8
14
(K8a
1
)
A knot diagram
1
Linearized knot diagam
6 4 8 7 1 5 2 3
Solving Sequence
1,5
6 2 7 4 3 8
c
5
c
1
c
6
c
4
c
2
c
8
c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
15
u
14
2u
13
+ 3u
12
+ 4u
11
6u
10
4u
9
+ 9u
8
+ 2u
7
8u
6
+ 6u
4
2u
3
2u
2
+ 2u 1i
* 1 irreducible components of dim
C
= 0, with total 15 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
15
u
14
2u
13
+ 3u
12
+ 4u
11
6u
10
4u
9
+ 9u
8
+ 2u
7
8u
6
+
6u
4
2u
3
2u
2
+ 2u 1i
(i) Arc colorings
a
1
=
0
u
a
5
=
1
0
a
6
=
1
u
2
a
2
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
2
a
4
=
u
4
u
2
+ 1
u
4
a
3
=
u
11
2u
9
+ 4u
7
4u
5
+ 3u
3
2u
u
11
+ u
9
2u
7
+ u
5
u
3
+ u
a
8
=
u
6
+ u
4
2u
2
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
14
+12u
12
4u
11
24u
10
+8u
9
+32u
8
20u
7
28u
6
+24u
5
+16u
4
20u
3
4u
2
+12u10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
15
+ u
14
+ ··· + 2u + 1
c
2
u
15
+ 7u
14
+ ··· + 4u
2
1
c
3
, c
8
u
15
+ u
14
+ ··· + 2u + 1
c
4
, c
6
u
15
+ 5u
14
+ ··· + 12u
3
+ 1
c
7
u
15
u
14
+ ··· 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
15
5y
14
+ ··· + 12y
3
1
c
2
y
15
+ 3y
14
+ ··· + 8y 1
c
3
, c
8
y
15
+ 7y
14
+ ··· + 4y
2
1
c
4
, c
6
y
15
+ 11y
14
+ ··· 84y
2
1
c
7
y
15
y
14
+ ··· + 16y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.035190 + 0.117787I
4.20816 + 3.60340I 10.16372 4.47672I
u = 1.035190 0.117787I
4.20816 3.60340I 10.16372 + 4.47672I
u = 0.690784 + 0.795701I
1.98305 + 3.51852I 2.28698 2.59027I
u = 0.690784 0.795701I
1.98305 3.51852I 2.28698 + 2.59027I
u = 0.928223 + 0.554966I
1.82075 2.07402I 7.82822 + 2.67122I
u = 0.928223 0.554966I
1.82075 + 2.07402I 7.82822 2.67122I
u = 0.778519 + 0.756850I
3.53338 + 1.50523I 0.15133 2.74048I
u = 0.778519 0.756850I
3.53338 1.50523I 0.15133 + 2.74048I
u = 0.860077
1.42428 6.56340
u = 0.946375 + 0.717051I
3.01689 + 4.09199I 0.95573 3.15094I
u = 0.946375 0.717051I
3.01689 4.09199I 0.95573 + 3.15094I
u = 1.006640 + 0.715109I
1.02630 9.21780I 4.14540 + 7.39135I
u = 1.006640 0.715109I
1.02630 + 9.21780I 4.14540 7.39135I
u = 0.204399 + 0.532644I
0.35117 1.66084I 2.48958 + 3.96405I
u = 0.204399 0.532644I
0.35117 + 1.66084I 2.48958 3.96405I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
u
15
+ u
14
+ ··· + 2u + 1
c
2
u
15
+ 7u
14
+ ··· + 4u
2
1
c
3
, c
8
u
15
+ u
14
+ ··· + 2u + 1
c
4
, c
6
u
15
+ 5u
14
+ ··· + 12u
3
+ 1
c
7
u
15
u
14
+ ··· 4u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
y
15
5y
14
+ ··· + 12y
3
1
c
2
y
15
+ 3y
14
+ ··· + 8y 1
c
3
, c
8
y
15
+ 7y
14
+ ··· + 4y
2
1
c
4
, c
6
y
15
+ 11y
14
+ ··· 84y
2
1
c
7
y
15
y
14
+ ··· + 16y 1
7