12n
0818
(K12n
0818
)
A knot diagram
1
Linearized knot diagam
4 6 11 7 10 2 12 11 5 3 8 7
Solving Sequence
8,11 4,12
3 7 5 1 2 6 10 9
c
11
c
3
c
7
c
4
c
12
c
1
c
6
c
10
c
9
c
2
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−9u
23
69u
22
+ ··· + 4b 60, u
23
23u
22
+ ··· + 8a 92, u
24
+ 9u
23
+ ··· + 60u + 8i
I
u
2
= h−23435100677a
5
u
5
+ 10963667366u
5
a
4
+ ··· + 71553959584a + 30822539955,
2u
5
a
4
5u
5
a
3
+ ··· + 114a 114, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
I
u
3
= h−u
13
+ 2u
12
9u
11
+ 14u
10
29u
9
+ 34u
8
38u
7
+ 32u
6
14u
5
+ 6u
4
+ 5u
3
4u
2
+ b 1,
u
14
2u
13
+ ··· + a + 3, u
15
2u
14
+ ··· + 3u + 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−9u
23
69u
22
+ · · · + 4b 60, u
23
23u
22
+ · · · + 8a 92, u
24
+
9u
23
+ · · · + 60u + 8i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
4
=
1
8
u
23
+
23
8
u
22
+ ··· +
283
4
u +
23
2
9
4
u
23
+
69
4
u
22
+ ··· + 96u + 15
a
12
=
1
u
2
a
3
=
2.37500u
23
+ 20.1250u
22
+ ··· + 166.750u + 26.5000
9
4
u
23
+
69
4
u
22
+ ··· + 96u + 15
a
7
=
u
u
3
+ u
a
5
=
1
8
u
23
+
15
8
u
22
+ ··· +
443
4
u +
35
2
7
4
u
23
51
4
u
22
+ ··· 4u + 1
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
13
8
u
23
111
8
u
22
+ ···
625
4
u 26
1
4
u
23
7
4
u
22
+ ···
37
2
u 3
a
6
=
15
8
u
23
+
123
8
u
22
+ ··· +
279
2
u + 22
3
2
u
23
+ 11u
22
+ ··· +
157
2
u + 13
a
10
=
1
8
u
23
11
8
u
22
+ ···
41
4
u 1
3
4
u
23
25
4
u
22
+ ···
67
2
u 5
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 10u
23
+ 83u
22
+ 460u
21
+ 1851u
20
+ 6019u
19
+ 16308u
18
+ 37879u
17
+ 76523u
16
+
135925u
15
+ 213724u
14
+ 298650u
13
+ 371570u
12
+ 411446u
11
+ 404553u
10
+ 351654u
9
+
268406u
8
+ 178327u
7
+ 101993u
6
+ 49649u
5
+ 20388u
4
+ 7050u
3
+ 2063u
2
+ 490u + 66
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
24
+ 11u
22
+ ··· + 2u + 1
c
2
, c
6
u
24
13u
23
+ ··· 736u + 64
c
3
, c
5
, c
9
c
10
u
24
u
23
+ ··· + 2u + 1
c
7
, c
8
, c
11
c
12
u
24
+ 9u
23
+ ··· + 60u + 8
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
24
+ 22y
23
+ ··· + 28y + 1
c
2
, c
6
y
24
+ 21y
23
+ ··· + 19456y + 4096
c
3
, c
5
, c
9
c
10
y
24
17y
23
+ ··· 6y + 1
c
7
, c
8
, c
11
c
12
y
24
+ 23y
23
+ ··· + 624y + 64
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.971536 + 0.221960I
a = 0.61723 + 1.27443I
b = 1.38087 0.69103I
3.82723 9.97673I 3.43940 + 6.32468I
u = 0.971536 0.221960I
a = 0.61723 1.27443I
b = 1.38087 + 0.69103I
3.82723 + 9.97673I 3.43940 6.32468I
u = 0.325915 + 0.983831I
a = 0.033935 0.418334I
b = 0.624731 + 0.626850I
0.283464 + 0.443199I 0.97811 2.48365I
u = 0.325915 0.983831I
a = 0.033935 + 0.418334I
b = 0.624731 0.626850I
0.283464 0.443199I 0.97811 + 2.48365I
u = 0.854577 + 0.270304I
a = 0.133719 1.288200I
b = 1.021730 + 0.517114I
2.37599 4.87646I 0.51553 + 6.02315I
u = 0.854577 0.270304I
a = 0.133719 + 1.288200I
b = 1.021730 0.517114I
2.37599 + 4.87646I 0.51553 6.02315I
u = 0.238805 + 1.148550I
a = 0.129829 + 1.005970I
b = 0.363709 0.617449I
1.74481 4.18781I 4.37804 + 0.87834I
u = 0.238805 1.148550I
a = 0.129829 1.005970I
b = 0.363709 + 0.617449I
1.74481 + 4.18781I 4.37804 0.87834I
u = 0.193901 + 1.206350I
a = 0.606162 + 0.345461I
b = 0.569981 0.522089I
4.59216 + 2.01653I 7.18080 3.39780I
u = 0.193901 1.206350I
a = 0.606162 0.345461I
b = 0.569981 + 0.522089I
4.59216 2.01653I 7.18080 + 3.39780I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.661561 + 1.033500I
a = 0.328591 0.193748I
b = 1.202730 0.647830I
6.30317 + 4.38086I 4.52921 3.44715I
u = 0.661561 1.033500I
a = 0.328591 + 0.193748I
b = 1.202730 + 0.647830I
6.30317 4.38086I 4.52921 + 3.44715I
u = 0.618272 + 0.317395I
a = 0.638426 + 0.970996I
b = 0.676953 0.157022I
0.809068 + 1.101490I 5.35892 + 1.01281I
u = 0.618272 0.317395I
a = 0.638426 0.970996I
b = 0.676953 + 0.157022I
0.809068 1.101490I 5.35892 1.01281I
u = 0.42667 + 1.42118I
a = 0.69104 1.34370I
b = 1.50579 + 0.65933I
9.0022 14.9856I 7.09597 + 7.57547I
u = 0.42667 1.42118I
a = 0.69104 + 1.34370I
b = 1.50579 0.65933I
9.0022 + 14.9856I 7.09597 7.57547I
u = 0.37787 + 1.44359I
a = 0.810469 + 1.141880I
b = 1.219090 0.464171I
3.08328 9.37984I 4.94083 + 6.69996I
u = 0.37787 1.44359I
a = 0.810469 1.141880I
b = 1.219090 + 0.464171I
3.08328 + 9.37984I 4.94083 6.69996I
u = 0.30052 + 1.50793I
a = 0.873070 0.786162I
b = 1.056120 + 0.111001I
5.27850 2.45819I 6.52768 + 0.I
u = 0.30052 1.50793I
a = 0.873070 + 0.786162I
b = 1.056120 0.111001I
5.27850 + 2.45819I 6.52768 + 0.I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.152565 + 0.389462I
a = 0.640664 0.680814I
b = 0.289140 + 0.385262I
0.049661 + 0.901122I 1.07060 7.46829I
u = 0.152565 0.389462I
a = 0.640664 + 0.680814I
b = 0.289140 0.385262I
0.049661 0.901122I 1.07060 + 7.46829I
u = 0.07074 + 1.75374I
a = 0.581532 + 0.242567I
b = 1.029280 + 0.409939I
16.4681 + 1.7281I 0
u = 0.07074 1.75374I
a = 0.581532 0.242567I
b = 1.029280 0.409939I
16.4681 1.7281I 0
7
II. I
u
2
= h−2.34 × 10
10
a
5
u
5
+ 1.10 × 10
10
a
4
u
5
+ · · · + 7.16 × 10
10
a + 3.08 ×
10
10
, 2u
5
a
4
5u
5
a
3
+ · · · + 114a 114, u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
4
=
a
0.347931a
5
u
5
0.162773a
4
u
5
+ ··· 1.06233a 0.457609
a
12
=
1
u
2
a
3
=
0.347931a
5
u
5
0.162773a
4
u
5
+ ··· 0.0623316a 0.457609
0.347931a
5
u
5
0.162773a
4
u
5
+ ··· 1.06233a 0.457609
a
7
=
u
u
3
+ u
a
5
=
0.180852a
5
u
5
0.416166a
4
u
5
+ ··· + 0.491548a 0.144406
0.346810a
5
u
5
0.643062a
4
u
5
+ ··· + 0.451764a 1.01177
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
0.204126a
5
u
5
+ 0.255973a
4
u
5
+ ··· + 0.0646899a + 0.294428
0.438515a
5
u
5
0.212894a
4
u
5
+ ··· 0.142744a + 0.592655
a
6
=
0.213990a
5
u
5
0.398539a
4
u
5
+ ··· 0.880353a + 1.01839
0.329334a
5
u
5
0.804316a
4
u
5
+ ··· + 1.33815a 0.0581934
a
10
=
0.0846058a
5
u
5
+ 0.661136a
4
u
5
+ ··· + 0.296011a 0.487725
0.149782a
5
u
5
+ 0.704215a
4
u
5
+ ··· + 0.217957a 1.60064
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
5658079336
22451859377
a
5
u
5
+
18778081872
22451859377
u
5
a
4
+ ···
16584590624
22451859377
a
56541555310
22451859377
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
36
5u
35
+ ··· 36u + 1
c
2
, c
6
(u
3
+ u
2
+ 2u + 1)
12
c
3
, c
5
, c
9
c
10
u
36
u
35
+ ··· + 4988u 2207
c
7
, c
8
, c
11
c
12
(u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
36
+ 7y
35
+ ··· 912y + 1
c
2
, c
6
(y
3
+ 3y
2
+ 2y 1)
12
c
3
, c
5
, c
9
c
10
y
36
25y
35
+ ··· 47603416y + 4870849
c
7
, c
8
, c
11
c
12
(y
6
+ 5y
5
+ 9y
4
+ 4y
3
6y
2
5y + 1)
6
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.873214
a = 0.419995 + 1.215150I
b = 0.580895 0.775278I
3.83874 3.28901 + 0.I
u = 0.873214
a = 0.419995 1.215150I
b = 0.580895 + 0.775278I
3.83874 3.28901 + 0.I
u = 0.873214
a = 1.037200 + 0.778295I
b = 1.025490 0.187777I
0.29884 2.82812I 3.24026 + 2.97945I
u = 0.873214
a = 1.037200 0.778295I
b = 1.025490 + 0.187777I
0.29884 + 2.82812I 3.24026 2.97945I
u = 0.873214
a = 0.06083 + 1.60714I
b = 0.324929 1.334150I
0.29884 + 2.82812I 3.24026 2.97945I
u = 0.873214
a = 0.06083 1.60714I
b = 0.324929 + 1.334150I
0.29884 2.82812I 3.24026 + 2.97945I
u = 0.138835 + 1.234450I
a = 0.012228 1.187000I
b = 1.44703 + 1.08222I
10.91920 4.80053I 10.93403 + 6.66423I
u = 0.138835 + 1.234450I
a = 1.137440 0.567294I
b = 1.42862 0.02132I
6.78159 1.97241I 4.40477 + 3.68478I
u = 0.138835 + 1.234450I
a = 0.364631 + 0.343650I
b = 1.88950 + 0.34251I
10.91920 + 0.85571I 10.93403 + 0.70533I
u = 0.138835 + 1.234450I
a = 0.10816 + 1.58237I
b = 1.056330 0.412957I
6.78159 1.97241I 4.40477 + 3.68478I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.138835 + 1.234450I
a = 2.21023 + 1.02274I
b = 1.45126 0.21009I
10.91920 4.80053I 10.93403 + 6.66423I
u = 0.138835 + 1.234450I
a = 0.16985 2.53916I
b = 1.028260 0.205085I
10.91920 + 0.85571I 10.93403 + 0.70533I
u = 0.138835 1.234450I
a = 0.012228 + 1.187000I
b = 1.44703 1.08222I
10.91920 + 4.80053I 10.93403 6.66423I
u = 0.138835 1.234450I
a = 1.137440 + 0.567294I
b = 1.42862 + 0.02132I
6.78159 + 1.97241I 4.40477 3.68478I
u = 0.138835 1.234450I
a = 0.364631 0.343650I
b = 1.88950 0.34251I
10.91920 0.85571I 10.93403 0.70533I
u = 0.138835 1.234450I
a = 0.10816 1.58237I
b = 1.056330 + 0.412957I
6.78159 + 1.97241I 4.40477 3.68478I
u = 0.138835 1.234450I
a = 2.21023 1.02274I
b = 1.45126 + 0.21009I
10.91920 + 4.80053I 10.93403 6.66423I
u = 0.138835 1.234450I
a = 0.16985 + 2.53916I
b = 1.028260 + 0.205085I
10.91920 0.85571I 10.93403 0.70533I
u = 0.408802 + 1.276380I
a = 0.887209 + 0.587298I
b = 0.632640 0.969780I
4.26335 + 1.76400I 6.92862 0.22537I
u = 0.408802 + 1.276380I
a = 0.659750 0.545076I
b = 0.04879 + 1.56085I
4.26335 + 7.42025I 6.92862 6.18427I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.408802 + 1.276380I
a = 0.517890 1.088660I
b = 0.847436 + 0.716450I
0.12577 + 4.59213I 0.39935 3.20482I
u = 0.408802 + 1.276380I
a = 0.375953 + 0.353514I
b = 0.300632 0.839566I
0.12577 + 4.59213I 0.39935 3.20482I
u = 0.408802 + 1.276380I
a = 0.09934 + 1.53963I
b = 1.164190 0.284914I
4.26335 + 7.42025I 6.92862 6.18427I
u = 0.408802 + 1.276380I
a = 0.0031648 + 0.1271530I
b = 0.823310 0.019949I
4.26335 + 1.76400I 6.92862 0.22537I
u = 0.408802 1.276380I
a = 0.887209 0.587298I
b = 0.632640 + 0.969780I
4.26335 1.76400I 6.92862 + 0.22537I
u = 0.408802 1.276380I
a = 0.659750 + 0.545076I
b = 0.04879 1.56085I
4.26335 7.42025I 6.92862 + 6.18427I
u = 0.408802 1.276380I
a = 0.517890 + 1.088660I
b = 0.847436 0.716450I
0.12577 4.59213I 0.39935 + 3.20482I
u = 0.408802 1.276380I
a = 0.375953 0.353514I
b = 0.300632 + 0.839566I
0.12577 4.59213I 0.39935 + 3.20482I
u = 0.408802 1.276380I
a = 0.09934 1.53963I
b = 1.164190 + 0.284914I
4.26335 7.42025I 6.92862 + 6.18427I
u = 0.408802 1.276380I
a = 0.0031648 0.1271530I
b = 0.823310 + 0.019949I
4.26335 1.76400I 6.92862 + 0.22537I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.413150
a = 0.833798
b = 1.29141
3.08250 4.43630
u = 0.413150
a = 1.05083 + 2.06200I
b = 1.54512 0.28152I
7.22008 + 2.82812I 2.09298 2.97945I
u = 0.413150
a = 1.05083 2.06200I
b = 1.54512 + 0.28152I
7.22008 2.82812I 2.09298 + 2.97945I
u = 0.413150
a = 3.27825
b = 0.926293
3.08250 4.43630
u = 0.413150
a = 3.89216 + 0.35002I
b = 1.120730 + 0.641787I
7.22008 + 2.82812I 2.09298 2.97945I
u = 0.413150
a = 3.89216 0.35002I
b = 1.120730 0.641787I
7.22008 2.82812I 2.09298 + 2.97945I
14
III.
I
u
3
= h−u
13
+2u
12
+· · ·+b1, u
14
2u
13
+· · ·+a+3, u
15
2u
14
+· · ·+3u+1i
(i) Arc colorings
a
8
=
0
u
a
11
=
1
0
a
4
=
u
14
+ 2u
13
+ ··· + 6u 3
u
13
2u
12
+ ··· + 4u
2
+ 1
a
12
=
1
u
2
a
3
=
u
14
+ 3u
13
+ ··· + 6u 2
u
13
2u
12
+ ··· + 4u
2
+ 1
a
7
=
u
u
3
+ u
a
5
=
u
14
+ 3u
13
+ ··· + 9u 2
u
13
2u
12
+ ··· + u
2
+ 1
a
1
=
u
2
+ 1
u
4
2u
2
a
2
=
u
13
3u
12
+ ··· + 5u 1
u
14
2u
13
+ ··· + u + 1
a
6
=
2u
13
+ 4u
12
+ ··· 8u 1
u
14
+ u
13
+ ··· 3u 1
a
10
=
2u
14
5u
13
+ ··· 5u + 3
u
13
+ 2u
12
+ ··· u 2
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
13
3u
12
+11u
11
24u
10
+45u
9
72u
8
+86u
7
97u
6
+81u
5
52u
4
+36u
3
4u
2
+7u9
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
15
+ u
13
+ u
12
+ 5u
11
3u
10
+ 4u
9
u
7
2u
6
+ 3u
5
+ 4u
3
3u 1
c
2
u
15
+ 9u
13
+ ··· + 7u 3
c
3
, c
9
u
15
+ u
14
+ ··· + u + 1
c
5
, c
10
u
15
u
14
+ ··· + u 1
c
6
u
15
+ 9u
13
+ ··· + 7u + 3
c
7
, c
8
u
15
+ 2u
14
+ ··· + 3u 1
c
11
, c
12
u
15
2u
14
+ ··· + 3u + 1
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
15
+ 2y
14
+ ··· + 9y 1
c
2
, c
6
y
15
+ 18y
14
+ ··· 29y 9
c
3
, c
5
, c
9
c
10
y
15
13y
14
+ ··· 5y 1
c
7
, c
8
, c
11
c
12
y
15
+ 18y
14
+ ··· + 19y 1
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.067274 + 1.170430I
a = 0.95387 1.52946I
b = 1.53238 + 0.52140I
10.56770 3.31418I 9.17040 + 1.09581I
u = 0.067274 1.170430I
a = 0.95387 + 1.52946I
b = 1.53238 0.52140I
10.56770 + 3.31418I 9.17040 1.09581I
u = 0.762991 + 0.100003I
a = 0.471363 + 1.179970I
b = 0.113487 0.512613I
1.70400 1.60852I 1.70832 + 2.29891I
u = 0.762991 0.100003I
a = 0.471363 1.179970I
b = 0.113487 + 0.512613I
1.70400 + 1.60852I 1.70832 2.29891I
u = 0.345661 + 1.264130I
a = 0.235836 + 1.006840I
b = 0.286552 0.611540I
1.97026 + 5.58462I 5.72570 5.91133I
u = 0.345661 1.264130I
a = 0.235836 1.006840I
b = 0.286552 + 0.611540I
1.97026 5.58462I 5.72570 + 5.91133I
u = 0.116103 + 1.321650I
a = 0.771507 + 1.030610I
b = 1.278400 0.105005I
8.11583 1.16999I 10.61528 + 0.29534I
u = 0.116103 1.321650I
a = 0.771507 1.030610I
b = 1.278400 + 0.105005I
8.11583 + 1.16999I 10.61528 0.29534I
u = 0.163781 + 0.551604I
a = 0.74742 + 1.75607I
b = 1.329030 + 0.457754I
8.48637 + 2.50657I 9.80004 1.02375I
u = 0.163781 0.551604I
a = 0.74742 1.75607I
b = 1.329030 0.457754I
8.48637 2.50657I 9.80004 + 1.02375I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.39099 + 1.41773I
a = 0.649469 0.501014I
b = 0.528118 + 0.547402I
3.19548 + 2.58951I 1.00193 4.07302I
u = 0.39099 1.41773I
a = 0.649469 + 0.501014I
b = 0.528118 0.547402I
3.19548 2.58951I 1.00193 + 4.07302I
u = 0.05414 + 1.69785I
a = 0.580701 0.387083I
b = 1.114480 0.359089I
16.8509 + 1.5277I 15.4381 + 2.1822I
u = 0.05414 1.69785I
a = 0.580701 + 0.387083I
b = 1.114480 + 0.359089I
16.8509 1.5277I 15.4381 2.1822I
u = 0.196681
a = 5.13644
b = 1.17730
3.73109 10.9140
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
4
(u
15
+ u
13
+ u
12
+ 5u
11
3u
10
+ 4u
9
u
7
2u
6
+ 3u
5
+ 4u
3
3u 1)
· (u
24
+ 11u
22
+ ··· + 2u + 1)(u
36
5u
35
+ ··· 36u + 1)
c
2
((u
3
+ u
2
+ 2u + 1)
12
)(u
15
+ 9u
13
+ ··· + 7u 3)
· (u
24
13u
23
+ ··· 736u + 64)
c
3
, c
9
(u
15
+ u
14
+ ··· + u + 1)(u
24
u
23
+ ··· + 2u + 1)
· (u
36
u
35
+ ··· + 4988u 2207)
c
5
, c
10
(u
15
u
14
+ ··· + u 1)(u
24
u
23
+ ··· + 2u + 1)
· (u
36
u
35
+ ··· + 4988u 2207)
c
6
((u
3
+ u
2
+ 2u + 1)
12
)(u
15
+ 9u
13
+ ··· + 7u + 3)
· (u
24
13u
23
+ ··· 736u + 64)
c
7
, c
8
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
+ 2u
14
+ ··· + 3u 1)
· (u
24
+ 9u
23
+ ··· + 60u + 8)
c
11
, c
12
((u
6
u
5
+ 3u
4
2u
3
+ 2u
2
u 1)
6
)(u
15
2u
14
+ ··· + 3u + 1)
· (u
24
+ 9u
23
+ ··· + 60u + 8)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
15
+ 2y
14
+ ··· + 9y 1)(y
24
+ 22y
23
+ ··· + 28y + 1)
· (y
36
+ 7y
35
+ ··· 912y + 1)
c
2
, c
6
((y
3
+ 3y
2
+ 2y 1)
12
)(y
15
+ 18y
14
+ ··· 29y 9)
· (y
24
+ 21y
23
+ ··· + 19456y + 4096)
c
3
, c
5
, c
9
c
10
(y
15
13y
14
+ ··· 5y 1)(y
24
17y
23
+ ··· 6y + 1)
· (y
36
25y
35
+ ··· 47603416y + 4870849)
c
7
, c
8
, c
11
c
12
((y
6
+ 5y
5
+ ··· 5y + 1)
6
)(y
15
+ 18y
14
+ ··· + 19y 1)
· (y
24
+ 23y
23
+ ··· + 624y + 64)
21