12n
0809
(K12n
0809
)
A knot diagram
1
Linearized knot diagam
4 7 11 7 9 3 10 1 5 1 3 9
Solving Sequence
3,7
2
6,9
5 10 4 1 8 12 11
c
2
c
6
c
5
c
9
c
4
c
1
c
8
c
12
c
11
c
3
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h571u
8
2565u
7
+ 12003u
6
25350u
5
+ 52034u
4
56137u
3
+ 50704u
2
+ 9862b 34468u + 8850,
257u
8
1039u
7
+ ··· + 19724a + 18176,
u
9
5u
8
+ 23u
7
53u
6
+ 102u
5
114u
4
+ 74u
3
44u
2
+ 16u 4i
I
u
2
= ha
3
4a
2
+ 5b + 2a 3, a
4
3a
3
+ 8a
2
6a + 7, u + 1i
I
u
3
= hu
3
a 2u
2
a u
3
2au 3u
2
+ 5b 2a 3u 3, u
3
a 2u
2
a u
3
+ 2a
2
2au 5u
2
+ 4a 4u + 2,
u
4
+ 2u
3
+ 2i
I
u
4
= h−21u
5
+ 7u
4
143u
3
+ 282u
2
+ 4b 318u + 128,
43u
5
+ 14u
4
292u
3
+ 577u
2
+ 4a 644u + 258, u
6
u
5
+ 7u
4
18u
3
+ 24u
2
16u + 4i
I
u
5
= h2au + 11b 16a u 3, 32a
2
+ 4au + 8a + 7u + 34, u
2
+ 2u + 8i
I
u
6
= hb, a + u 1, u
2
u 1i
I
u
7
= hb
2
+ 1, a 1, u 1i
I
u
8
= hb u + 1, 2a
2
au + 2a 1, u
2
2u + 2i
* 8 irreducible components of dim
C
= 0, with total 39 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h571u
8
2565u
7
+ · · · + 9862b + 8850, 257u
8
1039u
7
+ · · · +
19724a + 18176, u
9
5u
8
+ · · · + 16u 4i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
9
=
0.0130298u
8
+ 0.0526769u
7
+ ··· + 2.85094u 0.921517
0.0578990u
8
+ 0.260089u
7
+ ··· + 3.49503u 0.897384
a
5
=
0.0833502u
8
+ 0.342020u
7
+ ··· 2.24883u + 1.32286
0.0747313u
8
+ 0.411884u
7
+ ··· + 2.65646u 0.333401
a
10
=
0.0833502u
8
0.342020u
7
+ ··· + 2.24883u 1.32286
0.100994u
8
+ 0.410769u
7
+ ··· + 1.96857u 0.616102
a
4
=
0.0833502u
8
+ 0.342020u
7
+ ··· 2.24883u + 1.32286
0.112959u
8
+ 0.560840u
7
+ ··· + 1.79416u 0.0344758
a
1
=
0.0407118u
8
0.175877u
7
+ ··· + 2.44088u + 0.241330
0.117826u
8
0.562563u
7
+ ··· 1.12999u + 0.0521192
a
8
=
0.0407118u
8
0.175877u
7
+ ··· + 2.44088u 0.758670
0.0313324u
8
+ 0.104847u
7
+ ··· + 1.66193u 0.426080
a
12
=
0.0771142u
8
+ 0.386686u
7
+ ··· + 3.57088u + 0.189211
0.147232u
8
0.677145u
7
+ ··· 1.15899u + 0.283715
a
11
=
0.224346u
8
+ 1.06383u
7
+ ··· + 4.72987u 0.0945042
0.147232u
8
0.677145u
7
+ ··· 1.15899u + 0.283715
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
8556
4931
u
8
+
38780
4931
u
7
177291
4931
u
6
+
363598
4931
u
5
671631
4931
u
4
+
589646
4931
u
3
228370
4931
u
2
+
136712
4931
u
48274
4931
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
9
2u
8
4u
7
+ 11u
6
+ 6u
5
16u
4
5u
3
+ 8u
2
+ 2u + 1
c
2
, c
6
, c
8
c
12
u
9
+ 5u
8
+ 23u
7
+ 53u
6
+ 102u
5
+ 114u
4
+ 74u
3
+ 44u
2
+ 16u + 4
c
3
, c
5
, c
9
c
11
u
9
3u
8
+ 2u
7
+ 5u
6
+ 2u
5
9u
4
+ 25u
3
18u
2
+ 8u 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
9
12y
8
+ ··· 12y 1
c
2
, c
6
, c
8
c
12
y
9
+ 21y
8
+ ··· 96y 16
c
3
, c
5
, c
9
c
11
y
9
5y
8
+ 38y
7
21y
6
+ 102y
5
+ 219y
4
+ 353y
3
+ 40y
2
8y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.12609
a = 0.807283
b = 1.21689
7.72540 11.7840
u = 0.041387 + 0.594605I
a = 2.03957 + 0.32064I
b = 0.362527 + 1.166500I
3.87094 + 3.77664I 6.27308 5.05750I
u = 0.041387 0.594605I
a = 2.03957 0.32064I
b = 0.362527 1.166500I
3.87094 3.77664I 6.27308 + 5.05750I
u = 0.320133 + 0.346415I
a = 0.384796 0.492791I
b = 0.064812 + 0.443428I
0.209220 0.942065I 4.31920 + 7.08722I
u = 0.320133 0.346415I
a = 0.384796 + 0.492791I
b = 0.064812 0.443428I
0.209220 + 0.942065I 4.31920 7.08722I
u = 0.54446 + 2.21567I
a = 0.180263 1.209750I
b = 0.03727 1.87202I
9.45113 2.91184I 5.37168 + 2.28602I
u = 0.54446 2.21567I
a = 0.180263 + 1.209750I
b = 0.03727 + 1.87202I
9.45113 + 2.91184I 5.37168 2.28602I
u = 1.11375 + 2.71889I
a = 0.068603 + 1.166970I
b = 0.21838 + 1.96553I
5.89393 11.43930I 5.14383 + 4.44122I
u = 1.11375 2.71889I
a = 0.068603 1.166970I
b = 0.21838 1.96553I
5.89393 + 11.43930I 5.14383 4.44122I
5
II. I
u
2
= ha
3
4a
2
+ 5b + 2a 3, a
4
3a
3
+ 8a
2
6a + 7, u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
2
=
1
1
a
6
=
1
1
a
9
=
a
1
5
a
3
+
4
5
a
2
2
5
a +
3
5
a
5
=
1
5
a
3
1
5
a
2
+
3
5
a
12
5
2
5
a
3
+
3
5
a
2
4
5
a
4
5
a
10
=
2
5
a
3
+
3
5
a
2
4
5
a
4
5
3
5
a
3
+
7
5
a
2
11
5
a +
4
5
a
4
=
1
5
a
3
1
5
a
2
+
3
5
a
12
5
1
5
a
3
+
4
5
a
2
7
5
a +
8
5
a
1
=
1
5
a
3
4
5
a
2
+
7
5
a
13
5
a
a
8
=
1
5
a
3
+
4
5
a
2
2
5
a +
13
5
1
5
a
3
+
4
5
a
2
+
3
5
a +
3
5
a
12
=
1
5
a
3
4
5
a
2
+
12
5
a
13
5
1
5
a
3
+
4
5
a
2
7
5
a +
3
5
a
11
=
2
5
a
3
8
5
a
2
+
19
5
a
16
5
1
5
a
3
+
4
5
a
2
7
5
a +
3
5
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
5
a
3
+
32
5
a
2
56
5
a
26
5
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
+ u
3
4u
2
4u + 7
c
2
, c
6
, c
8
c
12
(u 1)
4
c
3
, c
5
, c
9
c
11
(u
2
+ u + 1)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
9y
3
+ 38y
2
72y + 49
c
2
, c
6
, c
8
c
12
(y 1)
4
c
3
, c
5
, c
9
c
11
(y
2
+ y + 1)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.257518 + 1.105670I
b = 0.242482 + 0.239643I
8.22467 + 4.05977I 14.0000 6.9282I
u = 1.00000
a = 0.257518 1.105670I
b = 0.242482 0.239643I
8.22467 4.05977I 14.0000 + 6.9282I
u = 1.00000
a = 1.24248 + 1.97169I
b = 0.74248 + 2.83772I
8.22467 4.05977I 14.0000 + 6.9282I
u = 1.00000
a = 1.24248 1.97169I
b = 0.74248 2.83772I
8.22467 + 4.05977I 14.0000 6.9282I
9
III. I
u
3
= hu
3
a u
3
+ · · · 2a 3, u
3
a u
3
+ · · · + 4a + 2, u
4
+ 2u
3
+ 2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
9
=
a
1
5
u
3
a +
1
5
u
3
+ ··· +
2
5
a +
3
5
a
5
=
4
5
u
3
a
3
10
u
3
+ ··· +
7
5
a +
3
5
6
5
u
3
a
1
5
u
3
+ ··· +
8
5
a +
2
5
a
10
=
1
5
u
3
a +
3
10
u
3
+ ··· +
3
5
a +
7
5
3
5
u
3
a +
7
5
u
3
+ ··· +
4
5
a +
6
5
a
4
=
4
5
u
3
a
3
10
u
3
+ ··· +
7
5
a +
3
5
3
5
u
3
a
7
5
u
3
+ ···
4
5
a
6
5
a
1
=
1
2
u
3
+ u
2
+ u
u
3
+ au + 2u 1
a
8
=
u
3
+ 2u
2
+ a + u + 1
4
5
u
3
a +
6
5
u
3
+ ··· +
12
5
a +
13
5
a
12
=
u
3
a + u
2
a +
1
2
u
3
au + u
2
+ u
4
5
u
3
a
4
5
u
3
+ ··· +
2
5
a
7
5
a
11
=
1
5
u
3
a +
13
10
u
3
+ ···
2
5
a +
7
5
4
5
u
3
a
4
5
u
3
+ ··· +
2
5
a
7
5
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
3
2u
2
6
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
8
6u
7
+ 10u
6
+ 10u
5
49u
4
+ 38u
3
+ 36u
2
68u + 29
c
2
, c
8
(u
4
+ 2u
3
+ 2)
2
c
3
, c
9
(u
4
+ u
2
2u + 1)
2
c
5
, c
11
(u
4
+ u
2
+ 2u + 1)
2
c
6
, c
12
(u
4
2u
3
+ 2)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
8
16y
7
+ ··· 2536y + 841
c
2
, c
6
, c
8
c
12
(y
4
4y
3
+ 4y
2
+ 4)
2
c
3
, c
5
, c
9
c
11
(y
4
+ 2y
3
+ 3y
2
2y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.529086 + 0.742934I
a = 1.62610 0.66493I
b = 0.067502 0.395968I
7.40220 + 3.66386I 4.00000 2.00000I
u = 0.529086 + 0.742934I
a = 0.24716 + 2.08709I
b = 0.41837 + 2.45414I
7.40220 + 3.66386I 4.00000 2.00000I
u = 0.529086 0.742934I
a = 1.62610 + 0.66493I
b = 0.067502 + 0.395968I
7.40220 3.66386I 4.00000 + 2.00000I
u = 0.529086 0.742934I
a = 0.24716 2.08709I
b = 0.41837 2.45414I
7.40220 3.66386I 4.00000 + 2.00000I
u = 1.52909 + 0.25707I
a = 0.297780 + 0.138203I
b = 0.067502 + 0.395968I
7.40220 + 3.66386I 4.00000 2.00000I
u = 1.52909 + 0.25707I
a = 0.67672 1.56036I
b = 0.41837 2.45414I
7.40220 + 3.66386I 4.00000 2.00000I
u = 1.52909 0.25707I
a = 0.297780 0.138203I
b = 0.067502 0.395968I
7.40220 3.66386I 4.00000 + 2.00000I
u = 1.52909 0.25707I
a = 0.67672 + 1.56036I
b = 0.41837 + 2.45414I
7.40220 3.66386I 4.00000 + 2.00000I
13
IV. I
u
4
= h−21u
5
+ 7u
4
+ · · · + 4b + 128, 43u
5
+ 14u
4
+ · · · + 4a +
258, u
6
u
5
+ 7u
4
18u
3
+ 24u
2
16u + 4i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
6
=
u
u
a
9
=
43
4
u
5
7
2
u
4
+ ··· + 161u
129
2
21
4
u
5
7
4
u
4
+ ··· +
159
2
u 32
a
5
=
3u
5
+
5
4
u
4
+ ··· 47u +
41
2
7
4
u
5
+
3
4
u
4
+ ···
55
2
u + 12
a
10
=
4u
5
5
4
u
4
+ ··· + 60u
49
2
3
4
u
5
1
4
u
4
+ ··· +
23
2
u 5
a
4
=
3u
5
+
5
4
u
4
+ ··· 47u +
41
2
3
4
u
5
+
1
4
u
4
+ ···
23
2
u + 5
a
1
=
7u
5
11
4
u
4
+ ··· +
217
2
u
89
2
7
4
u
5
3
4
u
4
+ ··· +
53
2
u 11
a
8
=
1
4
u
4
+
1
4
u
3
+ ···
3
2
u +
1
2
1
4
u
5
+
1
4
u
4
+ ···
5
2
u + 1
a
12
=
47
4
u
5
4u
4
+ ··· + 177u
141
2
15
4
u
5
5
4
u
4
+ ··· +
111
2
u 22
a
11
=
8u
5
11
4
u
4
+ ··· +
243
2
u
97
2
15
4
u
5
5
4
u
4
+ ··· +
111
2
u 22
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
5
+ 4u
4
81u
3
+ 162u
2
178u + 68
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
6
u
5
3u
3
+ 4u
2
u + 1
c
2
, c
8
u
6
u
5
+ 7u
4
18u
3
+ 24u
2
16u + 4
c
3
, c
9
(u
3
+ 2u
2
+ 1)
2
c
5
, c
11
(u
3
2u
2
1)
2
c
6
, c
12
u
6
+ u
5
+ 7u
4
+ 18u
3
+ 24u
2
+ 16u + 4
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
6
y
5
+ 2y
4
9y
3
+ 10y
2
+ 7y + 1
c
2
, c
6
, c
8
c
12
y
6
+ 13y
5
+ 61y
4
12y
3
+ 56y
2
64y + 16
c
3
, c
5
, c
9
c
11
(y
3
4y
2
4y 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.670142 + 0.830077I
a = 0.756371 + 0.536766I
b = 0.331547 + 1.003560I
2.68183 2.56897I 2.87609 + 2.13317I
u = 0.670142 0.830077I
a = 0.756371 0.536766I
b = 0.331547 1.003560I
2.68183 + 2.56897I 2.87609 2.13317I
u = 0.659342 + 0.027822I
a = 0.52967 + 2.00448I
b = 0.331547 + 1.003560I
2.68183 + 2.56897I 2.87609 2.13317I
u = 0.659342 0.027822I
a = 0.52967 2.00448I
b = 0.331547 1.003560I
2.68183 2.56897I 2.87609 + 2.13317I
u = 0.82948 + 2.71700I
a = 0.226699 1.047850I
b = 1.79041I
11.9434 6 1.247828 + 0.10I
u = 0.82948 2.71700I
a = 0.226699 + 1.047850I
b = 1.79041I
11.9434 6 1.247828 + 0.10I
17
V. I
u
5
= h2au + 11b 16a u 3, 32a
2
+ 4au + 8a + 7u + 34, u
2
+ 2u + 8i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
2u + 8
a
6
=
u
u
a
9
=
a
0.181818au + 1.45455a + 0.0909091u + 0.272727
a
5
=
0.0909091au 0.272727a + 0.170455u 0.113636
0.0909091au 0.727273a 0.545455u 1.63636
a
10
=
0.0909091au 0.272727a 0.0795455u 0.613636
1.36364au + 2.90909a + 1.18182u + 2.54545
a
4
=
0.0909091au 0.272727a + 0.170455u 0.113636
0.818182au 1.45455a 0.0909091u 5.27273
a
1
=
1
8
u +
1
4
0.636364au 2.90909a 0.181818u + 0.454545
a
8
=
a
1
4
u +
1
2
2.72727au + 2.18182a 0.363636u 2.09091
a
12
=
au + 2a +
1
8
u +
1
4
0.818182au + 1.45455a + 0.0909091u + 0.272727
a
11
=
0.181818au + 0.545455a + 0.0340909u 0.0227273
0.818182au + 1.45455a + 0.0909091u + 0.272727
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
4u
3
+ 11u
2
14u + 7
c
2
, c
6
, c
8
c
12
(u
2
2u + 8)
2
c
3
, c
5
, c
9
c
11
(u
2
u 5)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
+ 6y
3
+ 23y
2
42y + 49
c
2
, c
6
, c
8
c
12
(y
2
+ 12y + 64)
2
c
3
, c
5
, c
9
c
11
(y
2
11y + 25)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000 + 2.64575I
a = 0.348911 + 0.808919I
b = 1.73205I
9.86960 6.00000
u = 1.00000 + 2.64575I
a = 0.223911 1.139640I
b = 1.73205I
9.86960 6.00000
u = 1.00000 2.64575I
a = 0.348911 0.808919I
b = 1.73205I
9.86960 6.00000
u = 1.00000 2.64575I
a = 0.223911 + 1.139640I
b = 1.73205I
9.86960 6.00000
21
VI. I
u
6
= hb, a + u 1, u
2
u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u 1
a
6
=
u
u
a
9
=
u + 1
0
a
5
=
1
u
a
10
=
u + 2
u
a
4
=
1
1
a
1
=
u + 1
1
a
8
=
2u + 3
u 1
a
12
=
1
1
a
11
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
c
10
, c
12
u
2
+ u 1
c
3
, c
5
, c
9
c
11
(u + 1)
2
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
8
c
10
, c
12
y
2
3y + 1
c
3
, c
5
, c
9
c
11
(y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.618034
a = 1.61803
b = 0
3.28987 3.00000
u = 1.61803
a = 0.618034
b = 0
3.28987 3.00000
25
VII. I
u
7
= hb
2
+ 1, a 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
2
=
1
1
a
6
=
1
1
a
9
=
1
b
a
5
=
b
b
a
10
=
b
2b + 1
a
4
=
b
2b
a
1
=
0
1
a
8
=
1
b 1
a
12
=
1
b + 1
a
11
=
b
b + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
2
+ 1
c
2
, c
8
(u 1)
2
c
3
, c
9
u
2
2u + 2
c
5
, c
11
u
2
+ 2u + 2
c
6
, c
12
(u + 1)
2
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y + 1)
2
c
2
, c
6
, c
8
c
12
(y 1)
2
c
3
, c
5
, c
9
c
11
y
2
+ 4
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.000000I
1.64493 0
u = 1.00000
a = 1.00000
b = 1.000000I
1.64493 0
29
VIII. I
u
8
= hb u + 1, 2a
2
au + 2a 1, u
2
2u + 2i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
2u + 2
a
6
=
u
u
a
9
=
a
u 1
a
5
=
au a +
1
2
u
au + 2a
a
10
=
au + a
1
2
u
au + u 2
a
4
=
au a +
1
2
u
au + 4a u + 2
a
1
=
1
2
u + 1
au 1
a
8
=
a + 1
2au + 2a 1
a
12
=
au
1
2
u + 1
au u + 1
a
11
=
1
2
u
au u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
30
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
u
4
+ u
2
+ 2u + 1
c
2
, c
6
, c
8
c
12
(u
2
+ 2u + 2)
2
c
3
, c
5
, c
9
c
11
u
4
2u
3
+ 3u
2
6u + 5
31
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
y
4
+ 2y
3
+ 3y
2
2y + 1
c
2
, c
6
, c
8
c
12
(y
2
+ 4)
2
c
3
, c
5
, c
9
c
11
y
4
+ 2y
3
5y
2
6y + 25
32
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000 + 1.00000I
a = 0.962527 + 0.337716I
b = 1.000000I
0 6.00000
u = 1.00000 + 1.00000I
a = 0.462527 + 0.162284I
b = 1.000000I
0 6.00000
u = 1.00000 1.00000I
a = 0.962527 0.337716I
b = 1.000000I
0 6.00000
u = 1.00000 1.00000I
a = 0.462527 0.162284I
b = 1.000000I
0 6.00000
33
IX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(u
2
+ 1)(u
2
+ u 1)(u
4
+ u
2
+ 2u + 1)(u
4
4u
3
+ ··· 14u + 7)
· (u
4
+ u
3
4u
2
4u + 7)(u
6
u
5
3u
3
+ 4u
2
u + 1)
· (u
8
6u
7
+ 10u
6
+ 10u
5
49u
4
+ 38u
3
+ 36u
2
68u + 29)
· (u
9
2u
8
4u
7
+ 11u
6
+ 6u
5
16u
4
5u
3
+ 8u
2
+ 2u + 1)
c
2
, c
8
(u 1)
6
(u
2
2u + 8)
2
(u
2
+ u 1)(u
2
+ 2u + 2)
2
(u
4
+ 2u
3
+ 2)
2
· (u
6
u
5
+ 7u
4
18u
3
+ 24u
2
16u + 4)
· (u
9
+ 5u
8
+ 23u
7
+ 53u
6
+ 102u
5
+ 114u
4
+ 74u
3
+ 44u
2
+ 16u + 4)
c
3
, c
9
(u + 1)
2
(u
2
2u + 2)(u
2
u 5)
2
(u
2
+ u + 1)
2
(u
3
+ 2u
2
+ 1)
2
· (u
4
+ u
2
2u + 1)
2
(u
4
2u
3
+ 3u
2
6u + 5)
· (u
9
3u
8
+ 2u
7
+ 5u
6
+ 2u
5
9u
4
+ 25u
3
18u
2
+ 8u 2)
c
5
, c
11
(u + 1)
2
(u
2
u 5)
2
(u
2
+ u + 1)
2
(u
2
+ 2u + 2)(u
3
2u
2
1)
2
· (u
4
+ u
2
+ 2u + 1)
2
(u
4
2u
3
+ 3u
2
6u + 5)
· (u
9
3u
8
+ 2u
7
+ 5u
6
+ 2u
5
9u
4
+ 25u
3
18u
2
+ 8u 2)
c
6
, c
12
(u 1)
4
(u + 1)
2
(u
2
2u + 8)
2
(u
2
+ u 1)(u
2
+ 2u + 2)
2
· (u
4
2u
3
+ 2)
2
(u
6
+ u
5
+ 7u
4
+ 18u
3
+ 24u
2
+ 16u + 4)
· (u
9
+ 5u
8
+ 23u
7
+ 53u
6
+ 102u
5
+ 114u
4
+ 74u
3
+ 44u
2
+ 16u + 4)
34
X. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
7
c
10
(y + 1)
2
(y
2
3y + 1)(y
4
9y
3
+ 38y
2
72y + 49)
· (y
4
+ 2y
3
+ 3y
2
2y + 1)(y
4
+ 6y
3
+ 23y
2
42y + 49)
· (y
6
y
5
+ ··· + 7y + 1)(y
8
16y
7
+ ··· 2536y + 841)
· (y
9
12y
8
+ ··· 12y 1)
c
2
, c
6
, c
8
c
12
((y 1)
6
)(y
2
+ 4)
2
(y
2
3y + 1)(y
2
+ 12y + 64)
2
(y
4
4y
3
+ 4y
2
+ 4)
2
· (y
6
+ 13y
5
+ 61y
4
12y
3
+ 56y
2
64y + 16)
· (y
9
+ 21y
8
+ ··· 96y 16)
c
3
, c
5
, c
9
c
11
((y 1)
2
)(y
2
+ 4)(y
2
11y + 25)
2
(y
2
+ y + 1)
2
(y
3
4y
2
4y 1)
2
· (y
4
+ 2y
3
5y
2
6y + 25)(y
4
+ 2y
3
+ 3y
2
2y + 1)
2
· (y
9
5y
8
+ 38y
7
21y
6
+ 102y
5
+ 219y
4
+ 353y
3
+ 40y
2
8y 4)
35