12n
0812
(K12n
0812
)
A knot diagram
1
Linearized knot diagam
4 7 12 7 9 3 1 12 5 8 4 10
Solving Sequence
4,7 5,12
3 2 1 8 9 6 11 10
c
4
c
3
c
2
c
1
c
7
c
8
c
6
c
11
c
10
c
5
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−8.62027 × 10
76
u
27
+ 1.52401 × 10
78
u
26
+ ··· + 1.53506 × 10
82
b + 5.13581 × 10
81
,
1.24052 × 10
82
u
27
+ 6.32881 × 10
82
u
26
+ ··· + 1.32476 × 10
85
a 4.03731 × 10
85
,
u
28
+ 5u
27
+ ··· 4802u + 863i
I
u
2
= h1.13096 × 10
16
u
20
6.66784 × 10
16
u
19
+ ··· + 3.05068 × 10
16
b 2.79012 × 10
16
,
8.06048 × 10
16
u
20
5.63230 × 10
17
u
19
+ ··· + 3.05068 × 10
16
a + 3.72544 × 10
17
, u
21
7u
20
+ ··· + 7u 1i
I
u
3
= hb u + 1, a + u, u
2
+ 1i
I
u
4
= hb, a 1, u 1i
* 4 irreducible components of dim
C
= 0, with total 52 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−8.62 × 10
76
u
27
+ 1.52 × 10
78
u
26
+ · · · + 1.54 × 10
82
b + 5.14 ×
10
81
, 1.24 × 10
82
u
27
+ 6.33 × 10
82
u
26
+ · · · + 1.32 × 10
85
a 4.04 ×
10
85
, u
28
+ 5u
27
+ · · · 4802u + 863i
(i) Arc colorings
a
4
=
1
0
a
7
=
0
u
a
5
=
1
u
2
a
12
=
0.000936413u
27
0.00477733u
26
+ ··· 8.38766u + 3.04758
5.61558 × 10
6
u
27
0.0000992801u
26
+ ··· 1.45523u 0.334567
a
3
=
0.000263039u
27
0.00140121u
26
+ ··· 1.03847u + 2.73441
0.000341879u
27
0.00168333u
26
+ ··· 3.68231u + 0.495730
a
2
=
0.000263039u
27
0.00140121u
26
+ ··· 1.03847u + 2.73441
0.000260254u
27
0.00132797u
26
+ ··· 3.49625u + 0.421496
a
1
=
0.000523293u
27
0.00272919u
26
+ ··· 4.53472u + 3.15591
0.000260254u
27
0.00132797u
26
+ ··· 3.49625u + 0.421496
a
8
=
0.000610060u
27
+ 0.00328680u
26
+ ··· + 2.78600u 1.92051
0.000182108u
27
+ 0.00106951u
26
+ ··· + 2.73273u 0.211107
a
9
=
0.000559019u
27
+ 0.00284931u
26
+ ··· + 3.47453u 1.66495
0.000130430u
27
0.000448498u
26
+ ··· + 1.08342u 0.0158707
a
6
=
0.000175320u
27
0.000769585u
26
+ ··· + 1.01760u + 1.26490
0.0000404126u
27
0.000267309u
26
+ ··· 0.405692u + 0.352147
a
11
=
0.000930798u
27
0.00487661u
26
+ ··· 9.84289u + 2.71301
5.61558 × 10
6
u
27
0.0000992801u
26
+ ··· 1.45523u 0.334567
a
10
=
0.000726886u
27
0.00405664u
26
+ ··· 4.78005u + 1.63403
0.0000519443u
27
0.000325470u
26
+ ··· 2.70568u + 0.333453
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.00191539u
27
+ 0.00980758u
26
+ ··· + 12.3575u 10.5692
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
28
4u
27
+ ··· + 167u 43
c
2
, c
6
u
28
+ 2u
27
+ ··· + 207872u 13157
c
3
, c
11
u
28
9u
27
+ ··· + 10968u 4784
c
4
u
28
5u
27
+ ··· + 4802u + 863
c
5
, c
9
u
28
+ 13u
26
+ ··· 2972u 4630
c
7
u
28
3u
27
+ ··· + 56u 8
c
8
u
28
+ u
27
+ ··· + 9495203u + 439429
c
10
u
28
u
27
+ ··· + 14900u 3331
c
12
u
28
+ 4u
27
+ ··· 100u 25
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
28
58y
27
+ ··· 24449y + 1849
c
2
, c
6
y
28
+ 60y
27
+ ··· 31398071702y + 173106649
c
3
, c
11
y
28
+ 37y
27
+ ··· 349087040y + 22886656
c
4
y
28
21y
27
+ ··· 7045376y + 744769
c
5
, c
9
y
28
+ 26y
27
+ ··· + 2260696y + 21436900
c
7
y
28
+ 11y
27
+ ··· 768y + 64
c
8
y
28
85y
27
+ ··· 41732534261399y + 193097846041
c
10
y
28
51y
27
+ ··· 22556382y + 11095561
c
12
y
28
6y
27
+ ··· 10150y + 625
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.459433 + 1.004210I
a = 0.769069 0.424094I
b = 2.01354 + 1.09433I
10.03210 2.03721I 1.40807 + 1.51569I
u = 0.459433 1.004210I
a = 0.769069 + 0.424094I
b = 2.01354 1.09433I
10.03210 + 2.03721I 1.40807 1.51569I
u = 0.273744 + 0.828909I
a = 0.31857 1.39833I
b = 0.676810 + 0.678060I
3.25948 + 1.87994I 1.127245 + 0.255189I
u = 0.273744 0.828909I
a = 0.31857 + 1.39833I
b = 0.676810 0.678060I
3.25948 1.87994I 1.127245 0.255189I
u = 0.229511 + 0.822937I
a = 0.524171 + 0.383309I
b = 0.390248 0.173189I
0.13617 2.17117I 0.52994 + 4.56699I
u = 0.229511 0.822937I
a = 0.524171 0.383309I
b = 0.390248 + 0.173189I
0.13617 + 2.17117I 0.52994 4.56699I
u = 0.822714
a = 0.146759
b = 0.732140
1.55304 5.27900
u = 0.836672 + 0.864882I
a = 0.56617 + 1.86096I
b = 0.562756 0.399087I
1.97057 6.52494I 1.83111 + 8.72203I
u = 0.836672 0.864882I
a = 0.56617 1.86096I
b = 0.562756 + 0.399087I
1.97057 + 6.52494I 1.83111 8.72203I
u = 0.480459 + 0.282436I
a = 1.41640 + 0.49816I
b = 0.516137 0.268437I
1.51898 0.09189I 7.42707 0.14730I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.480459 0.282436I
a = 1.41640 0.49816I
b = 0.516137 + 0.268437I
1.51898 + 0.09189I 7.42707 + 0.14730I
u = 0.43263 + 1.42005I
a = 0.322046 1.165460I
b = 0.08622 + 2.09948I
11.60450 + 1.52928I 5.96173 5.20161I
u = 0.43263 1.42005I
a = 0.322046 + 1.165460I
b = 0.08622 2.09948I
11.60450 1.52928I 5.96173 + 5.20161I
u = 1.36989 + 0.62388I
a = 0.522052 0.287024I
b = 0.856845 + 0.272486I
2.93559 3.60574I 2.03784 + 5.31911I
u = 1.36989 0.62388I
a = 0.522052 + 0.287024I
b = 0.856845 0.272486I
2.93559 + 3.60574I 2.03784 5.31911I
u = 0.216176 + 0.152550I
a = 1.23983 1.38812I
b = 0.694421 0.417839I
1.34198 0.63181I 7.39383 + 3.55585I
u = 0.216176 0.152550I
a = 1.23983 + 1.38812I
b = 0.694421 + 0.417839I
1.34198 + 0.63181I 7.39383 3.55585I
u = 1.55762 + 0.81392I
a = 0.785031 0.314648I
b = 0.41609 + 1.75558I
2.40615 3.22239I 0.05887 + 2.24675I
u = 1.55762 0.81392I
a = 0.785031 + 0.314648I
b = 0.41609 1.75558I
2.40615 + 3.22239I 0.05887 2.24675I
u = 1.73297 + 0.36682I
a = 0.207455 0.021422I
b = 0.093173 1.202150I
3.72120 + 5.07083I 0.01986 3.99214I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.73297 0.36682I
a = 0.207455 + 0.021422I
b = 0.093173 + 1.202150I
3.72120 5.07083I 0.01986 + 3.99214I
u = 1.05080 + 2.14321I
a = 0.291815 + 0.781957I
b = 1.45524 3.34171I
14.9730 + 2.7474I 0
u = 1.05080 2.14321I
a = 0.291815 0.781957I
b = 1.45524 + 3.34171I
14.9730 2.7474I 0
u = 1.85519 + 1.64553I
a = 0.554886 0.593820I
b = 1.69865 + 2.55029I
15.8138 + 12.8690I 0
u = 1.85519 1.64553I
a = 0.554886 + 0.593820I
b = 1.69865 2.55029I
15.8138 12.8690I 0
u = 2.92172
a = 0.782361
b = 2.34197
6.12420 0
u = 2.84436 + 1.35079I
a = 0.540100 + 0.227911I
b = 2.21908 3.05252I
14.6001 + 2.0794I 0
u = 2.84436 1.35079I
a = 0.540100 0.227911I
b = 2.21908 + 3.05252I
14.6001 2.0794I 0
7
II.
I
u
2
= h1.13 × 10
16
u
20
6.67 × 10
16
u
19
+ · · · + 3.05 × 10
16
b 2.79 × 10
16
, 8.06 ×
10
16
u
20
5.63×10
17
u
19
+· · ·+3.05×10
16
a+3.73×10
17
, u
21
7u
20
+· · ·+7u1i
(i) Arc colorings
a
4
=
1
0
a
7
=
0
u
a
5
=
1
u
2
a
12
=
2.64219u
20
+ 18.4624u
19
+ ··· + 82.2885u 12.2118
0.370723u
20
+ 2.18569u
19
+ ··· 3.27253u + 0.914589
a
3
=
2.45654u
20
16.5538u
19
+ ··· 46.8691u + 2.84798
0.218854u
20
+ 1.77628u
19
+ ··· + 6.32405u 0.684934
a
2
=
2.45654u
20
16.5538u
19
+ ··· 46.8691u + 2.84798
0.399174u
20
+ 2.83676u
19
+ ··· + 8.36141u 1.32692
a
1
=
2.05736u
20
13.7170u
19
+ ··· 38.5077u + 1.52106
0.399174u
20
+ 2.83676u
19
+ ··· + 8.36141u 1.32692
a
8
=
0.847229u
20
5.50818u
19
+ ··· 36.8397u + 10.1554
0.852360u
20
4.81815u
19
+ ··· 3.93557u 0.0851849
a
9
=
2.83718u
20
+ 20.1617u
19
+ ··· + 69.2365u 4.68421
1.24144u
20
7.58901u
19
+ ··· 14.9295u + 2.08597
a
6
=
0.608465u
20
3.20801u
19
+ ··· + 25.3385u 10.0693
0.0544761u
20
+ 0.450258u
19
+ ··· + 0.815373u + 0.880016
a
11
=
3.01292u
20
+ 20.6481u
19
+ ··· + 79.0160u 11.2973
0.370723u
20
+ 2.18569u
19
+ ··· 3.27253u + 0.914589
a
10
=
2.82469u
20
+ 19.6190u
19
+ ··· + 59.2542u 2.89968
0.763744u
20
4.65415u
19
+ ··· 11.7302u + 1.63071
(ii) Obstruction class = 1
(iii) Cusp Shapes =
142462361688498817
30506810548263331
u
20
+
853512483449208650
30506810548263331
u
19
+···+
205869171519914537
30506810548263331
u+
184825108905214746
30506810548263331
8
(iv) u-Polynomials at the component
9
Crossings u-Polynomials at each crossing
c
1
u
21
14u
20
+ ··· 276u + 29
c
2
u
21
+ 4u
20
+ ··· 9u + 1
c
3
u
21
u
20
+ ··· 12u 2
c
4
u
21
7u
20
+ ··· + 7u 1
c
5
u
21
u
20
+ ··· + 12u + 2
c
6
u
21
4u
20
+ ··· 9u 1
c
7
u
21
+ u
19
+ ··· + 40u + 16
c
8
u
21
u
20
+ ··· 210u + 293
c
9
u
21
+ u
20
+ ··· + 12u 2
c
10
u
21
5u
20
+ ··· + 3u 1
c
11
u
21
+ u
20
+ ··· 12u + 2
c
12
u
21
6u
20
+ ··· + 5u 1
10
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
21
40y
20
+ ··· + 15276y 841
c
2
, c
6
y
21
+ 2y
20
+ ··· + y 1
c
3
, c
11
y
21
+ y
20
+ ··· + 20y 4
c
4
y
21
15y
20
+ ··· 21y 1
c
5
, c
9
y
21
+ 17y
20
+ ··· 12y 4
c
7
y
21
+ 2y
20
+ ··· 288y 256
c
8
y
21
15y
20
+ ··· 660858y 85849
c
10
y
21
21y
20
+ ··· 15y 1
c
12
y
21
+ 8y
19
+ ··· + 13y 1
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.595417 + 0.714984I
a = 1.16017 2.46835I
b = 0.107234 + 0.749883I
2.73077 6.13856I 5.46973 + 5.13949I
u = 0.595417 0.714984I
a = 1.16017 + 2.46835I
b = 0.107234 0.749883I
2.73077 + 6.13856I 5.46973 5.13949I
u = 0.675943 + 0.566498I
a = 0.855139 0.146693I
b = 1.191560 0.086586I
2.83225 2.16193I 2.45279 0.29746I
u = 0.675943 0.566498I
a = 0.855139 + 0.146693I
b = 1.191560 + 0.086586I
2.83225 + 2.16193I 2.45279 + 0.29746I
u = 0.749611 + 0.301572I
a = 0.976455 + 0.377205I
b = 1.43585 + 0.70439I
10.84280 2.10084I 9.12543 + 2.93256I
u = 0.749611 0.301572I
a = 0.976455 0.377205I
b = 1.43585 0.70439I
10.84280 + 2.10084I 9.12543 2.93256I
u = 1.290970 + 0.025247I
a = 0.522611 + 0.056622I
b = 0.899485 + 0.649626I
2.26631 5.66339I 1.20781 + 8.07266I
u = 1.290970 0.025247I
a = 0.522611 0.056622I
b = 0.899485 0.649626I
2.26631 + 5.66339I 1.20781 8.07266I
u = 0.88794 + 1.11736I
a = 0.351110 + 1.218340I
b = 0.427353 1.060580I
1.01172 5.35912I 2.61035 + 4.49568I
u = 0.88794 1.11736I
a = 0.351110 1.218340I
b = 0.427353 + 1.060580I
1.01172 + 5.35912I 2.61035 4.49568I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.012030 + 0.568575I
a = 0.14618 1.76060I
b = 0.721762 + 0.323260I
0.490057 0.177120I 2.36077 + 0.19893I
u = 0.012030 0.568575I
a = 0.14618 + 1.76060I
b = 0.721762 0.323260I
0.490057 + 0.177120I 2.36077 0.19893I
u = 1.43446 + 0.38552I
a = 0.039878 + 0.195657I
b = 0.472267 0.321301I
4.44088 + 4.96227I 12.04870 4.19355I
u = 1.43446 0.38552I
a = 0.039878 0.195657I
b = 0.472267 + 0.321301I
4.44088 4.96227I 12.04870 + 4.19355I
u = 1.50701 + 0.33648I
a = 0.866254 0.158557I
b = 0.676026 + 0.144051I
3.97261 2.80730I 6.02581 + 3.31421I
u = 1.50701 0.33648I
a = 0.866254 + 0.158557I
b = 0.676026 0.144051I
3.97261 + 2.80730I 6.02581 3.31421I
u = 0.73848 + 1.41590I
a = 0.498243 + 1.007080I
b = 0.35528 2.25147I
10.95750 + 1.10571I 3.84568 + 1.01862I
u = 0.73848 1.41590I
a = 0.498243 1.007080I
b = 0.35528 + 2.25147I
10.95750 1.10571I 3.84568 1.01862I
u = 0.113196 + 0.211636I
a = 0.39824 + 7.94323I
b = 0.457617 0.638917I
4.17812 + 2.68951I 7.17893 2.27785I
u = 0.113196 0.211636I
a = 0.39824 7.94323I
b = 0.457617 + 0.638917I
4.17812 2.68951I 7.17893 + 2.27785I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 2.68010
a = 0.904455
b = 1.89595
6.47598 0
15
III. I
u
3
= hb u + 1, a + u, u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
7
=
0
u
a
5
=
1
1
a
12
=
u
u 1
a
3
=
u
2u
a
2
=
u
u
a
1
=
0
u
a
8
=
0
u
a
9
=
u
2u 1
a
6
=
u
3u
a
11
=
1
u 1
a
10
=
1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
10
c
12
u
2
+ 1
c
2
(u 1)
2
c
3
, c
5
u
2
+ 2u + 2
c
6
, c
8
(u + 1)
2
c
7
u
2
c
9
, c
11
u
2
2u + 2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
10
c
12
(y + 1)
2
c
2
, c
6
, c
8
(y 1)
2
c
3
, c
5
, c
9
c
11
y
2
+ 4
c
7
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000I
b = 1.00000 + 1.00000I
0 0
u = 1.000000I
a = 1.000000I
b = 1.00000 1.00000I
0 0
19
IV. I
u
4
= hb, a 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
7
=
0
1
a
5
=
1
1
a
12
=
1
0
a
3
=
1
0
a
2
=
1
1
a
1
=
0
1
a
8
=
0
1
a
9
=
1
1
a
6
=
1
1
a
11
=
1
0
a
10
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
20
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
10
, c
12
u 1
c
3
, c
5
, c
7
c
9
, c
11
u
c
6
, c
8
u + 1
21
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
8
, c
10
c
12
y 1
c
3
, c
5
, c
7
c
9
, c
11
y
22
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
0 0
23
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u 1)(u
2
+ 1)(u
21
14u
20
+ ··· 276u + 29)
· (u
28
4u
27
+ ··· + 167u 43)
c
2
((u 1)
3
)(u
21
+ 4u
20
+ ··· 9u + 1)
· (u
28
+ 2u
27
+ ··· + 207872u 13157)
c
3
u(u
2
+ 2u + 2)(u
21
u
20
+ ··· 12u 2)
· (u
28
9u
27
+ ··· + 10968u 4784)
c
4
(u 1)(u
2
+ 1)(u
21
7u
20
+ ··· + 7u 1)(u
28
5u
27
+ ··· + 4802u + 863)
c
5
u(u
2
+ 2u + 2)(u
21
u
20
+ ··· + 12u + 2)
· (u
28
+ 13u
26
+ ··· 2972u 4630)
c
6
((u + 1)
3
)(u
21
4u
20
+ ··· 9u 1)
· (u
28
+ 2u
27
+ ··· + 207872u 13157)
c
7
u
3
(u
21
+ u
19
+ ··· + 40u + 16)(u
28
3u
27
+ ··· + 56u 8)
c
8
((u + 1)
3
)(u
21
u
20
+ ··· 210u + 293)
· (u
28
+ u
27
+ ··· + 9495203u + 439429)
c
9
u(u
2
2u + 2)(u
21
+ u
20
+ ··· + 12u 2)
· (u
28
+ 13u
26
+ ··· 2972u 4630)
c
10
(u 1)(u
2
+ 1)(u
21
5u
20
+ ··· + 3u 1)
· (u
28
u
27
+ ··· + 14900u 3331)
c
11
u(u
2
2u + 2)(u
21
+ u
20
+ ··· 12u + 2)
· (u
28
9u
27
+ ··· + 10968u 4784)
c
12
(u 1)(u
2
+ 1)(u
21
6u
20
+ ··· + 5u 1)(u
28
+ 4u
27
+ ··· 100u 25)
24
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y 1)(y + 1)
2
(y
21
40y
20
+ ··· + 15276y 841)
· (y
28
58y
27
+ ··· 24449y + 1849)
c
2
, c
6
((y 1)
3
)(y
21
+ 2y
20
+ ··· + y 1)
· (y
28
+ 60y
27
+ ··· 31398071702y + 173106649)
c
3
, c
11
y(y
2
+ 4)(y
21
+ y
20
+ ··· + 20y 4)
· (y
28
+ 37y
27
+ ··· 349087040y + 22886656)
c
4
(y 1)(y + 1)
2
(y
21
15y
20
+ ··· 21y 1)
· (y
28
21y
27
+ ··· 7045376y + 744769)
c
5
, c
9
y(y
2
+ 4)(y
21
+ 17y
20
+ ··· 12y 4)
· (y
28
+ 26y
27
+ ··· + 2260696y + 21436900)
c
7
y
3
(y
21
+ 2y
20
+ ··· 288y 256)(y
28
+ 11y
27
+ ··· 768y + 64)
c
8
((y 1)
3
)(y
21
15y
20
+ ··· 660858y 85849)
· (y
28
85y
27
+ ··· 41732534261399y + 193097846041)
c
10
(y 1)(y + 1)
2
(y
21
21y
20
+ ··· 15y 1)
· (y
28
51y
27
+ ··· 22556382y + 11095561)
c
12
(y 1)(y + 1)
2
(y
21
+ 8y
19
+ ··· + 13y 1)
· (y
28
6y
27
+ ··· 10150y + 625)
25