12n
0806
(K12n
0806
)
A knot diagram
1
Linearized knot diagam
4 7 12 7 10 3 10 1 6 1 4 9
Solving Sequence
3,7
2
6,10
5 4 1 11 9 8 12
c
2
c
6
c
5
c
4
c
1
c
10
c
9
c
8
c
12
c
3
, c
7
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
5
u
4
+ 2u
3
+ b + 4u 2, u
5
u
4
+ 2u
3
+ a + 4u 1, u
6
2u
5
+ 3u
4
2u
3
+ 4u
2
4u + 1i
I
u
2
= h−u
5
a u
4
a 2u
3
a au u
2
+ b u 1, u
5
a 2u
4
a 4u
3
a 3u
2
a + a
2
3au + u
2
+ 1,
u
6
+ u
5
+ 3u
4
+ u
3
+ 3u
2
u + 1i
I
u
3
= h734u
11
3080u
10
+ ··· + 7763b 15155, 1450u
11
7683u
10
+ ··· + 7763a 6462,
u
12
5u
11
+ 13u
10
25u
9
+ 45u
8
72u
7
+ 93u
6
97u
5
+ 87u
4
68u
3
+ 39u
2
17u + 7i
I
u
4
= h−u
7
2u
4
u
3
+ u
2
+ b + 1, u
9
+ 2u
6
+ u
5
2u
4
+ a u, u
10
+ u
9
+ u
7
+ 2u
6
u
5
3u
4
2u
3
+ u + 1i
I
u
5
= h−u
9
u
7
u
6
u
5
+ u
3
+ 2u
2
+ b 1, u
9
u
7
u
6
u
5
+ u
3
+ 2u
2
+ a,
u
10
+ u
9
+ u
7
+ 2u
6
u
5
3u
4
2u
3
+ u + 1i
I
u
6
= hu
2
+ b, u
2
+ a + 1, u
3
u
2
+ 2u 1i
I
u
7
= h−u
7
+ 5u
6
12u
5
+ 19u
4
20u
3
+ 14u
2
+ b 8u + 3,
3u
7
+ 12u
6
25u
5
+ 34u
4
29u
3
+ 17u
2
+ 2a 9u + 2,
u
8
4u
7
+ 9u
6
14u
5
+ 15u
4
13u
3
+ 9u
2
4u + 2i
I
u
8
= hau + u
2
+ b a + u + 1, u
3
a 2u
2
a u
3
+ a
2
au u
2
u, u
4
+ u
3
+ u
2
+ 1i
I
u
9
= hb + 1, u
4
u
2
+ 2a, u
6
u
5
+ u
4
+ u
3
+ 2i
I
u
10
= hb a 1, a
2
a 4, u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= h−u
2
+ b u, u
3
3u
2
+ a 3u 2, u
4
+ 2u
3
+ 2u
2
+ u 1i
I
u
12
= h2u
3
+ 4u
2
+ b + 5u + 2, 2u
3
+ 4u
2
+ a + 5u + 3, u
4
+ 2u
3
+ 2u
2
+ u 1i
* 12 irreducible components of dim
C
= 0, with total 85 representations.
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= hu
5
u
4
+ 2u
3
+ b + 4u 2, u
5
u
4
+ 2u
3
+ a + 4u 1, u
6
2u
5
+
3u
4
2u
3
+ 4u
2
4u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
u
5
+ u
4
2u
3
4u + 1
u
5
+ u
4
2u
3
4u + 2
a
5
=
u
5
u
4
+ 2u
3
+ 4u 1
u
5
u
4
+ 2u
3
+ 3u 1
a
4
=
u
5
u
4
+ 2u
3
+ 4u 1
u
2
a
1
=
3u
5
+ 4u
4
6u
3
+ 2u
2
11u + 5
u
5
+ u
4
u
3
3u + 1
a
11
=
3u
5
4u
4
+ 7u
3
2u
2
+ 11u 5
u
3
+ u
a
9
=
u
5
+ u
4
2u
3
+ u
2
4u + 1
u
5
+ u
4
2u
3
+ u
2
4u + 2
a
8
=
3u
5
+ 4u
4
6u
3
+ 2u
2
11u + 4
2u
5
+ 3u
4
4u
3
+ 2u
2
7u + 3
a
12
=
2u
5
+ 3u
4
5u
3
+ 2u
2
8u + 4
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
5
8u
4
+ 12u
3
4u
2
+ 12u 20
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
6
2u
5
3u
4
+ 6u
3
+ 4u + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 4u
2
+ 4u + 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
6
10y
5
+ 33y
4
18y
3
54y
2
16y + 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
6
+ 2y
5
+ 9y
4
+ 6y
3
+ 6y
2
8y + 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.565321 + 1.037410I
a = 0.556120 0.294180I
b = 1.55612 0.29418I
5.73543 + 5.68242I 3.14521 5.86849I
u = 0.565321 1.037410I
a = 0.556120 + 0.294180I
b = 1.55612 + 0.29418I
5.73543 5.68242I 3.14521 + 5.86849I
u = 0.716429
a = 2.52645
b = 1.52645
9.00346 10.3960
u = 0.378183
a = 0.608191
b = 0.391809
0.650275 15.5180
u = 1.01802 + 1.26802I
a = 1.011200 0.788474I
b = 2.01120 0.78847I
8.3108 15.2657I 11.89809 + 7.17299I
u = 1.01802 1.26802I
a = 1.011200 + 0.788474I
b = 2.01120 + 0.78847I
8.3108 + 15.2657I 11.89809 7.17299I
6
II. I
u
2
= h−u
5
a u
4
a 2u
3
a au u
2
+ b u 1, u
5
a 2u
4
a + · · · +
a
2
+ 1, u
6
+ u
5
+ 3u
4
+ u
3
+ 3u
2
u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
a
u
5
a + u
4
a + 2u
3
a + au + u
2
+ u + 1
a
5
=
a
u
5
u
4
2u
3
+ au u + 1
a
4
=
a
u
5
u
4
+ u
2
a 2u
3
+ au u + 1
a
1
=
u
3
u + 1
u
4
a + u
5
u
3
a + u
4
2u
2
a + 2u
3
+ u
2
a + u 1
a
11
=
u
4
a + u
5
+ u
4
+ u
2
a + 2u
3
au + a + 2u 1
u
5
a + 2u
4
a u
5
+ 2u
3
a u
4
+ 2u
2
a 3u
3
+ au u
2
+ a u + 2
a
9
=
u
5
a u
4
a 2u
3
a + u
4
+ u
3
au + u
2
+ a
u
4
+ u
3
+ 2u
2
+ u + 1
a
8
=
u
5
a u
4
a 2u
3
a + u
3
au + a + u
u
5
a u
4
a 2u
3
a + u
3
au + u
a
12
=
u
4
a u
5
u
3
a u
4
2u
2
a 2u
3
a u + 1
u
4
a u
3
a 2u
2
a a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
4
7u
3
10u
2
9u 16
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
12
u
11
+ ··· 11u + 1
c
2
, c
6
, c
8
c
12
(u
6
u
5
+ 3u
4
u
3
+ 3u
2
+ u + 1)
2
c
3
, c
5
, c
9
c
11
u
12
+ 5u
11
+ ··· + 17u + 7
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
12
19y
11
+ ··· 37y + 1
c
2
, c
6
, c
8
c
12
(y
6
+ 5y
5
+ 13y
4
+ 21y
3
+ 17y
2
+ 5y + 1)
2
c
3
, c
5
, c
9
c
11
y
12
+ y
11
+ ··· + 257y + 49
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.028955 + 1.263070I
a = 0.565560 0.864727I
b = 1.113440 0.846070I
4.88968 2.84039I 6.95695 + 2.68362I
u = 0.028955 + 1.263070I
a = 0.374177 0.442775I
b = 1.46946 + 0.08347I
4.88968 2.84039I 6.95695 + 2.68362I
u = 0.028955 1.263070I
a = 0.565560 + 0.864727I
b = 1.113440 + 0.846070I
4.88968 + 2.84039I 6.95695 2.68362I
u = 0.028955 1.263070I
a = 0.374177 + 0.442775I
b = 1.46946 0.08347I
4.88968 + 2.84039I 6.95695 2.68362I
u = 0.80039 + 1.17645I
a = 1.035600 0.905749I
b = 1.97804 1.00830I
9.60039 + 6.66133I 12.05452 4.58491I
u = 0.80039 + 1.17645I
a = 0.760760 + 1.153110I
b = 0.764071 0.032173I
9.60039 + 6.66133I 12.05452 4.58491I
u = 0.80039 1.17645I
a = 1.035600 + 0.905749I
b = 1.97804 + 1.00830I
9.60039 6.66133I 12.05452 + 4.58491I
u = 0.80039 1.17645I
a = 0.760760 1.153110I
b = 0.764071 + 0.032173I
9.60039 6.66133I 12.05452 + 4.58491I
u = 0.271430 + 0.485552I
a = 0.041323 0.362162I
b = 1.22951 + 0.79439I
1.04656 + 1.35140I 15.4885 6.6994I
u = 0.271430 + 0.485552I
a = 0.45786 + 2.36589I
b = 0.340472 + 0.389317I
1.04656 + 1.35140I 15.4885 6.6994I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.271430 0.485552I
a = 0.041323 + 0.362162I
b = 1.22951 0.79439I
1.04656 1.35140I 15.4885 + 6.6994I
u = 0.271430 0.485552I
a = 0.45786 2.36589I
b = 0.340472 0.389317I
1.04656 1.35140I 15.4885 + 6.6994I
11
III. I
u
3
= h734u
11
3080u
10
+ · · · + 7763b 15155, 1450u
11
7683u
10
+
· · · + 7763a 6462, u
12
5u
11
+ · · · 17u + 7i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
0.186783u
11
+ 0.989695u
10
+ ··· 4.53265u + 0.832410
0.0945511u
11
+ 0.396754u
10
+ ··· 3.56421u + 1.95221
a
5
=
0.147108u
11
+ 0.473657u
10
+ ··· + 4.45537u 2.03465
0.261883u
11
+ 1.26240u
10
+ ··· 4.53549u + 1.02976
a
4
=
0.147108u
11
+ 0.473657u
10
+ ··· + 4.45537u 2.03465
0.214865u
11
+ 0.915239u
10
+ ··· 1.11323u 0.803427
a
1
=
0.267809u
11
+ 0.983254u
10
+ ··· + 2.83086u 1.89733
0.107948u
11
+ 0.660054u
10
+ ··· 3.27631u 0.615870
a
11
=
0.0769033u
11
+ 0.516939u
10
+ ··· 1.73606u + 0.269226
0.154322u
11
+ 0.879170u
10
+ ··· 5.04895u + 2.11001
a
9
=
0.448023u
11
+ 2.12405u
10
+ ··· 7.41852u + 1.75486
0.355790u
11
+ 1.53111u
10
+ ··· 6.45008u + 2.87466
a
8
=
0.0617029u
11
0.295118u
10
+ ··· + 1.00502u 0.336854
0.0854051u
11
+ 0.178539u
10
+ ··· + 5.46039u 2.37151
a
12
=
0.278887u
11
+ 1.29988u
10
+ ··· 5.42831u + 1.17686
0.131779u
11
0.397656u
10
+ ··· 2.68775u + 0.645627
(ii) Obstruction class = 1
(iii) Cusp Shapes =
21796
7763
u
11
13936
1109
u
10
+
237890
7763
u
9
434843
7763
u
8
+
110031
1109
u
7
1172937
7763
u
6
+
1426749
7763
u
5
1359518
7763
u
4
+
1096584
7763
u
3
724103
7763
u
2
+
299834
7763
u
28345
1109
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
12
u
11
+ ··· 11u + 1
c
2
, c
6
, c
8
c
12
u
12
+ 5u
11
+ ··· + 17u + 7
c
3
, c
5
, c
9
c
11
(u
6
u
5
+ 3u
4
u
3
+ 3u
2
+ u + 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
12
19y
11
+ ··· 37y + 1
c
2
, c
6
, c
8
c
12
y
12
+ y
11
+ ··· + 257y + 49
c
3
, c
5
, c
9
c
11
(y
6
+ 5y
5
+ 13y
4
+ 21y
3
+ 17y
2
+ 5y + 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.239056 + 0.890852I
a = 0.79735 + 1.21505I
b = 1.22951 + 0.79439I
1.04656 + 1.35140I 15.4885 6.6994I
u = 0.239056 0.890852I
a = 0.79735 1.21505I
b = 1.22951 0.79439I
1.04656 1.35140I 15.4885 + 6.6994I
u = 1.176420 + 0.148869I
a = 0.164789 + 0.045651I
b = 0.340472 0.389317I
1.04656 1.35140I 15.4885 + 6.6994I
u = 1.176420 0.148869I
a = 0.164789 0.045651I
b = 0.340472 + 0.389317I
1.04656 + 1.35140I 15.4885 6.6994I
u = 0.007700 + 0.692554I
a = 0.709646 0.783990I
b = 1.113440 0.846070I
4.88968 2.84039I 6.95695 + 2.68362I
u = 0.007700 0.692554I
a = 0.709646 + 0.783990I
b = 1.113440 + 0.846070I
4.88968 + 2.84039I 6.95695 2.68362I
u = 0.874959 + 1.026640I
a = 0.92937 + 1.12242I
b = 1.97804 + 1.00830I
9.60039 6.66133I 12.05452 + 4.58491I
u = 0.874959 1.026640I
a = 0.92937 1.12242I
b = 1.97804 1.00830I
9.60039 + 6.66133I 12.05452 4.58491I
u = 0.69640 + 1.36818I
a = 0.727697 0.439865I
b = 1.46946 0.08347I
4.88968 + 2.84039I 6.95695 2.68362I
u = 0.69640 1.36818I
a = 0.727697 + 0.439865I
b = 1.46946 + 0.08347I
4.88968 2.84039I 6.95695 + 2.68362I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.39178 + 0.95258I
a = 0.761714 0.875845I
b = 0.764071 0.032173I
9.60039 + 6.66133I 12.05452 4.58491I
u = 1.39178 0.95258I
a = 0.761714 + 0.875845I
b = 0.764071 + 0.032173I
9.60039 6.66133I 12.05452 + 4.58491I
16
IV. I
u
4
= h−u
7
2u
4
u
3
+ u
2
+ b + 1, u
9
+ 2u
6
+ u
5
2u
4
+ a u, u
10
+
u
9
+ u
7
+ 2u
6
u
5
3u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
u
9
2u
6
u
5
+ 2u
4
+ u
u
7
+ 2u
4
+ u
3
u
2
1
a
5
=
u
9
u
7
u
6
u
5
+ u
3
+ 2u
2
2u
9
3u
6
u
5
+ 3u
4
+ 2u
3
+ 2u
2
1
a
4
=
u
9
u
7
u
6
u
5
+ u
3
+ 2u
2
u
2
a
1
=
u
8
+ u
6
+ u
5
+ u
4
u
2
u
2u
9
+ u
8
u
7
+ 3u
6
+ 2u
5
4u
4
4u
3
2u
2
+ 2
a
11
=
2u
9
u
8
+ u
6
4u
4
3u
3
u
2
+ 3u + 2
u
3
+ u
a
9
=
u
9
+ u
8
+ u
6
+ 2u
5
3u
3
2u
2
+ u + 1
2u
9
+ u
8
+ u
7
+ 3u
6
+ 3u
5
2u
3
3u
2
a
8
=
2u
9
+ u
8
+ 2u
6
+ 3u
5
2u
4
4u
3
3u
2
+ u + 2
u
9
+ u
8
u
7
+ u
6
+ 2u
5
2u
4
3u
3
u
2
+ u + 2
a
12
=
u
9
u
5
+ 2u
4
+ 3u
3
+ u
2
2u 1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
9
9u
8
2u
7
20u
6
24u
5
+ 8u
4
+ 21u
3
+ 16u
2
+ 2u 18
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
10
2u
9
2u
8
+ 12u
6
+ 9u
5
43u
4
+ 11u
3
+ 37u
2
29u + 7
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
10
u
9
u
7
+ 2u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
4
, c
10
(u
5
+ 2u
4
2u
3
2u
2
+ u + 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
10
8y
9
+ ··· 323y + 49
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
10
y
9
+ 2y
8
5y
7
+ 10y
6
9y
5
+ 3y
4
+ 2y
3
2y
2
y + 1
c
4
, c
10
(y
5
8y
4
+ 14y
3
12y
2
+ 5y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.833438 + 0.554152I
a = 0.812076 0.979588I
b = 2.03262 0.35101I
1.24137 + 6.64784I 13.9589 7.4975I
u = 0.833438 0.554152I
a = 0.812076 + 0.979588I
b = 2.03262 + 0.35101I
1.24137 6.64784I 13.9589 + 7.4975I
u = 1.016860 + 0.408978I
a = 1.31220 0.69239I
b = 0.590675
11.5552 19.8669 + 0.I
u = 1.016860 0.408978I
a = 1.31220 + 0.69239I
b = 0.590675
11.5552 19.8669 + 0.I
u = 0.868230 + 0.062281I
a = 0.481330 0.323224I
b = 0.327959 + 0.538837I
1.22103 + 1.14013I 11.60766 5.93486I
u = 0.868230 0.062281I
a = 0.481330 + 0.323224I
b = 0.327959 0.538837I
1.22103 1.14013I 11.60766 + 5.93486I
u = 0.186852 + 0.738915I
a = 0.52801 + 1.66326I
b = 0.327959 + 0.538837I
1.22103 + 1.14013I 11.60766 5.93486I
u = 0.186852 0.738915I
a = 0.52801 1.66326I
b = 0.327959 0.538837I
1.22103 1.14013I 11.60766 + 5.93486I
u = 0.668920 + 1.200250I
a = 1.385060 + 0.017518I
b = 2.03262 + 0.35101I
1.24137 6.64784I 13.9589 + 7.4975I
u = 0.668920 1.200250I
a = 1.385060 0.017518I
b = 2.03262 0.35101I
1.24137 + 6.64784I 13.9589 7.4975I
20
V. I
u
5
= h−u
9
u
7
u
6
u
5
+ u
3
+ 2u
2
+ b 1, u
9
u
7
u
6
u
5
+ u
3
+
2u
2
+ a, u
10
+ u
9
+ u
7
+ 2u
6
u
5
3u
4
2u
3
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
u
9
+ u
7
+ u
6
+ u
5
u
3
2u
2
u
9
+ u
7
+ u
6
+ u
5
u
3
2u
2
+ 1
a
5
=
u
9
u
8
+ u
6
u
5
2u
4
+ 2u + 1
u
9
u
8
+ u
6
u
5
2u
4
+ u + 1
a
4
=
u
9
u
8
+ u
6
u
5
2u
4
+ 2u + 1
u
9
u
8
+ u
7
2u
6
2u
5
+ 2u
4
+ 2u
3
1
a
1
=
u
8
+ u
6
+ u
5
+ u
4
u
2
u
u
9
u
6
u
5
+ 2u
4
+ u
3
1
a
11
=
u
9
+ u
8
+ 2u
6
+ 2u
5
2u
3
2u
2
u
9
+ u
7
u
6
u
5
+ 4u
4
+ 2u
3
u
2
u 1
a
9
=
u
9
+ u
7
+ u
6
+ u
5
u
3
u
2
u
9
+ u
7
+ u
6
+ u
5
u
3
u
2
+ 1
a
8
=
2u
9
+ u
7
+ 2u
6
+ 2u
5
2u
4
2u
3
2u
2
+ 1
3u
9
u
8
+ u
7
+ 3u
6
+ u
5
4u
4
2u
3
2u
2
+ 2u + 2
a
12
=
u
9
+ u
8
+ 2u
6
+ 2u
5
u
4
u
3
u
2
u + 1
u
9
u
8
u
7
+ u
6
u
5
4u
4
u
3
+ u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 13u
9
9u
8
2u
7
20u
6
24u
5
+ 8u
4
+ 21u
3
+ 16u
2
+ 2u 18
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
5
+ 2u
4
2u
3
2u
2
+ u + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
10
u
9
u
7
+ 2u
6
+ u
5
3u
4
+ 2u
3
u + 1
c
4
, c
10
u
10
2u
9
2u
8
+ 12u
6
+ 9u
5
43u
4
+ 11u
3
+ 37u
2
29u + 7
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
5
8y
4
+ 14y
3
12y
2
+ 5y 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
10
y
9
+ 2y
8
5y
7
+ 10y
6
9y
5
+ 3y
4
+ 2y
3
2y
2
y + 1
c
4
, c
10
y
10
8y
9
+ ··· 323y + 49
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.833438 + 0.554152I
a = 0.885525 0.234725I
b = 0.114475 0.234725I
1.24137 + 6.64784I 13.9589 7.4975I
u = 0.833438 0.554152I
a = 0.885525 + 0.234725I
b = 0.114475 + 0.234725I
1.24137 6.64784I 13.9589 + 7.4975I
u = 1.016860 + 0.408978I
a = 2.06801 + 0.83175I
b = 3.06801 + 0.83175I
11.5552 19.8669 + 0.I
u = 1.016860 0.408978I
a = 2.06801 0.83175I
b = 3.06801 0.83175I
11.5552 19.8669 + 0.I
u = 0.868230 + 0.062281I
a = 0.719333 + 0.353776I
b = 0.280667 + 0.353776I
1.22103 + 1.14013I 11.60766 5.93486I
u = 0.868230 0.062281I
a = 0.719333 0.353776I
b = 0.280667 0.353776I
1.22103 1.14013I 11.60766 + 5.93486I
u = 0.186852 + 0.738915I
a = 0.541694 + 0.738059I
b = 1.54169 + 0.73806I
1.22103 + 1.14013I 11.60766 5.93486I
u = 0.186852 0.738915I
a = 0.541694 0.738059I
b = 1.54169 0.73806I
1.22103 1.14013I 11.60766 + 5.93486I
u = 0.668920 + 1.200250I
a = 0.495151 0.447313I
b = 1.49515 0.44731I
1.24137 6.64784I 13.9589 + 7.4975I
u = 0.668920 1.200250I
a = 0.495151 + 0.447313I
b = 1.49515 + 0.44731I
1.24137 + 6.64784I 13.9589 7.4975I
24
VI. I
u
6
= hu
2
+ b, u
2
+ a + 1, u
3
u
2
+ 2u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
u
2
1
u
2
a
5
=
u
2
+ 1
u
2
u + 1
a
4
=
u
2
+ 1
u
2
a
1
=
0
u
a
11
=
u
2
1
u
2
+ u 1
a
9
=
1
0
a
8
=
1
u
2
a
12
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
+ 8u 20
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
3
+ u
2
1
c
2
, c
5
, c
8
c
11
u
3
u
2
+ 2u 1
c
3
, c
6
, c
9
c
12
u
3
+ u
2
+ 2u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
3
y
2
+ 2y 1
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
3
+ 3y
2
+ 2y 1
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.215080 + 1.307140I
a = 0.662359 0.562280I
b = 1.66236 0.56228I
6.04826 5.65624I 4.98049 + 5.95889I
u = 0.215080 1.307140I
a = 0.662359 + 0.562280I
b = 1.66236 + 0.56228I
6.04826 + 5.65624I 4.98049 5.95889I
u = 0.569840
a = 1.32472
b = 0.324718
2.22691 18.0390
28
VII.
I
u
7
= h−u
7
+5u
6
+· · ·+b+3, 3u
7
+12u
6
+· · ·+2a+2, u
8
4u
7
+· · ·4u+2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
3
2
u
7
6u
6
+ ··· +
9
2
u 1
u
7
5u
6
+ 12u
5
19u
4
+ 20u
3
14u
2
+ 8u 3
a
5
=
1
2
u
7
+ 2u
6
+ ···
7
2
u + 1
u
2
u + 1
a
4
=
1
2
u
7
+ 2u
6
+ ···
7
2
u + 1
u
3
+ 2u
2
2u + 1
a
1
=
1
2
u
7
2u
6
+ ··· +
3
2
u + 1
u
5
3u
4
+ 5u
3
6u
2
+ 3u 1
a
11
=
u
7
2u
6
+ u
5
+ 3u
4
9u
3
+ 9u
2
5u + 3
u
7
3u
6
+ 5u
5
5u
4
+ u
3
+ 2u
2
2u + 2
a
9
=
3
2
u
7
6u
6
+ ··· +
3
2
u + 1
u
7
5u
6
+ 11u
5
16u
4
+ 15u
3
9u
2
+ 5u 1
a
8
=
1
2
u
7
3u
6
+ ··· +
15
2
u 4
u
6
+ 3u
5
5u
4
+ 6u
3
4u
2
+ 4u 3
a
12
=
3
2
u
7
5u
6
+ ···
1
2
u + 2
u
7
4u
6
+ 9u
5
13u
4
+ 12u
3
8u
2
+ 4u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 17u
6
40u
5
+ 60u
4
64u
3
+ 52u
2
32u + 8
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
8
2u
7
+ 3u
5
3u
4
+ 3u
2
u + 1
c
2
, c
8
u
8
4u
7
+ 9u
6
14u
5
+ 15u
4
13u
3
+ 9u
2
4u + 2
c
3
, c
9
(u
4
u
3
+ u
2
+ 1)
2
c
5
, c
11
(u
4
+ u
3
+ u
2
+ 1)
2
c
6
, c
12
u
8
+ 4u
7
+ 9u
6
+ 14u
5
+ 15u
4
+ 13u
3
+ 9u
2
+ 4u + 2
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
8
4y
7
+ 6y
6
3y
5
+ 7y
4
12y
3
+ 3y
2
+ 5y + 1
c
2
, c
6
, c
8
c
12
y
8
+ 2y
7
y
6
12y
5
5y
4
+ 25y
3
+ 37y
2
+ 20y + 4
c
3
, c
5
, c
9
c
11
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.192965 + 0.870342I
a = 0.81301 + 1.44822I
b = 1.51646 + 0.88804I
0.732875 0.991478I 4.06428 5.52190I
u = 0.192965 0.870342I
a = 0.81301 1.44822I
b = 1.51646 0.88804I
0.732875 + 0.991478I 4.06428 + 5.52190I
u = 0.138557 + 0.767522I
a = 0.066843 1.409780I
b = 1.41071 0.54257I
3.20028 + 5.62938I 9.43572 5.34414I
u = 0.138557 0.767522I
a = 0.066843 + 1.409780I
b = 1.41071 + 0.54257I
3.20028 5.62938I 9.43572 + 5.34414I
u = 1.354460 + 0.250532I
a = 0.008624 + 0.392991I
b = 0.164655 0.167700I
0.732875 0.991478I 4.06428 5.52190I
u = 1.354460 0.250532I
a = 0.008624 0.392991I
b = 0.164655 + 0.167700I
0.732875 + 0.991478I 4.06428 + 5.52190I
u = 0.59113 + 1.35317I
a = 0.762459 + 0.087166I
b = 1.55891 + 0.36873I
3.20028 5.62938I 9.43572 + 5.34414I
u = 0.59113 1.35317I
a = 0.762459 0.087166I
b = 1.55891 0.36873I
3.20028 + 5.62938I 9.43572 5.34414I
32
VIII.
I
u
8
= hau+u
2
+ba+u+1, u
3
a2u
2
au
3
+a
2
auu
2
u, u
4
+u
3
+u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
a
au u
2
+ a u 1
a
5
=
a
u
3
+ au + 1
a
4
=
a
u
2
a u
3
+ au + 1
a
1
=
0
u
3
a u
2
a + u
3
au + u
2
a 1
a
11
=
a
u
2
a + 2u
3
2au + u
2
2
a
9
=
u
3
a + a + 1
u
3
a au u
2
+ a u
a
8
=
u
3
a + a + 1
u
3
a + 1
a
12
=
u
3
a + u
2
a + au + a + u
u
2
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
3
+ 5u
2
+ 4u 4
33
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
8
2u
7
+ 3u
5
3u
4
+ 3u
2
u + 1
c
2
, c
8
(u
4
+ u
3
+ u
2
+ 1)
2
c
3
, c
9
u
8
+ 4u
7
+ 9u
6
+ 14u
5
+ 15u
4
+ 13u
3
+ 9u
2
+ 4u + 2
c
5
, c
11
u
8
4u
7
+ 9u
6
14u
5
+ 15u
4
13u
3
+ 9u
2
4u + 2
c
6
, c
12
(u
4
u
3
+ u
2
+ 1)
2
34
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
8
4y
7
+ 6y
6
3y
5
+ 7y
4
12y
3
+ 3y
2
+ 5y + 1
c
2
, c
6
, c
8
c
12
(y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
c
3
, c
5
, c
9
c
11
y
8
+ 2y
7
y
6
12y
5
5y
4
+ 25y
3
+ 37y
2
+ 20y + 4
35
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.351808 + 0.720342I
a = 0.646554 0.195306I
b = 1.51646 0.88804I
0.732875 + 0.991478I 4.06428 + 5.52190I
u = 0.351808 + 0.720342I
a = 0.29599 + 1.82302I
b = 0.164655 + 0.167700I
0.732875 + 0.991478I 4.06428 + 5.52190I
u = 0.351808 0.720342I
a = 0.646554 + 0.195306I
b = 1.51646 + 0.88804I
0.732875 0.991478I 4.06428 5.52190I
u = 0.351808 0.720342I
a = 0.29599 1.82302I
b = 0.164655 0.167700I
0.732875 0.991478I 4.06428 5.52190I
u = 0.851808 + 0.911292I
a = 0.885365 0.203552I
b = 1.41071 0.54257I
3.20028 + 5.62938I 9.43572 5.34414I
u = 0.851808 + 0.911292I
a = 0.442818 0.763288I
b = 1.55891 0.36873I
3.20028 + 5.62938I 9.43572 5.34414I
u = 0.851808 0.911292I
a = 0.885365 + 0.203552I
b = 1.41071 + 0.54257I
3.20028 5.62938I 9.43572 + 5.34414I
u = 0.851808 0.911292I
a = 0.442818 + 0.763288I
b = 1.55891 + 0.36873I
3.20028 5.62938I 9.43572 + 5.34414I
36
IX. I
u
9
= hb + 1, u
4
u
2
+ 2a, u
6
u
5
+ u
4
+ u
3
+ 2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
1
2
u
4
+
1
2
u
2
1
a
5
=
1
2
u
4
1
2
u
2
1
2
u
5
1
2
u
3
a
4
=
1
2
u
4
1
2
u
2
u
3
1
a
1
=
1
2
u
5
+
1
2
u
4
+ ··· + u + 1
u
4
+ u + 1
a
11
=
1
2
u
5
1
2
u
3
u
2
u
1
2
u
5
1
2
u
3
u
2
u 1
a
9
=
1
2
u
5
+
1
2
u
4
+ ···
1
2
u
2
+ 1
1
2
u
5
+
1
2
u
3
u
2
a
8
=
1
2
u
5
+
1
2
u
4
+
1
2
u
3
+
1
2
u
2
+ u
1
2
u
5
+
1
2
u
3
+ u
a
12
=
1
2
u
5
1
2
u
4
+
1
2
u
3
+
1
2
u
2
1
2
u
5
+
1
2
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
5
u
3
+ 2u
2
12
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
3
+ u
2
u + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
u
6
+ u
5
+ u
4
u
3
+ 2
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
3
3y
2
y 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
6
+ y
5
+ 3y
4
+ 3y
3
+ 4y
2
+ 4
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.822087 + 0.503636I
a = 0.042641 0.763625I
b = 1.00000
2.61340 + 3.17729I 10.45631 2.23029I
u = 0.822087 0.503636I
a = 0.042641 + 0.763625I
b = 1.00000
2.61340 3.17729I 10.45631 + 2.23029I
u = 0.402444 + 1.109930I
a = 0.361615 0.509199I
b = 1.00000
2.61340 3.17729I 10.45631 + 2.23029I
u = 0.402444 1.109930I
a = 0.361615 + 0.509199I
b = 1.00000
2.61340 + 3.17729I 10.45631 2.23029I
u = 0.919643 + 0.835431I
a = 1.09574 + 0.99541I
b = 1.00000
10.1616 13.08738 + 0.I
u = 0.919643 0.835431I
a = 1.09574 0.99541I
b = 1.00000
10.1616 13.08738 + 0.I
40
X. I
u
10
= hb a 1, a
2
a 4, u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
2
=
1
1
a
6
=
1
1
a
10
=
a
a + 1
a
5
=
a 1
a
a
4
=
a 1
1
a
1
=
3
a 1
a
11
=
2a + 3
2
a
9
=
a + 1
a + 2
a
8
=
a + 4
2a + 3
a
12
=
a 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 26
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
2
+ u 4
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(u 1)
2
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
2
9y + 16
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(y 1)
2
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.56155
b = 0.561553
11.5145 26.0000
u = 1.00000
a = 2.56155
b = 3.56155
11.5145 26.0000
44
XI. I
u
11
= h−u
2
+ b u, u
3
3u
2
+ a 3u 2, u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
u
3
+ 3u
2
+ 3u + 2
u
2
+ u
a
5
=
2u
3
+ 4u
2
+ 5u + 3
u
3
+ 2u
2
+ 2u
a
4
=
2u
3
+ 4u
2
+ 5u + 3
u
2
a
1
=
u
3
4u
2
5u 4
u
a
11
=
2u
3
7u
2
9u 9
u
3
u
a
9
=
u
3
+ 2u
2
+ 2u + 2
0
a
8
=
2u
3
5u
2
6u 3
u
2
u
a
12
=
2u
3
6u
2
8u 7
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
+ 5u 1
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
4
+ 3u
3
+ u
2
5u 5
c
2
, c
5
, c
8
c
11
u
4
+ 2u
3
+ 2u
2
+ u 1
c
3
, c
6
, c
9
c
12
u
4
2u
3
+ 2u
2
u 1
c
4
, c
10
(u
2
3u + 1)
2
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
4
7y
3
+ 21y
2
35y + 25
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
4
2y
2
5y + 1
c
4
, c
10
(y
2
7y + 1)
2
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 0.500000 + 1.169630I
a = 0.927051 0.722871I
b = 1.61803
4.60582 9.09017 + 0.I
u = 0.500000 1.169630I
a = 0.927051 + 0.722871I
b = 1.61803
4.60582 9.09017 + 0.I
u = 1.43168
a = 0.919556
b = 0.618034
11.1856 2.09020
u = 0.431683
a = 3.93455
b = 0.618034
11.1856 2.09020
48
XII.
I
u
12
= h2u
3
+ 4u
2
+ b + 5u + 2, 2u
3
+ 4u
2
+ a + 5u + 3, u
4
+ 2u
3
+ 2u
2
+ u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
10
=
2u
3
4u
2
5u 3
2u
3
4u
2
5u 2
a
5
=
u
2
+ 2u + 2
u
2
+ u + 2
a
4
=
u
2
+ 2u + 2
u
2
+ 2u + 1
a
1
=
u
3
4u
2
5u 4
u
3
4u
2
4u 3
a
11
=
u
3
+ 3u
2
+ 5u + 3
u
3
+ 3u
2
+ 4u + 2
a
9
=
2u
3
3u
2
5u 3
2u
3
3u
2
5u 2
a
8
=
5u
3
10u
2
13u 8
5u
3
9u
2
11u 6
a
12
=
u + 1
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
2
+ 5u 1
49
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
2
3u + 1)
2
c
2
, c
5
, c
8
c
11
u
4
+ 2u
3
+ 2u
2
+ u 1
c
3
, c
6
, c
9
c
12
u
4
2u
3
+ 2u
2
u 1
c
4
, c
10
u
4
+ 3u
3
+ u
2
5u 5
50
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
2
7y + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
y
4
2y
2
5y + 1
c
4
, c
10
y
4
7y
3
+ 21y
2
35y + 25
51
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.500000 + 1.169630I
a = 0.118034 + 0.276112I
b = 1.118030 + 0.276112I
4.60582 9.09017 + 0.I
u = 0.500000 1.169630I
a = 0.118034 0.276112I
b = 1.118030 0.276112I
4.60582 9.09017 + 0.I
u = 1.43168
a = 1.82864
b = 2.82864
11.1856 2.09020
u = 0.431683
a = 6.06471
b = 5.06471
11.1856 2.09020
52
XIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
2
3u + 1)
2
(u
2
+ u 4)(u
3
+ u
2
1)(u
3
+ u
2
u + 1)
2
· (u
4
+ 3u
3
+ u
2
5u 5)(u
5
+ 2u
4
2u
3
2u
2
+ u + 1)
2
· (u
6
2u
5
3u
4
+ 6u
3
+ 4u + 1)(u
8
2u
7
+ 3u
5
3u
4
+ 3u
2
u + 1)
2
· (u
10
2u
9
2u
8
+ 12u
6
+ 9u
5
43u
4
+ 11u
3
+ 37u
2
29u + 7)
· (u
12
u
11
+ ··· 11u + 1)
2
c
2
, c
5
, c
8
c
11
((u 1)
2
)(u
3
u
2
+ 2u 1)(u
4
+ u
3
+ u
2
+ 1)
2
(u
4
+ 2u
3
+ ··· + u 1)
2
· (u
6
u
5
+ 3u
4
u
3
+ 3u
2
+ u + 1)
2
(u
6
+ u
5
+ u
4
u
3
+ 2)
· (u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 4u
2
+ 4u + 1)
· (u
8
4u
7
+ 9u
6
14u
5
+ 15u
4
13u
3
+ 9u
2
4u + 2)
· (u
10
u
9
u
7
+ 2u
6
+ u
5
3u
4
+ 2u
3
u + 1)
2
· (u
12
+ 5u
11
+ ··· + 17u + 7)
c
3
, c
6
, c
9
c
12
((u 1)
2
)(u
3
+ u
2
+ 2u + 1)(u
4
2u
3
+ ··· u 1)
2
(u
4
u
3
+ u
2
+ 1)
2
· (u
6
u
5
+ 3u
4
u
3
+ 3u
2
+ u + 1)
2
(u
6
+ u
5
+ u
4
u
3
+ 2)
· (u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ 4u
2
+ 4u + 1)
· (u
8
+ 4u
7
+ 9u
6
+ 14u
5
+ 15u
4
+ 13u
3
+ 9u
2
+ 4u + 2)
· (u
10
u
9
u
7
+ 2u
6
+ u
5
3u
4
+ 2u
3
u + 1)
2
· (u
12
+ 5u
11
+ ··· + 17u + 7)
53
XIV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y
2
9y + 16)(y
2
7y + 1)
2
(y
3
3y
2
y 1)
2
(y
3
y
2
+ 2y 1)
· (y
4
7y
3
+ 21y
2
35y + 25)(y
5
8y
4
+ 14y
3
12y
2
+ 5y 1)
2
· (y
6
10y
5
+ 33y
4
18y
3
54y
2
16y + 1)
· (y
8
4y
7
+ 6y
6
3y
5
+ 7y
4
12y
3
+ 3y
2
+ 5y + 1)
2
· (y
10
8y
9
+ ··· 323y + 49)(y
12
19y
11
+ ··· 37y + 1)
2
c
2
, c
3
, c
5
c
6
, c
8
, c
9
c
11
, c
12
(y 1)
2
(y
3
+ 3y
2
+ 2y 1)(y
4
2y
2
5y + 1)
2
· (y
4
+ y
3
+ 3y
2
+ 2y + 1)
2
(y
6
+ y
5
+ 3y
4
+ 3y
3
+ 4y
2
+ 4)
· (y
6
+ 2y
5
+ 9y
4
+ 6y
3
+ 6y
2
8y + 1)
· (y
6
+ 5y
5
+ 13y
4
+ 21y
3
+ 17y
2
+ 5y + 1)
2
· (y
8
+ 2y
7
y
6
12y
5
5y
4
+ 25y
3
+ 37y
2
+ 20y + 4)
· (y
10
y
9
+ 2y
8
5y
7
+ 10y
6
9y
5
+ 3y
4
+ 2y
3
2y
2
y + 1)
2
· (y
12
+ y
11
+ ··· + 257y + 49)
54