12n
0820
(K12n
0820
)
A knot diagram
1
Linearized knot diagam
4 5 10 8 3 12 1 5 6 4 6 7
Solving Sequence
3,10
4
6,11
12 5 2 1 9 8 7
c
3
c
10
c
11
c
5
c
2
c
1
c
9
c
8
c
7
c
4
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h20309u
19
+ 9314u
18
+ ··· + 12371b 15594, 980u
19
+ 5579u
18
+ ··· + 12371a 1467,
u
20
+ u
19
+ ··· 2u 1i
I
u
2
= h7.00656 × 10
35
u
35
+ 1.59035 × 10
36
u
34
+ ··· + 1.29954 × 10
37
b 3.85421 × 10
38
,
1.69263 × 10
47
u
35
2.24834 × 10
47
u
34
+ ··· + 5.15433 × 10
47
a + 1.11901 × 10
49
, u
36
u
35
+ ··· 50u + 173i
I
u
3
= hu
10
+ u
9
4u
8
4u
7
+ 4u
6
+ 5u
5
2u
4
3u
3
+ 2u
2
+ b + u + 1,
u
10
6u
8
+ 13u
6
+ u
5
15u
4
2u
3
+ 12u
2
+ a 4,
u
11
+ u
10
5u
9
5u
8
+ 8u
7
+ 9u
6
6u
5
8u
4
+ 4u
3
+ 4u
2
u 1i
* 3 irreducible components of dim
C
= 0, with total 67 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h20309u
19
+ 9314u
18
+ · · · + 12371b 15594, 980u
19
+ 5579u
18
+
· · · + 12371a 1467, u
20
+ u
19
+ · · · 2u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
0.0792175u
19
0.450974u
18
+ ··· 1.69647u + 0.118584
1.64166u
19
0.752890u
18
+ ··· + 0.958613u + 1.26053
a
11
=
u
u
3
+ u
a
12
=
0.881416u
19
+ 0.960634u
18
+ ··· + 2.54110u 0.0663649
1.12651u
19
+ 0.184464u
18
+ ··· 2.07146u 2.24549
a
5
=
1.56244u
19
+ 0.301916u
18
+ ··· 2.65508u 1.14194
1.64166u
19
0.752890u
18
+ ··· + 0.958613u + 1.26053
a
2
=
2.04009u
19
0.999677u
18
+ ··· 1.51984u + 2.04777
1.96088u
19
+ 0.548703u
18
+ ··· 0.176623u 1.92919
a
1
=
0.603832u
19
0.366098u
18
+ ··· 1.65573u + 1.15900
0.942042u
19
+ 0.234338u
18
+ ··· 0.00751758u 1.12651
a
9
=
0.881416u
19
+ 0.960634u
18
+ ··· + 1.54110u 0.0663649
0.371757u
19
0.166357u
18
+ ··· 0.0398513u 0.0792175
a
8
=
2.14194u
19
+ 0.579500u
18
+ ··· 0.441840u 1.62881
1.26053u
19
+ 0.381133u
18
+ ··· + 1.98294u + 1.56244
a
7
=
2.36408u
19
0.158354u
18
+ ··· + 1.84399u + 3.35316
3.06855u
19
+ 0.418802u
18
+ ··· 3.07898u 4.37200
(ii) Obstruction class = 1
(iii) Cusp Shapes =
108774
12371
u
19
+
59182
12371
u
18
+ ··· +
1686
12371
u +
115368
12371
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
u
19
+ ··· + 3u 1
c
2
, c
5
u
20
+ 12u
19
+ ··· 288u 64
c
3
, c
4
, c
8
c
10
u
20
u
19
+ ··· + 2u 1
c
6
, c
7
, c
11
c
12
u
20
7u
19
+ ··· 16u + 8
c
9
u
20
7u
18
+ ··· 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
9y
19
+ ··· 23y + 1
c
2
, c
5
y
20
12y
19
+ ··· 41984y + 4096
c
3
, c
4
, c
8
c
10
y
20
7y
19
+ ··· 12y + 1
c
6
, c
7
, c
11
c
12
y
20
23y
19
+ ··· 480y + 64
c
9
y
20
14y
19
+ ··· 47y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.531641 + 0.775820I
a = 0.521652 0.793900I
b = 0.421927 0.879767I
2.87838 + 0.48775I 4.90275 0.25050I
u = 0.531641 0.775820I
a = 0.521652 + 0.793900I
b = 0.421927 + 0.879767I
2.87838 0.48775I 4.90275 + 0.25050I
u = 0.780003 + 0.720862I
a = 0.368240 + 0.692494I
b = 0.401381 + 1.125740I
1.50723 4.46688I 9.00256 + 6.89614I
u = 0.780003 0.720862I
a = 0.368240 0.692494I
b = 0.401381 1.125740I
1.50723 + 4.46688I 9.00256 6.89614I
u = 0.918199
a = 1.32642
b = 1.75391
16.1040 18.7100
u = 0.173666 + 0.881491I
a = 0.646323 + 1.135580I
b = 0.621428 + 0.665143I
2.15657 + 2.07163I 8.70820 2.09392I
u = 0.173666 0.881491I
a = 0.646323 1.135580I
b = 0.621428 0.665143I
2.15657 2.07163I 8.70820 + 2.09392I
u = 0.773890 + 0.398773I
a = 1.14329 + 1.51420I
b = 1.317590 + 0.420622I
4.34968 + 1.79622I 15.4727 7.2361I
u = 0.773890 0.398773I
a = 1.14329 1.51420I
b = 1.317590 0.420622I
4.34968 1.79622I 15.4727 + 7.2361I
u = 0.964251 + 0.670604I
a = 0.50985 1.33705I
b = 1.248990 0.652969I
0.28761 6.25899I 10.23267 + 5.61351I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.964251 0.670604I
a = 0.50985 + 1.33705I
b = 1.248990 + 0.652969I
0.28761 + 6.25899I 10.23267 5.61351I
u = 0.971344 + 0.669842I
a = 0.253502 0.657470I
b = 0.489453 1.324130I
6.46708 + 7.19476I 12.8367 6.4139I
u = 0.971344 0.669842I
a = 0.253502 + 0.657470I
b = 0.489453 + 1.324130I
6.46708 7.19476I 12.8367 + 6.4139I
u = 0.783799
a = 0.321973
b = 2.10585
15.5209 28.3760
u = 0.696724
a = 0.426342
b = 1.34554
5.26045 19.7990
u = 1.163650 + 0.737004I
a = 0.392518 + 1.185430I
b = 1.25173 + 0.76023I
1.08242 + 11.20720I 12.2004 8.8347I
u = 1.163650 0.737004I
a = 0.392518 1.185430I
b = 1.25173 0.76023I
1.08242 11.20720I 12.2004 + 8.8347I
u = 1.32603 + 0.74385I
a = 0.336093 1.104220I
b = 1.25227 0.82883I
8.8703 14.6138I 14.9115 + 7.7101I
u = 1.32603 0.74385I
a = 0.336093 + 1.104220I
b = 1.25227 + 0.82883I
8.8703 + 14.6138I 14.9115 7.7101I
u = 0.387870
a = 0.762165
b = 0.312052
0.631092 15.5800
6
II. I
u
2
=
h7.01×10
35
u
35
+1.59×10
36
u
34
+· · ·+1.30×10
37
b3.85×10
38
, 1.69×10
47
u
35
2.25 × 10
47
u
34
+ · · · + 5.15 × 10
47
a + 1.12 × 10
49
, u
36
u
35
+ · · · 50u + 173i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
0.328391u
35
+ 0.436204u
34
+ ··· + 113.808u 21.7102
0.0539155u
35
0.122378u
34
+ ··· + 22.7256u + 29.6582
a
11
=
u
u
3
+ u
a
12
=
0.00968600u
35
+ 0.0510508u
34
+ ··· + 1.34871u 1.93665
0.00857854u
35
0.0342699u
34
+ ··· 13.5525u + 19.8135
a
5
=
0.274475u
35
+ 0.558582u
34
+ ··· + 91.0822u 51.3684
0.0539155u
35
0.122378u
34
+ ··· + 22.7256u + 29.6582
a
2
=
0.0588044u
35
+ 0.0152006u
34
+ ··· + 28.6506u + 1.10313
0.136673u
35
0.144683u
34
+ ··· 51.6170u + 2.13006
a
1
=
0.0979711u
35
0.205251u
34
+ ··· 14.9735u + 10.7766
0.0485802u
35
0.0205206u
34
+ ··· 21.3111u 8.88587
a
9
=
0.108106u
35
+ 0.223334u
34
+ ··· + 30.9390u 35.3423
0.0516142u
35
+ 0.107338u
34
+ ··· + 7.12661u 13.4712
a
8
=
0.189528u
35
0.272285u
34
+ ··· 33.3725u + 19.4151
0.163428u
35
+ 0.181105u
34
+ ··· + 19.8997u + 14.8460
a
7
=
0.420493u
35
0.834327u
34
+ ··· 109.957u + 116.513
0.177158u
35
+ 0.159116u
34
+ ··· + 31.9669u + 13.1878
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.185352u
35
+ 0.112252u
34
+ ··· + 117.655u + 30.4332
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
36
7u
35
+ ··· + 556u + 23
c
2
, c
5
(u
3
u
2
+ 1)
12
c
3
, c
4
, c
8
c
10
u
36
+ u
35
+ ··· + 50u + 173
c
6
, c
7
, c
11
c
12
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
6
c
9
u
36
+ 3u
35
+ ··· 268u 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
36
+ 15y
35
+ ··· 395064y + 529
c
2
, c
5
(y
3
y
2
+ 2y 1)
12
c
3
, c
4
, c
8
c
10
y
36
21y
35
+ ··· 421852y + 29929
c
6
, c
7
, c
11
c
12
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
6
c
9
y
36
+ 7y
35
+ ··· 70616y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.680331 + 0.769624I
a = 0.857359 0.939810I
b = 0.877439 0.744862I
5.60625 1.76400I 13.07138 + 0.22537I
u = 0.680331 0.769624I
a = 0.857359 + 0.939810I
b = 0.877439 + 0.744862I
5.60625 + 1.76400I 13.07138 0.22537I
u = 0.715828 + 0.752424I
a = 0.440309 0.292593I
b = 0.877439 0.744862I
1.049570 + 0.855710I 9.06597 + 0.70533I
u = 0.715828 0.752424I
a = 0.440309 + 0.292593I
b = 0.877439 + 0.744862I
1.049570 0.855710I 9.06597 0.70533I
u = 0.808909 + 0.653470I
a = 0.279403 + 0.967994I
b = 0.877439 + 0.744862I
2.64952 2.82812I 17.9070 + 2.9794I
u = 0.808909 0.653470I
a = 0.279403 0.967994I
b = 0.877439 0.744862I
2.64952 + 2.82812I 17.9070 2.9794I
u = 0.902191 + 0.566521I
a = 0.392677 1.208180I
b = 0.754878
3.08801 1.97241I 15.5952 + 3.6848I
u = 0.902191 0.566521I
a = 0.392677 + 1.208180I
b = 0.754878
3.08801 + 1.97241I 15.5952 3.6848I
u = 0.907127 + 0.187470I
a = 1.51181 + 1.66928I
b = 0.754878
9.74383 4.59213I 19.6006 + 3.2048I
u = 0.907127 0.187470I
a = 1.51181 1.66928I
b = 0.754878
9.74383 + 4.59213I 19.6006 3.2048I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.858363 + 0.219197I
a = 0.55462 1.68259I
b = 0.877439 0.744862I
9.57076 + 2.82812I 16.7597 2.9794I
u = 0.858363 0.219197I
a = 0.55462 + 1.68259I
b = 0.877439 + 0.744862I
9.57076 2.82812I 16.7597 + 2.9794I
u = 0.927627 + 0.668396I
a = 0.670182 + 0.979419I
b = 0.877439 + 0.744862I
1.049570 0.855710I 9.06597 0.70533I
u = 0.927627 0.668396I
a = 0.670182 0.979419I
b = 0.877439 0.744862I
1.049570 + 0.855710I 9.06597 + 0.70533I
u = 0.462176 + 1.059270I
a = 0.529619 + 0.427825I
b = 0.877439 + 0.744862I
1.04957 4.80053I 9.06597 + 6.66423I
u = 0.462176 1.059270I
a = 0.529619 0.427825I
b = 0.877439 0.744862I
1.04957 + 4.80053I 9.06597 6.66423I
u = 0.823077 + 0.136915I
a = 0.46568 + 1.96947I
b = 0.754878
3.08801 1.97241I 15.5952 + 3.6848I
u = 0.823077 0.136915I
a = 0.46568 1.96947I
b = 0.754878
3.08801 + 1.97241I 15.5952 3.6848I
u = 1.076000 + 0.509784I
a = 0.262546 + 0.330297I
b = 0.877439 + 0.744862I
5.60625 + 1.76400I 13.07138 0.22537I
u = 1.076000 0.509784I
a = 0.262546 0.330297I
b = 0.877439 0.744862I
5.60625 1.76400I 13.07138 + 0.22537I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.720048 + 0.113424I
a = 0.10618 1.68037I
b = 0.877439 0.744862I
2.64952 + 2.82812I 17.9070 2.9794I
u = 0.720048 0.113424I
a = 0.10618 + 1.68037I
b = 0.877439 + 0.744862I
2.64952 2.82812I 17.9070 + 2.9794I
u = 1.121560 + 0.612290I
a = 0.602203 1.093900I
b = 0.877439 0.744862I
1.04957 + 4.80053I 9.06597 6.66423I
u = 1.121560 0.612290I
a = 0.602203 + 1.093900I
b = 0.877439 + 0.744862I
1.04957 4.80053I 9.06597 + 6.66423I
u = 0.285783 + 1.362540I
a = 0.502070 0.521497I
b = 0.877439 0.744862I
5.60625 + 7.42025I 13.0714 6.1843I
u = 0.285783 1.362540I
a = 0.502070 + 0.521497I
b = 0.877439 + 0.744862I
5.60625 7.42025I 13.0714 + 6.1843I
u = 1.046170 + 0.922218I
a = 0.293378 0.768800I
b = 0.877439 0.744862I
9.57076 + 2.82812I 16.7597 2.9794I
u = 1.046170 0.922218I
a = 0.293378 + 0.768800I
b = 0.877439 + 0.744862I
9.57076 2.82812I 16.7597 + 2.9794I
u = 1.294700 + 0.553654I
a = 0.602238 + 1.181210I
b = 0.877439 + 0.744862I
5.60625 7.42025I 13.0714 + 6.1843I
u = 1.294700 0.553654I
a = 0.602238 1.181210I
b = 0.877439 0.744862I
5.60625 + 7.42025I 13.0714 6.1843I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.14008 + 0.91480I
a = 0.443053 + 0.670343I
b = 0.754878
9.74383 + 4.59213I 19.6006 3.2048I
u = 1.14008 0.91480I
a = 0.443053 0.670343I
b = 0.754878
9.74383 4.59213I 19.6006 + 3.2048I
u = 1.46635
a = 0.943085
b = 0.754878
6.78711 24.4360
u = 1.52578
a = 1.32799
b = 0.754878
13.7083 23.2890
u = 1.70178
a = 0.248232
b = 0.754878
6.78711 24.4360
u = 2.02337
a = 0.00186002
b = 0.754878
13.7083 0
13
III.
I
u
3
= hu
10
+ u
9
+ · · · + b + 1, u
10
6u
8
+ · · · + a 4, u
11
+ u
10
+ · · · u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
6
=
u
10
+ 6u
8
13u
6
u
5
+ 15u
4
+ 2u
3
12u
2
+ 4
u
10
u
9
+ 4u
8
+ 4u
7
4u
6
5u
5
+ 2u
4
+ 3u
3
2u
2
u 1
a
11
=
u
u
3
+ u
a
12
=
3u
10
+ 2u
9
+ ··· + 4u 3
u
10
2u
9
+ 4u
8
+ 10u
7
3u
6
16u
5
2u
4
+ 10u
3
+ u
2
5u 1
a
5
=
u
9
+ 2u
8
4u
7
9u
6
+ 4u
5
+ 13u
4
u
3
10u
2
+ u + 5
u
10
u
9
+ 4u
8
+ 4u
7
4u
6
5u
5
+ 2u
4
+ 3u
3
2u
2
u 1
a
2
=
u
10
2u
9
+ 3u
8
+ 9u
7
+ 2u
6
12u
5
10u
4
+ 6u
3
+ 7u
2
3u 5
2u
10
+ 2u
9
9u
8
9u
7
+ 11u
6
+ 13u
5
5u
4
8u
3
+ 5u
2
+ 3u + 1
a
1
=
u
9
u
8
+ 5u
7
+ 6u
6
7u
5
12u
4
+ 3u
3
+ 10u
2
2u 5
u
10
+ u
9
5u
8
5u
7
+ 7u
6
+ 8u
5
4u
4
5u
3
+ 4u
2
+ 2u + 1
a
9
=
3u
10
+ 2u
9
15u
8
9u
7
+ 24u
6
+ 14u
5
19u
4
9u
3
+ 14u
2
+ u 3
u
10
u
9
+ 5u
8
+ 5u
7
8u
6
9u
5
+ 6u
4
+ 8u
3
4u
2
3u + 1
a
8
=
4u
10
+ 4u
9
+ ··· + 6u 3
u
10
2u
9
+ 4u
8
+ 9u
7
4u
6
13u
5
+ u
4
+ 10u
3
u
2
5u
a
7
=
u
10
2u
9
+ 3u
8
+ 8u
7
9u
5
4u
4
+ 5u
3
+ 3u
2
4u 2
u
10
+ 3u
9
2u
8
13u
7
4u
6
+ 17u
5
+ 9u
4
10u
3
6u
2
+ 5u + 3
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
10
5u
9
+ 3u
8
+ 19u
7
+ 10u
6
20u
5
13u
4
+ 11u
3
+ 2u
2
11u + 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
11
+ 3u
10
+ ··· 4u + 1
c
2
u
11
+ 3u
10
u
9
11u
8
9u
7
+ 8u
6
+ 15u
5
+ 4u
4
6u
3
4u
2
+ 1
c
3
, c
8
u
11
+ u
10
5u
9
5u
8
+ 8u
7
+ 9u
6
6u
5
8u
4
+ 4u
3
+ 4u
2
u 1
c
4
, c
10
u
11
u
10
5u
9
+ 5u
8
+ 8u
7
9u
6
6u
5
+ 8u
4
+ 4u
3
4u
2
u + 1
c
5
u
11
3u
10
u
9
+ 11u
8
9u
7
8u
6
+ 15u
5
4u
4
6u
3
+ 4u
2
1
c
6
, c
7
u
11
8u
9
u
8
+ 23u
7
+ 6u
6
28u
5
11u
4
+ 12u
3
+ 6u
2
1
c
9
u
11
+ u
9
u
7
+ 3u
6
+ u
4
u
3
4u
2
+ 1
c
11
, c
12
u
11
8u
9
+ u
8
+ 23u
7
6u
6
28u
5
+ 11u
4
+ 12u
3
6u
2
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
11
+ 3y
10
+ ··· + 44y 1
c
2
, c
5
y
11
11y
10
+ ··· + 8y 1
c
3
, c
4
, c
8
c
10
y
11
11y
10
+ ··· + 9y 1
c
6
, c
7
, c
11
c
12
y
11
16y
10
+ ··· + 12y 1
c
9
y
11
+ 2y
10
y
9
2y
8
y
7
11y
6
4y
5
+ 23y
4
+ 3y
3
18y
2
+ 8y 1
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.817327 + 0.673187I
a = 0.829096 + 0.875371I
b = 0.429655 + 0.602178I
8.28513 5.07300I 13.3655 + 5.6095I
u = 0.817327 0.673187I
a = 0.829096 0.875371I
b = 0.429655 0.602178I
8.28513 + 5.07300I 13.3655 5.6095I
u = 0.671261 + 0.485459I
a = 0.54365 1.38387I
b = 0.754077 0.626003I
1.83297 + 3.34942I 8.74876 8.55759I
u = 0.671261 0.485459I
a = 0.54365 + 1.38387I
b = 0.754077 + 0.626003I
1.83297 3.34942I 8.74876 + 8.55759I
u = 1.27729
a = 0.387060
b = 1.58358
17.5117 21.2400
u = 0.707662
a = 0.996863
b = 2.00315
15.1840 3.15360
u = 0.570810 + 0.224833I
a = 0.94324 + 1.81194I
b = 1.226040 + 0.434225I
4.24437 0.92833I 15.1830 0.6257I
u = 0.570810 0.224833I
a = 0.94324 1.81194I
b = 1.226040 0.434225I
4.24437 + 0.92833I 15.1830 + 0.6257I
u = 1.38811
a = 0.481020
b = 1.07892
8.15810 21.2750
u = 1.57940
a = 0.599120
b = 0.669115
6.35438 1.73460
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.74249
a = 0.670651
b = 0.491090
12.8934 11.0020
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
11
+ 3u
10
+ ··· 4u + 1)(u
20
u
19
+ ··· + 3u 1)
· (u
36
7u
35
+ ··· + 556u + 23)
c
2
(u
3
u
2
+ 1)
12
· (u
11
+ 3u
10
u
9
11u
8
9u
7
+ 8u
6
+ 15u
5
+ 4u
4
6u
3
4u
2
+ 1)
· (u
20
+ 12u
19
+ ··· 288u 64)
c
3
, c
8
(u
11
+ u
10
5u
9
5u
8
+ 8u
7
+ 9u
6
6u
5
8u
4
+ 4u
3
+ 4u
2
u 1)
· (u
20
u
19
+ ··· + 2u 1)(u
36
+ u
35
+ ··· + 50u + 173)
c
4
, c
10
(u
11
u
10
5u
9
+ 5u
8
+ 8u
7
9u
6
6u
5
+ 8u
4
+ 4u
3
4u
2
u + 1)
· (u
20
u
19
+ ··· + 2u 1)(u
36
+ u
35
+ ··· + 50u + 173)
c
5
(u
3
u
2
+ 1)
12
· (u
11
3u
10
u
9
+ 11u
8
9u
7
8u
6
+ 15u
5
4u
4
6u
3
+ 4u
2
1)
· (u
20
+ 12u
19
+ ··· 288u 64)
c
6
, c
7
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
6
· (u
11
8u
9
u
8
+ 23u
7
+ 6u
6
28u
5
11u
4
+ 12u
3
+ 6u
2
1)
· (u
20
7u
19
+ ··· 16u + 8)
c
9
(u
11
+ u
9
+ ··· 4u
2
+ 1)(u
20
7u
18
+ ··· 3u + 1)
· (u
36
+ 3u
35
+ ··· 268u 1)
c
11
, c
12
(u
6
+ u
5
3u
4
2u
3
+ 2u
2
u 1)
6
· (u
11
8u
9
+ u
8
+ 23u
7
6u
6
28u
5
+ 11u
4
+ 12u
3
6u
2
+ 1)
· (u
20
7u
19
+ ··· 16u + 8)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
11
+ 3y
10
+ ··· + 44y 1)(y
20
9y
19
+ ··· 23y + 1)
· (y
36
+ 15y
35
+ ··· 395064y + 529)
c
2
, c
5
((y
3
y
2
+ 2y 1)
12
)(y
11
11y
10
+ ··· + 8y 1)
· (y
20
12y
19
+ ··· 41984y + 4096)
c
3
, c
4
, c
8
c
10
(y
11
11y
10
+ ··· + 9y 1)(y
20
7y
19
+ ··· 12y + 1)
· (y
36
21y
35
+ ··· 421852y + 29929)
c
6
, c
7
, c
11
c
12
(y
6
7y
5
+ 17y
4
16y
3
+ 6y
2
5y + 1)
6
· (y
11
16y
10
+ ··· + 12y 1)(y
20
23y
19
+ ··· 480y + 64)
c
9
(y
11
+ 2y
10
y
9
2y
8
y
7
11y
6
4y
5
+ 23y
4
+ 3y
3
18y
2
+ 8y 1)
· (y
20
14y
19
+ ··· 47y + 1)(y
36
+ 7y
35
+ ··· 70616y + 1)
20