12n
0807
(K12n
0807
)
A knot diagram
1
Linearized knot diagam
4 7 12 7 10 3 10 12 6 1 4 8
Solving Sequence
6,10
5
9,12
8 1 7 4 2 3 11
c
5
c
9
c
8
c
12
c
7
c
4
c
1
c
3
c
11
c
2
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h12477565171u
19
2707721730u
18
+ ··· + 64702086776b + 27595919604,
78169757719u
19
30849689152u
18
+ ··· + 129404173552a + 57487393140,
u
20
u
19
+ ··· 24u + 4i
I
u
2
= h−2.57900 × 10
40
u
27
+ 3.53622 × 10
40
u
26
+ ··· + 9.02119 × 10
41
b 2.68374 × 10
42
,
1.76496 × 10
42
u
27
+ 2.49630 × 10
42
u
26
+ ··· + 8.57013 × 10
43
a 4.54812 × 10
44
,
u
28
u
27
+ ··· + 95u + 25i
I
u
3
= h−u
5
2u
4
3u
3
+ 2b + u + 1, u
3
+ u
2
+ a + 2u 1, u
6
+ u
5
+ 3u
4
u
3
+ u
2
2u + 1i
I
u
4
= h6613602u
13
+ 3587729u
12
+ ··· + 4472398b + 51425184,
7928755u
13
+ 5002338u
12
+ ··· + 8944796a + 66385836,
u
14
+ u
12
+ 3u
11
7u
10
u
9
+ 5u
8
6u
7
+ u
6
+ u
5
+ u
4
+ 12u
3
22u
2
+ 16u 4i
* 4 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.25 × 10
10
u
19
2.71 × 10
9
u
18
+ · · · + 6.47 × 10
10
b + 2.76 × 10
10
, 7.82 ×
10
10
u
19
3.08×10
10
u
18
+· · ·+1.29×10
11
a+5.75×10
10
, u
20
u
19
+· · ·24u+4i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
0.604074u
19
+ 0.238398u
18
+ ··· 4.76779u 0.444247
0.192846u
19
+ 0.0418491u
18
+ ··· + 1.83993u 0.426507
a
8
=
0.516386u
19
0.359863u
18
+ ··· + 5.34580u + 0.660241
0.0583155u
19
0.180402u
18
+ ··· + 4.96135u 0.712465
a
1
=
0.516386u
19
+ 0.359863u
18
+ ··· 5.34580u 0.660241
0.125103u
19
+ 0.150575u
18
+ ··· 3.16402u + 0.759990
a
7
=
0.516386u
19
0.359863u
18
+ ··· + 5.34580u + 0.660241
0.179296u
19
0.251320u
18
+ ··· + 3.27034u 0.0863736
a
4
=
0.298481u
19
+ 0.162206u
18
+ ··· 4.44207u + 1.60482
0.190429u
19
+ 0.224600u
18
+ ··· 4.91842u + 0.679023
a
2
=
0.0233919u
19
+ 0.141504u
18
+ ··· 0.574180u 1.17094
0.0994137u
19
0.225778u
18
+ ··· + 6.99444u 0.952482
a
3
=
0.0671954u
19
0.268402u
18
+ ··· + 10.5000u 0.811473
0.0394315u
19
+ 0.0310711u
18
+ ··· + 0.136398u 0.0923623
a
11
=
0.740350u
19
+ 0.510891u
18
+ ··· 10.3265u + 0.749678
0.158675u
19
+ 0.234881u
18
+ ··· 2.05133u + 0.335208
(ii) Obstruction class = 1
(iii) Cusp Shapes =
28600507011
16175521694
u
19
9150517238
8087760847
u
18
+ ··· +
468797321056
8087760847
u
126502436106
8087760847
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
20
2u
19
+ ··· 14u + 1
c
2
, c
6
u
20
+ 5u
19
+ ··· + 28u + 10
c
3
, c
5
, c
9
c
11
u
20
+ u
19
+ ··· + 24u + 4
c
7
, c
10
u
20
u
19
+ ··· + 9u + 1
c
8
, c
12
u
20
8u
19
+ ··· + 26u 14
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
20
30y
19
+ ··· + 10y + 1
c
2
, c
6
y
20
+ 7y
19
+ ··· 744y + 100
c
3
, c
5
, c
9
c
11
y
20
+ 19y
19
+ ··· + 80y + 16
c
7
, c
10
y
20
17y
19
+ ··· 121y + 1
c
8
, c
12
y
20
4y
19
+ ··· 1516y + 196
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.12905
a = 0.359607
b = 1.01716
8.01665 11.3930
u = 0.606091 + 1.044440I
a = 0.154877 + 0.090999I
b = 0.246614 + 0.948938I
4.82527 0.08424I 5.01924 0.20177I
u = 0.606091 1.044440I
a = 0.154877 0.090999I
b = 0.246614 0.948938I
4.82527 + 0.08424I 5.01924 + 0.20177I
u = 0.330639 + 0.692945I
a = 1.36926 + 1.04069I
b = 0.252443 + 1.228440I
6.44427 + 0.93056I 10.49794 0.14511I
u = 0.330639 0.692945I
a = 1.36926 1.04069I
b = 0.252443 1.228440I
6.44427 0.93056I 10.49794 + 0.14511I
u = 0.040542 + 0.738588I
a = 2.28316 0.41519I
b = 0.861536 + 0.029448I
1.19115 + 4.34933I 8.67394 + 0.08725I
u = 0.040542 0.738588I
a = 2.28316 + 0.41519I
b = 0.861536 0.029448I
1.19115 4.34933I 8.67394 0.08725I
u = 0.461546 + 1.231960I
a = 0.561795 + 0.808913I
b = 0.85919 + 1.83207I
4.99906 + 5.81831I 7.50691 4.95248I
u = 0.461546 1.231960I
a = 0.561795 0.808913I
b = 0.85919 1.83207I
4.99906 5.81831I 7.50691 + 4.95248I
u = 0.332357 + 1.332800I
a = 0.037401 1.225500I
b = 0.25149 1.62627I
4.23168 3.75806I 8.78905 + 3.32796I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.332357 1.332800I
a = 0.037401 + 1.225500I
b = 0.25149 + 1.62627I
4.23168 + 3.75806I 8.78905 3.32796I
u = 0.267001 + 0.387206I
a = 1.12051 1.01732I
b = 0.112063 + 0.500261I
0.434096 1.337960I 3.82072 + 5.86960I
u = 0.267001 0.387206I
a = 1.12051 + 1.01732I
b = 0.112063 0.500261I
0.434096 + 1.337960I 3.82072 5.86960I
u = 0.379438
a = 0.343267
b = 0.662281
0.997451 8.03610
u = 0.53782 + 1.58865I
a = 0.217202 0.766665I
b = 0.04599 1.77133I
8.99311 + 1.97630I 1.32435 3.05879I
u = 0.53782 1.58865I
a = 0.217202 + 0.766665I
b = 0.04599 + 1.77133I
8.99311 1.97630I 1.32435 + 3.05879I
u = 0.65030 + 1.59655I
a = 1.028920 + 0.531678I
b = 0.066168 + 0.771188I
2.70292 + 4.75701I 8.90322 3.07361I
u = 0.65030 1.59655I
a = 1.028920 0.531678I
b = 0.066168 0.771188I
2.70292 4.75701I 8.90322 + 3.07361I
u = 1.03097 + 1.49136I
a = 0.385322 + 1.112120I
b = 0.52429 + 2.07473I
1.7987 14.4623I 8.25030 + 6.83242I
u = 1.03097 1.49136I
a = 0.385322 1.112120I
b = 0.52429 2.07473I
1.7987 + 14.4623I 8.25030 6.83242I
6
II. I
u
2
= h−2.58 × 10
40
u
27
+ 3.54 × 10
40
u
26
+ · · · + 9.02 × 10
41
b 2.68 ×
10
42
, 1.76 × 10
42
u
27
+ 2.50 × 10
42
u
26
+ · · · + 8.57 × 10
43
a 4.55 ×
10
44
, u
28
u
27
+ · · · + 95u + 25i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
0.0205943u
27
0.0291279u
26
+ ··· 2.74979u + 5.30694
0.0285882u
27
0.0391990u
26
+ ··· 3.07837u + 2.97493
a
8
=
0.0295456u
27
0.0540163u
26
+ ··· 6.36659u + 1.04698
0.0322136u
27
0.0409569u
26
+ ··· + 0.376791u + 1.67777
a
1
=
0.0771412u
27
0.0790894u
26
+ ··· + 3.05691u + 7.47630
0.0384494u
27
0.0482680u
26
+ ··· 0.878749u + 4.68521
a
7
=
0.0295456u
27
0.0540163u
26
+ ··· 6.36659u + 1.04698
0.0347077u
27
0.0471353u
26
+ ··· 1.20929u + 1.06600
a
4
=
0.0575867u
27
+ 0.0693145u
26
+ ··· 2.27382u 8.21914
0.0238237u
27
+ 0.0350049u
26
+ ··· + 2.95822u 4.74941
a
2
=
0.0752950u
27
+ 0.0687026u
26
+ ··· 5.09400u 7.24933
0.0319712u
27
+ 0.0360560u
26
+ ··· 0.410280u 4.02144
a
3
=
0.0886392u
27
0.0807706u
26
+ ··· + 10.1105u + 2.87510
0.0241381u
27
0.0163375u
26
+ ··· + 4.61411u + 2.08392
a
11
=
0.186332u
27
0.250049u
26
+ ··· 2.97174u + 16.2242
0.125465u
27
0.136882u
26
+ ··· + 3.15967u + 12.8085
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.153961u
27
0.244058u
26
+ ··· 14.1573u + 5.74251
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
28
2u
27
+ ··· + 5356u 619
c
2
, c
6
(u
14
u
13
+ ··· + 3u 5)
2
c
3
, c
5
, c
9
c
11
u
28
+ u
27
+ ··· 95u + 25
c
7
, c
10
u
28
+ 2u
27
+ ··· + 170u 53
c
8
, c
12
(u
14
+ 3u
13
+ ··· + u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
28
32y
27
+ ··· 2525320y + 383161
c
2
, c
6
(y
14
+ 9y
13
+ ··· + 271y + 25)
2
c
3
, c
5
, c
9
c
11
y
28
+ y
27
+ ··· 2075y + 625
c
7
, c
10
y
28
30y
27
+ ··· 14166y + 2809
c
8
, c
12
(y
14
3y
13
+ ··· 9y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.382569 + 0.961679I
a = 0.84193 + 1.31313I
b = 0.74021 + 1.62534I
1.05651 + 1.71922I 3.54630 + 3.88789I
u = 0.382569 0.961679I
a = 0.84193 1.31313I
b = 0.74021 1.62534I
1.05651 1.71922I 3.54630 3.88789I
u = 0.659980 + 0.684862I
a = 0.614643 + 0.241881I
b = 0.22392 + 1.79952I
5.74683 + 3.41396I 10.73005 1.32661I
u = 0.659980 0.684862I
a = 0.614643 0.241881I
b = 0.22392 1.79952I
5.74683 3.41396I 10.73005 + 1.32661I
u = 0.228826 + 0.744696I
a = 1.72758 0.31252I
b = 0.160568 0.530138I
7.37370 3.17606I 3.96370 + 3.07132I
u = 0.228826 0.744696I
a = 1.72758 + 0.31252I
b = 0.160568 + 0.530138I
7.37370 + 3.17606I 3.96370 3.07132I
u = 0.548168 + 1.129440I
a = 0.528269 0.526549I
b = 0.62027 1.83839I
4.37474 4.68298I 8.16766 + 3.94230I
u = 0.548168 1.129440I
a = 0.528269 + 0.526549I
b = 0.62027 + 1.83839I
4.37474 + 4.68298I 8.16766 3.94230I
u = 0.443597 + 1.210440I
a = 0.78830 1.27422I
b = 0.95981 2.01969I
3.68681 6.62681I 5.84998 + 6.47809I
u = 0.443597 1.210440I
a = 0.78830 + 1.27422I
b = 0.95981 + 2.01969I
3.68681 + 6.62681I 5.84998 6.47809I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.295300 + 0.052096I
a = 0.615026 0.559035I
b = 0.420326 0.383474I
1.05651 1.71922I 3.54630 3.88789I
u = 1.295300 0.052096I
a = 0.615026 + 0.559035I
b = 0.420326 + 0.383474I
1.05651 + 1.71922I 3.54630 + 3.88789I
u = 0.414876 + 0.547756I
a = 0.384169 + 0.098593I
b = 0.895190 0.576100I
0.830620 3.28687 + 0.I
u = 0.414876 0.547756I
a = 0.384169 0.098593I
b = 0.895190 + 0.576100I
0.830620 3.28687 + 0.I
u = 1.07957 + 0.93026I
a = 0.136747 0.269651I
b = 0.055912 0.934276I
3.68681 + 6.62681I 5.84998 6.47809I
u = 1.07957 0.93026I
a = 0.136747 + 0.269651I
b = 0.055912 + 0.934276I
3.68681 6.62681I 5.84998 + 6.47809I
u = 0.65120 + 1.27508I
a = 1.29935 + 0.59748I
b = 0.539193 + 1.025560I
0.06886 2.85502I 7.04255 + 3.10308I
u = 0.65120 1.27508I
a = 1.29935 0.59748I
b = 0.539193 1.025560I
0.06886 + 2.85502I 7.04255 3.10308I
u = 0.048562 + 0.546580I
a = 2.25353 1.01896I
b = 0.003743 0.725427I
0.06886 + 2.85502I 7.04255 3.10308I
u = 0.048562 0.546580I
a = 2.25353 + 1.01896I
b = 0.003743 + 0.725427I
0.06886 2.85502I 7.04255 + 3.10308I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.55577 + 0.38232I
a = 0.54476 1.59078I
b = 0.38666 2.50142I
7.37370 + 3.17606I 3.96370 3.07132I
u = 1.55577 0.38232I
a = 0.54476 + 1.59078I
b = 0.38666 + 2.50142I
7.37370 3.17606I 3.96370 + 3.07132I
u = 1.67541
a = 0.252517
b = 0.0936482
10.6588 16.8870
u = 0.256228
a = 7.59230
b = 5.32881
10.6588 16.8870
u = 0.25634 + 1.92846I
a = 0.039195 + 0.793027I
b = 0.16064 + 1.64932I
5.74683 3.41396I 10.73005 + 1.32661I
u = 0.25634 1.92846I
a = 0.039195 0.793027I
b = 0.16064 1.64932I
5.74683 + 3.41396I 10.73005 1.32661I
u = 1.81161 + 0.79415I
a = 0.934769 0.342558I
b = 0.105044 0.251982I
4.37474 + 4.68298I 8.00000 3.94230I
u = 1.81161 0.79415I
a = 0.934769 + 0.342558I
b = 0.105044 + 0.251982I
4.37474 4.68298I 8.00000 + 3.94230I
12
III. I
u
3
=
h−u
5
2u
4
3u
3
+2b+u+1, u
3
+u
2
+a+2u1, u
6
+u
5
+3u
4
u
3
+u
2
2u+1i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
u
3
u
2
2u + 1
1
2
u
5
+ u
4
+
3
2
u
3
1
2
u
1
2
a
8
=
1
2
u
5
1
2
u
3
+ ··· +
1
2
u +
1
2
1
2
u
5
u
4
3
2
u
3
+
1
2
u +
1
2
a
1
=
1
2
u
5
+
1
2
u
3
2u
2
1
2
u
1
2
u
5
+ 2u
4
+ 3u
3
1
a
7
=
1
2
u
5
1
2
u
3
+ ··· +
1
2
u +
1
2
u
5
u
4
3u
3
+ u
2
u + 1
a
4
=
0
u
3
+ u 1
a
2
=
1
2
u
5
+
1
2
u
3
2u
2
1
2
u
1
2
3
2
u
5
+ 2u
4
+
9
2
u
3
+
1
2
u
3
2
a
3
=
u
4
u
3
2u
2
+ u
1
2
u
5
+
3
2
u
3
u
2
+
3
2
u
3
2
a
11
=
u
3
u
2
2u + 1
1
2
u
5
+
3
2
u
3
u
2
+
1
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
5
+ 8u
4
+ 13u
3
+ 8u
2
4u 12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
6
+ 2u
4
2u
2
+ 1
c
2
u
6
2u
5
+ 4u
4
5u
3
+ 5u
2
4u + 2
c
3
, c
9
u
6
u
5
+ 3u
4
+ u
3
+ u
2
+ 2u + 1
c
5
, c
11
u
6
+ u
5
+ 3u
4
u
3
+ u
2
2u + 1
c
6
u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2
c
7
, c
10
u
6
u
5
+ 2u
3
u + 1
c
8
u
6
+ 5u
5
+ 10u
4
+ 12u
3
+ 11u
2
+ 6u + 2
c
12
u
6
5u
5
+ 10u
4
12u
3
+ 11u
2
6u + 2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
+ 2y
2
2y + 1)
2
c
2
, c
6
y
6
+ 4y
5
+ 6y
4
+ 3y
3
+ y
2
+ 4y + 4
c
3
, c
5
, c
9
c
11
y
6
+ 5y
5
+ 13y
4
+ 11y
3
+ 3y
2
2y + 1
c
7
, c
10
y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1
c
8
, c
12
y
6
5y
5
+ 2y
4
+ 20y
3
+ 17y
2
+ 8y + 4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.351154 + 0.963944I
a = 1.57262 0.71181I
b = 0.710600 0.298937I
1.38689 + 5.20040I 6.70776 8.14756I
u = 0.351154 0.963944I
a = 1.57262 + 0.71181I
b = 0.710600 + 0.298937I
1.38689 5.20040I 6.70776 + 8.14756I
u = 0.527759 + 0.238876I
a = 0.333639 0.915863I
b = 0.710600 + 0.298937I
1.44750 0.78507I 11.82206 + 4.53910I
u = 0.527759 0.238876I
a = 0.333639 + 0.915863I
b = 0.710600 0.298937I
1.44750 + 0.78507I 11.82206 4.53910I
u = 0.67660 + 1.54058I
a = 0.238984 + 0.544148I
b = 1.68261I
8.28528 + 1.18132I 6.97019 + 1.68887I
u = 0.67660 1.54058I
a = 0.238984 0.544148I
b = 1.68261I
8.28528 1.18132I 6.97019 1.68887I
16
IV.
I
u
4
= h6.61 × 10
6
u
13
+ 3.59 × 10
6
u
12
+ · · · + 4.47 × 10
6
b + 5.14 × 10
7
, 7.93 ×
10
6
u
13
+5.00×10
6
u
12
+· · · +8.94×10
6
a+6.64×10
7
, u
14
+u
12
+· · · +16u 4i
(i) Arc colorings
a
6
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
9
=
u
u
a
12
=
0.886410u
13
0.559246u
12
+ ··· + 12.0076u 7.42173
1.47876u
13
0.802194u
12
+ ··· + 22.2687u 11.4983
a
8
=
0.272987u
13
0.137329u
12
+ ··· 7.73482u + 5.22165
0.394381u
13
+ 0.189086u
12
+ ··· 6.45287u + 4.53865
a
1
=
1.72801u
13
0.995710u
12
+ ··· + 25.1472u 12.1078
1.87585u
13
0.784387u
12
+ ··· + 30.6478u 15.8580
a
7
=
0.272987u
13
0.137329u
12
+ ··· 7.73482u + 5.22165
0.598057u
13
+ 0.326361u
12
+ ··· 9.74208u + 5.08797
a
4
=
1.15765u
13
0.257052u
12
+ ··· + 22.2389u 12.9234
1.79179u
13
0.902150u
12
+ ··· + 26.9957u 14.1414
a
2
=
1.28004u
13
+ 0.941848u
12
+ ··· 14.8390u + 7.56987
1.45644u
13
+ 0.620242u
12
+ ··· 24.4286u + 12.0920
a
3
=
0.121394u
13
+ 0.326415u
12
+ ··· + 2.28195u 0.682994
0.482966u
13
+ 0.178873u
12
+ ··· 8.50155u + 4.01105
a
11
=
3.14891u
13
1.32603u
12
+ ··· + 52.7859u 29.3838
4.17554u
13
2.22940u
12
+ ··· + 65.1527u 34.2072
(ii) Obstruction class = 1
(iii) Cusp Shapes =
13592118
2236199
u
13
7846957
2236199
u
12
+ ··· +
200344516
2236199
u
138314312
2236199
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
14
7u
13
+ ··· 76u 23
c
2
(u
7
+ 2u
6
+ 2u
5
u
3
+ u
2
2u + 1)
2
c
3
, c
9
u
14
+ u
12
+ ··· 16u 4
c
5
, c
11
u
14
+ u
12
+ ··· + 16u 4
c
6
(u
7
2u
6
+ 2u
5
u
3
u
2
2u 1)
2
c
7
, c
10
u
14
5u
13
+ ··· 12u + 1
c
8
(u
7
3u
6
+ 4u
5
3u
4
+ u
3
u
2
+ u + 1)
2
c
12
(u
7
+ 3u
6
+ 4u
5
+ 3u
4
+ u
3
+ u
2
+ u 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
14
19y
13
+ ··· 7064y + 529
c
2
, c
6
(y
7
+ 2y
5
12y
4
11y
3
+ 3y
2
+ 2y 1)
2
c
3
, c
5
, c
9
c
11
y
14
+ 2y
13
+ ··· 80y + 16
c
7
, c
10
y
14
23y
13
+ ··· 36y + 1
c
8
, c
12
(y
7
y
6
5y
4
+ 9y
3
+ 7y
2
+ 3y 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.062180 + 0.124907I
a = 0.715657 + 0.799248I
b = 0.350888 + 0.153830I
1.45870 + 2.15231I 13.6974 5.2163I
u = 1.062180 0.124907I
a = 0.715657 0.799248I
b = 0.350888 0.153830I
1.45870 2.15231I 13.6974 + 5.2163I
u = 0.475882 + 0.967579I
a = 0.175035 0.754228I
b = 0.47409 1.99750I
6.66956 + 3.87774I 3.00763 4.44001I
u = 0.475882 0.967579I
a = 0.175035 + 0.754228I
b = 0.47409 + 1.99750I
6.66956 3.87774I 3.00763 + 4.44001I
u = 0.445391 + 0.989567I
a = 1.16665 + 1.08042I
b = 0.66834 + 1.61478I
1.45870 2.15231I 13.6974 + 5.2163I
u = 0.445391 0.989567I
a = 1.16665 1.08042I
b = 0.66834 1.61478I
1.45870 + 2.15231I 13.6974 5.2163I
u = 0.547747 + 0.489507I
a = 1.41654 1.08048I
b = 0.340538 0.523367I
8.03082 + 3.18578I 16.4787 3.7094I
u = 0.547747 0.489507I
a = 1.41654 + 1.08048I
b = 0.340538 + 0.523367I
8.03082 3.18578I 16.4787 + 3.7094I
u = 1.251080 + 0.458307I
a = 0.76520 1.52382I
b = 0.57996 2.52308I
8.03082 + 3.18578I 16.4787 3.7094I
u = 1.251080 0.458307I
a = 0.76520 + 1.52382I
b = 0.57996 + 2.52308I
8.03082 3.18578I 16.4787 + 3.7094I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.479131
a = 4.15458
b = 5.10698
10.8094 36.6330
u = 1.58531
a = 0.00465607
b = 0.283188
10.8094 36.6330
u = 0.22473 + 1.85996I
a = 0.143013 0.884457I
b = 0.21707 1.61668I
6.66956 3.87774I 3.00763 + 4.44001I
u = 0.22473 1.85996I
a = 0.143013 + 0.884457I
b = 0.21707 + 1.61668I
6.66956 + 3.87774I 3.00763 4.44001I
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
6
+ 2u
4
2u
2
+ 1)(u
14
7u
13
+ ··· 76u 23)
· (u
20
2u
19
+ ··· 14u + 1)(u
28
2u
27
+ ··· + 5356u 619)
c
2
(u
6
2u
5
+ 4u
4
5u
3
+ 5u
2
4u + 2)
· ((u
7
+ 2u
6
+ 2u
5
u
3
+ u
2
2u + 1)
2
)(u
14
u
13
+ ··· + 3u 5)
2
· (u
20
+ 5u
19
+ ··· + 28u + 10)
c
3
, c
9
(u
6
u
5
+ 3u
4
+ u
3
+ u
2
+ 2u + 1)(u
14
+ u
12
+ ··· 16u 4)
· (u
20
+ u
19
+ ··· + 24u + 4)(u
28
+ u
27
+ ··· 95u + 25)
c
5
, c
11
(u
6
+ u
5
+ 3u
4
u
3
+ u
2
2u + 1)(u
14
+ u
12
+ ··· + 16u 4)
· (u
20
+ u
19
+ ··· + 24u + 4)(u
28
+ u
27
+ ··· 95u + 25)
c
6
(u
6
+ 2u
5
+ 4u
4
+ 5u
3
+ 5u
2
+ 4u + 2)
· ((u
7
2u
6
+ 2u
5
u
3
u
2
2u 1)
2
)(u
14
u
13
+ ··· + 3u 5)
2
· (u
20
+ 5u
19
+ ··· + 28u + 10)
c
7
, c
10
(u
6
u
5
+ 2u
3
u + 1)(u
14
5u
13
+ ··· 12u + 1)
· (u
20
u
19
+ ··· + 9u + 1)(u
28
+ 2u
27
+ ··· + 170u 53)
c
8
(u
6
+ 5u
5
+ 10u
4
+ 12u
3
+ 11u
2
+ 6u + 2)
· ((u
7
3u
6
+ ··· + u + 1)
2
)(u
14
+ 3u
13
+ ··· + u + 1)
2
· (u
20
8u
19
+ ··· + 26u 14)
c
12
(u
6
5u
5
+ 10u
4
12u
3
+ 11u
2
6u + 2)
· ((u
7
+ 3u
6
+ ··· + u 1)
2
)(u
14
+ 3u
13
+ ··· + u + 1)
2
· (u
20
8u
19
+ ··· + 26u 14)
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y
3
+ 2y
2
2y + 1)
2
)(y
14
19y
13
+ ··· 7064y + 529)
· (y
20
30y
19
+ ··· + 10y + 1)
· (y
28
32y
27
+ ··· 2525320y + 383161)
c
2
, c
6
(y
6
+ 4y
5
+ 6y
4
+ 3y
3
+ y
2
+ 4y + 4)
· (y
7
+ 2y
5
12y
4
11y
3
+ 3y
2
+ 2y 1)
2
· ((y
14
+ 9y
13
+ ··· + 271y + 25)
2
)(y
20
+ 7y
19
+ ··· 744y + 100)
c
3
, c
5
, c
9
c
11
(y
6
+ 5y
5
+ ··· 2y + 1)(y
14
+ 2y
13
+ ··· 80y + 16)
· (y
20
+ 19y
19
+ ··· + 80y + 16)(y
28
+ y
27
+ ··· 2075y + 625)
c
7
, c
10
(y
6
y
5
+ 4y
4
4y
3
+ 4y
2
y + 1)(y
14
23y
13
+ ··· 36y + 1)
· (y
20
17y
19
+ ··· 121y + 1)(y
28
30y
27
+ ··· 14166y + 2809)
c
8
, c
12
(y
6
5y
5
+ 2y
4
+ 20y
3
+ 17y
2
+ 8y + 4)
· ((y
7
y
6
5y
4
+ 9y
3
+ 7y
2
+ 3y 1)
2
)(y
14
3y
13
+ ··· 9y + 1)
2
· (y
20
4y
19
+ ··· 1516y + 196)
23