3u
15
+ 4u
14
21u
13
+ u
12
+ 57u
11
24u
10
70u
9
+
29u
8
+ 28u
7
+ 8u
6
+ 13u
5
14u
4
12u
3
16u
2
+ 6u + 3
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
17
2u
16
+ ··· u 1
c
2
u
17
+ u
16
+ ··· + 2u 1
c
3
, c
9
u
17
+ u
16
+ ··· + 3u + 1
c
4
u
17
+ 2u
16
+ ··· u + 1
c
5
u
17
2u
15
+ ··· + 84u 41
c
6
u
17
u
16
+ ··· + 2u + 1
c
7
u
17
3u
16
+ ··· + 3u + 1
c
8
u
17
+ u
16
+ ··· u 1
c
10
u
17
u
16
+ ··· + 3u 1
c
11
, c
12
u
17
u
16
+ ··· u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
17
2y
16
+ ··· 9y 1
c
2
, c
6
y
17
+ 9y
16
+ ··· + 2y 1
c
3
, c
9
, c
10
y
17
15y
16
+ ··· + 11y 1
c
5
y
17
4y
16
+ ··· 488y 1681
c
7
y
17
+ 3y
16
+ ··· + 5y 1
c
8
, c
11
, c
12
y
17
17y
16
+ ··· 13y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.10763
a = 0.523883
b = 1.55918
3.57905 12.6170
u = 0.425905 + 0.642898I
a = 0.97515 1.20944I
b = 0.403007 0.429698I
2.71770 + 2.02657I 3.63087 3.52897I
u = 0.425905 0.642898I
a = 0.97515 + 1.20944I
b = 0.403007 + 0.429698I
2.71770 2.02657I 3.63087 + 3.52897I
u = 0.042131 + 0.757767I
a = 0.815059 1.037950I
b = 0.377107 0.136334I
7.62816 + 1.34697I 6.00457 0.36396I
u = 0.042131 0.757767I
a = 0.815059 + 1.037950I
b = 0.377107 + 0.136334I
7.62816 1.34697I 6.00457 + 0.36396I
u = 1.254420 + 0.313440I
a = 1.064240 0.333124I
b = 1.56387 0.74311I
3.88217 5.20142I 0.01102 + 3.47502I
u = 1.254420 0.313440I
a = 1.064240 + 0.333124I
b = 1.56387 + 0.74311I
3.88217 + 5.20142I 0.01102 3.47502I
u = 1.299980 + 0.091388I
a = 1.56649 + 0.19813I
b = 1.82630 + 0.03282I
1.28803 + 0.77615I 3.30157 + 0.81536I
u = 1.299980 0.091388I
a = 1.56649 0.19813I
b = 1.82630 0.03282I
1.28803 0.77615I 3.30157 0.81536I
u = 1.309310 + 0.331733I
a = 0.075882 + 0.519832I
b = 0.55535 + 1.50065I
3.38854 + 2.59091I 2.12182 1.26130I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.309310 0.331733I
a = 0.075882 0.519832I
b = 0.55535 1.50065I
3.38854 2.59091I 2.12182 + 1.26130I
u = 1.384890 + 0.123590I
a = 0.394901 0.892836I
b = 1.54132 2.86492I
0.25538 + 3.89922I 2.28228 2.97017I
u = 1.384890 0.123590I
a = 0.394901 + 0.892836I
b = 1.54132 + 2.86492I
0.25538 3.89922I 2.28228 + 2.97017I
u = 1.47712 + 0.23945I
a = 0.303394 + 1.097550I
b = 0.08342 + 2.50104I
8.88015 5.28838I 6.60018 + 3.61585I
u = 1.47712 0.23945I
a = 0.303394 1.097550I
b = 0.08342 2.50104I
8.88015 + 5.28838I 6.60018 3.61585I
u = 0.100269 + 0.327858I
a = 0.69814 + 4.13737I
b = 0.919590 + 0.605338I
5.16976 2.21853I 5.50802 + 1.42500I
u = 0.100269 0.327858I
a = 0.69814 4.13737I
b = 0.919590 0.605338I
5.16976 + 2.21853I 5.50802 1.42500I
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
17
2u
16
+ ··· u 1)(u
28
2u
27
+ ··· + 13u 1)
· (u
36
7u
35
+ ··· 5076u + 409)
c
2
((u
2
u + 1)
18
)(u
17
+ u
16
+ ··· + 2u 1)
· (u
28
+ 20u
27
+ ··· 5888u 512)
c
3
, c
9
(u
17
+ u
16
+ ··· + 3u + 1)(u
28
u
27
+ ··· + u + 1)
· (u
36
+ u
35
+ ··· 1924u + 1369)
c
4
(u
17
+ 2u
16
+ ··· u + 1)(u
28
2u
27
+ ··· + 13u 1)
· (u
36
7u
35
+ ··· 5076u + 409)
c
5
(u
17
2u
15
+ ··· + 84u 41)(u
28
+ 16u
26
+ ··· 4u 11)
· (u
36
+ u
35
+ ··· + 270248u + 42439)
c
6
((u
2
u + 1)
18
)(u
17
u
16
+ ··· + 2u + 1)
· (u
28
+ 20u
27
+ ··· 5888u 512)
c
7
(u
9
+ 3u
8
+ 2u
7
5u
6
u
5
+ 13u
4
+ 10u
3
2u
2
+ u + 3)
4
· (u
17
3u
16
+ ··· + 3u + 1)(u
28
18u
27
+ ··· 990u + 52)
c
8
(u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1)
4
· (u
17
+ u
16
+ ··· u 1)(u
28
+ 6u
27
+ ··· 2u 4)
c
10
(u
17
u
16
+ ··· + 3u 1)(u
28
u
27
+ ··· + u + 1)
· (u
36
+ u
35
+ ··· 1924u + 1369)
c
11
, c
12
(u
9
u
8
4u
7
+ 3u
6
+ 5u
5
u
4
2u
3
2u
2
+ u 1)
4
· (u
17
u
16
+ ··· u + 1)(u
28
+ 6u
27
+ ··· 2u 4)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
17
2y
16
+ ··· 9y 1)(y
28
38y
27
+ ··· 43y + 1)
· (y
36
13y
35
+ ··· + 722700y + 167281)
c
2
, c
6
((y
2
+ y + 1)
18
)(y
17
+ 9y
16
+ ··· + 2y 1)
· (y
28
+ 10y
27
+ ··· 65536y + 262144)
c
3
, c
9
, c
10
(y
17
15y
16
+ ··· + 11y 1)(y
28
15y
27
+ ··· 7y + 1)
· (y
36
21y
35
+ ··· 24937704y + 1874161)
c
5
(y
17
4y
16
+ ··· 488y 1681)(y
28
+ 32y
27
+ ··· + 2096y + 121)
· (y
36
+ 3y
35
+ ··· 30558823476y + 1801068721)
c
7
(y
9
5y
8
+ 32y
7
87y
6
+ 185y
5
223y
4
+ 180y
3
62y
2
+ 13y 9)
4
· (y
17
+ 3y
16
+ ··· + 5y 1)(y
28
2y
27
+ ··· 384700y + 2704)
c
8
, c
11
, c
12
(y
9
9y
8
+ 32y
7
55y
6
+ 45y
5
19y
4
+ 16y
3
10y
2
3y 1)
4
· (y
17
17y
16
+ ··· 13y 1)(y
28
26y
27
+ ··· + 4y + 16)
21