12n
0822
(K12n
0822
)
A knot diagram
1
Linearized knot diagam
4 6 10 8 2 11 12 5 6 4 7 8
Solving Sequence
7,11
12
4,8
5 1 6 10 3 2 9
c
11
c
7
c
4
c
12
c
6
c
10
c
3
c
2
c
9
c
1
, c
5
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−3u
15
+ 14u
14
+ ··· + 2b + 10, 21u
15
+ 100u
14
+ ··· + 4a + 68, u
16
6u
15
+ ··· + 2u + 4i
I
u
2
= h475u
4
a
3
65u
4
a
2
+ ··· + 311a + 1939, u
4
a
3
+ 2u
4
a
2
+ ··· 2a + 1, u
5
+ u
4
2u
3
u
2
+ u 1i
I
u
3
= hu
4
3u
2
+ b + 1, u
7
6u
5
+ u
4
+ 11u
3
3u
2
+ a 6u + 1,
u
9
+ u
8
6u
7
5u
6
+ 12u
5
+ 7u
4
9u
3
2u
2
+ u 1i
* 3 irreducible components of dim
C
= 0, with total 45 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−3u
15
+ 14u
14
+ · · · + 2b + 10, 21u
15
+ 100u
14
+ · · · + 4a +
68, u
16
6u
15
+ · · · + 2u + 4i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
21
4
u
15
25u
14
+ ···
99
4
u 17
3
2
u
15
7u
14
+ ···
13
2
u 5
a
8
=
u
u
3
+ u
a
5
=
13
4
u
15
16u
14
+ ···
67
4
u 11
3
2
u
15
+ 5u
14
+ ···
1
2
u + 1
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
u
a
10
=
3
2
u
15
11
2
u
14
+ ···
3
2
u
3
2
7
2
u
15
15u
14
+ ···
15
2
u 8
a
3
=
25
2
u
15
113
2
u
14
+ ···
85
2
u
67
2
19
2
u
15
43u
14
+ ···
61
2
u 26
a
2
=
11
2
u
15
51
2
u
14
+ ···
43
2
u
31
2
5
2
u
15
12u
14
+ ···
19
2
u 8
a
9
=
9
2
u
15
41
2
u
14
+ ···
29
2
u
23
2
13
2
u
15
30u
14
+ ···
41
2
u 18
(ii) Obstruction class = 1
(iii) Cusp Shapes = 11u
15
+ 53u
14
38u
13
147u
12
+ 140u
11
+ 198u
10
+ 121u
9
664u
8
111u
7
+ 438u
6
+ 477u
5
133u
4
460u
3
+ 26u
2
+ 46u + 30
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 2u
15
+ ··· 6u + 1
c
2
, c
5
u
16
+ 13u
15
+ ··· + 208u + 32
c
3
, c
4
, c
8
c
10
u
16
u
15
+ ··· + u + 1
c
6
, c
7
, c
11
c
12
u
16
6u
15
+ ··· + 2u + 4
c
9
u
16
u
15
+ ··· 15u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
+ 22y
15
+ ··· 52y + 1
c
2
, c
5
y
16
5y
15
+ ··· 5888y + 1024
c
3
, c
4
, c
8
c
10
y
16
19y
15
+ ··· 7y + 1
c
6
, c
7
, c
11
c
12
y
16
18y
15
+ ··· 60y + 16
c
9
y
16
+ 27y
15
+ ··· 229y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.526647 + 0.921315I
a = 0.158275 + 0.852282I
b = 1.61938 + 0.26122I
12.5756 + 7.7658I 0.37746 4.72182I
u = 0.526647 0.921315I
a = 0.158275 0.852282I
b = 1.61938 0.26122I
12.5756 7.7658I 0.37746 + 4.72182I
u = 0.641134 + 0.907508I
a = 0.131631 0.748203I
b = 1.57975 + 0.10158I
12.24930 1.78364I 0.280416 + 0.020773I
u = 0.641134 0.907508I
a = 0.131631 + 0.748203I
b = 1.57975 0.10158I
12.24930 + 1.78364I 0.280416 0.020773I
u = 0.860541
a = 0.313373
b = 0.501732
1.66742 3.52050
u = 1.384200 + 0.067843I
a = 0.23731 1.57085I
b = 0.063351 0.856630I
5.42049 2.20486I 9.58545 + 3.34239I
u = 1.384200 0.067843I
a = 0.23731 + 1.57085I
b = 0.063351 + 0.856630I
5.42049 + 2.20486I 9.58545 3.34239I
u = 0.536874
a = 1.68270
b = 0.418387
2.43643 6.61560
u = 1.54541 + 0.35416I
a = 0.78815 + 1.39880I
b = 1.60127 + 0.41996I
5.91450 12.45070I 3.55733 + 5.83875I
u = 1.54541 0.35416I
a = 0.78815 1.39880I
b = 1.60127 0.41996I
5.91450 + 12.45070I 3.55733 5.83875I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.252945 + 0.318927I
a = 0.736930 0.632401I
b = 0.145126 0.490024I
0.252639 + 0.904244I 5.12440 7.64172I
u = 0.252945 0.318927I
a = 0.736930 + 0.632401I
b = 0.145126 + 0.490024I
0.252639 0.904244I 5.12440 + 7.64172I
u = 1.65011
a = 0.204743
b = 0.895334
10.2599 6.17920
u = 1.62313 + 0.35288I
a = 0.898424 0.854793I
b = 1.47438 0.04596I
4.87833 2.98005I 2.44851 + 1.44008I
u = 1.62313 0.35288I
a = 0.898424 + 0.854793I
b = 1.47438 + 0.04596I
4.87833 + 2.98005I 2.44851 1.44008I
u = 1.70974
a = 0.565907
b = 0.686707
10.9818 0.831250
6
II. I
u
2
= h475u
4
a
3
65u
4
a
2
+ · · · + 311a + 1939, u
4
a
3
+ 2u
4
a
2
+ · · · 2a +
1, u
5
+ u
4
2u
3
u
2
+ u 1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
a
0.304292a
3
u
4
+ 0.0416400a
2
u
4
+ ··· 0.199231a 1.24215
a
8
=
u
u
3
+ u
a
5
=
0.136451a
3
u
4
+ 0.502883a
2
u
4
+ ··· + 0.516976a + 0.152466
0.431134a
3
u
4
+ 0.227418a
2
u
4
+ ··· + 0.450352a 1.86099
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
u
a
10
=
0.0743113a
3
u
4
+ 0.452274a
2
u
4
+ ··· 0.225496a + 1.03139
0.394619a
3
u
4
+ 0.977578a
2
u
4
+ ··· 0.354260a + 2.59193
a
3
=
0.274183a
3
u
4
+ 1.04805a
2
u
4
+ ··· + 0.616272a 0.125561
0.0204997a
3
u
4
+ 1.32351a
2
u
4
+ ··· + 0.682896a + 0.887892
a
2
=
0.0999359a
3
u
4
+ 0.297886a
2
u
4
+ ··· + 0.420884a + 0.421525
0.194747a
3
u
4
+ 0.573350a
2
u
4
+ ··· + 0.487508a + 1.43498
a
9
=
0.281230a
3
u
4
0.280589a
2
u
4
+ ··· 0.319026a + 0.493274
0.750160a
3
u
4
+ 0.244715a
2
u
4
+ ··· 0.447790a + 2.05381
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1108
1561
u
4
a
3
900
1561
u
4
a
2
+ ··· +
944
1561
a
1002
223
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
20
7u
19
+ ··· 454u + 73
c
2
, c
5
(u
2
u + 1)
10
c
3
, c
4
, c
8
c
10
u
20
+ u
19
+ ··· 40u + 7
c
6
, c
7
, c
11
c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
4
c
9
u
20
+ 3u
19
+ ··· + 60u + 7
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
20
+ 19y
19
+ ··· + 54932y + 5329
c
2
, c
5
(y
2
+ y + 1)
10
c
3
, c
4
, c
8
c
10
y
20
21y
19
+ ··· 1404y + 49
c
6
, c
7
, c
11
c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
4
c
9
y
20
+ 27y
19
+ ··· + 2672y + 49
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.21774
a = 0.182571 + 1.126310I
b = 1.267850 0.008241I
2.53372 + 2.02988I 1.48114 3.46410I
u = 1.21774
a = 0.182571 1.126310I
b = 1.267850 + 0.008241I
2.53372 2.02988I 1.48114 + 3.46410I
u = 1.21774
a = 1.26348 + 1.37832I
b = 1.65127 + 0.67233I
2.53372 + 2.02988I 1.48114 3.46410I
u = 1.21774
a = 1.26348 1.37832I
b = 1.65127 0.67233I
2.53372 2.02988I 1.48114 + 3.46410I
u = 0.309916 + 0.549911I
a = 0.208082 + 0.883906I
b = 0.825780 + 0.914155I
4.60570 3.56046I 0.51511 + 7.89475I
u = 0.309916 + 0.549911I
a = 0.423531 + 0.774423I
b = 1.51045 0.06114I
4.60570 + 0.49930I 0.515115 + 0.966547I
u = 0.309916 + 0.549911I
a = 0.96461 1.56415I
b = 0.628697 + 0.178647I
4.60570 + 0.49930I 0.515115 + 0.966547I
u = 0.309916 + 0.549911I
a = 1.16991 1.69121I
b = 1.368420 0.209289I
4.60570 3.56046I 0.51511 + 7.89475I
u = 0.309916 0.549911I
a = 0.208082 0.883906I
b = 0.825780 0.914155I
4.60570 + 3.56046I 0.51511 7.89475I
u = 0.309916 0.549911I
a = 0.423531 0.774423I
b = 1.51045 + 0.06114I
4.60570 0.49930I 0.515115 0.966547I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.309916 0.549911I
a = 0.96461 + 1.56415I
b = 0.628697 0.178647I
4.60570 0.49930I 0.515115 0.966547I
u = 0.309916 0.549911I
a = 1.16991 + 1.69121I
b = 1.368420 + 0.209289I
4.60570 + 3.56046I 0.51511 7.89475I
u = 1.41878 + 0.21917I
a = 0.639121 0.914346I
b = 0.205274 0.110634I
0.93776 + 2.37095I 4.74431 0.03448I
u = 1.41878 + 0.21917I
a = 0.97762 + 1.05920I
b = 1.47248 + 0.31606I
0.93776 + 2.37095I 4.74431 0.03448I
u = 1.41878 + 0.21917I
a = 0.53015 1.69434I
b = 1.341620 0.334073I
0.93776 + 6.43072I 4.74431 6.96269I
u = 1.41878 + 0.21917I
a = 0.23545 + 1.91506I
b = 0.53011 + 1.32879I
0.93776 + 6.43072I 4.74431 6.96269I
u = 1.41878 0.21917I
a = 0.639121 + 0.914346I
b = 0.205274 + 0.110634I
0.93776 2.37095I 4.74431 + 0.03448I
u = 1.41878 0.21917I
a = 0.97762 1.05920I
b = 1.47248 0.31606I
0.93776 2.37095I 4.74431 + 0.03448I
u = 1.41878 0.21917I
a = 0.53015 + 1.69434I
b = 1.341620 + 0.334073I
0.93776 6.43072I 4.74431 + 6.96269I
u = 1.41878 0.21917I
a = 0.23545 1.91506I
b = 0.53011 1.32879I
0.93776 6.43072I 4.74431 + 6.96269I
11
III.
I
u
3
= hu
4
3u
2
+b+1, u
7
6u
5
+u
4
+11u
3
3u
2
+a6u+1, u
9
+u
8
+· · ·+u1i
(i) Arc colorings
a
7
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
4
=
u
7
+ 6u
5
u
4
11u
3
+ 3u
2
+ 6u 1
u
4
+ 3u
2
1
a
8
=
u
u
3
+ u
a
5
=
u
7
+ 5u
5
u
4
8u
3
+ 3u
2
+ 5u 1
u
7
+ 4u
5
u
4
4u
3
+ 3u
2
+ u 1
a
1
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
u
a
10
=
2u
8
+ u
7
11u
6
5u
5
+ 18u
4
+ 8u
3
8u
2
5u
u
8
6u
6
+ 11u
4
6u
2
+ 1
a
3
=
u
7
5u
5
+ u
4
+ 7u
3
2u
2
3u 1
u
7
5u
5
+ u
4
+ 7u
3
3u
2
3u + 1
a
2
=
u
7
5u
5
+ 7u
3
3u 1
u
7
5u
5
+ 7u
3
u
2
3u + 1
a
9
=
u
8
+ u
7
6u
6
6u
5
+ 11u
4
+ 11u
3
6u
2
6u
u
6
u
5
+ 4u
4
+ 3u
3
4u
2
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
8
u
7
10u
6
+ 6u
5
+ 29u
4
17u
3
27u
2
+ 18u 3
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 2u
8
+ 3u
7
+ 2u
6
u
5
4u
4
4u
3
u
2
+ 2u + 1
c
2
u
9
+ 2u
8
u
7
4u
6
4u
5
u
4
+ 2u
3
+ 3u
2
+ 2u + 1
c
3
, c
8
u
9
+ u
8
5u
7
5u
6
+ 10u
5
+ 10u
4
9u
3
8u
2
+ 3u + 1
c
4
, c
10
u
9
u
8
5u
7
+ 5u
6
+ 10u
5
10u
4
9u
3
+ 8u
2
+ 3u 1
c
5
u
9
2u
8
u
7
+ 4u
6
4u
5
+ u
4
+ 2u
3
3u
2
+ 2u 1
c
6
, c
7
u
9
u
8
6u
7
+ 5u
6
+ 12u
5
7u
4
9u
3
+ 2u
2
+ u + 1
c
9
u
9
+ u
8
+ 2u
7
u
4
7u
3
5u
2
3u 1
c
11
, c
12
u
9
+ u
8
6u
7
5u
6
+ 12u
5
+ 7u
4
9u
3
2u
2
+ u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
+ 2y
8
y
7
2y
6
+ y
5
+ 4y
4
9y
2
+ 6y 1
c
2
, c
5
y
9
6y
8
+ 9y
7
4y
5
y
4
+ 2y
3
+ y
2
2y 1
c
3
, c
4
, c
8
c
10
y
9
11y
8
+ ··· + 25y 1
c
6
, c
7
, c
11
c
12
y
9
13y
8
+ 70y
7
201y
6
+ 328y
5
295y
4
+ 123y
3
8y
2
3y 1
c
9
y
9
+ 3y
8
+ 4y
7
12y
6
24y
5
11y
4
+ 39y
3
+ 15y
2
y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.166850 + 0.186778I
a = 0.546502 0.075866I
b = 1.40995 + 0.15111I
1.80577 + 0.24484I 3.61013 + 0.69147I
u = 1.166850 0.186778I
a = 0.546502 + 0.075866I
b = 1.40995 0.15111I
1.80577 0.24484I 3.61013 0.69147I
u = 0.701278
a = 1.11470
b = 0.233515
2.77702 18.0900
u = 1.45070 + 0.17281I
a = 1.08872 + 1.49683I
b = 1.171140 + 0.576247I
0.36210 + 4.32575I 2.99049 3.69672I
u = 1.45070 0.17281I
a = 1.08872 1.49683I
b = 1.171140 0.576247I
0.36210 4.32575I 2.99049 + 3.69672I
u = 0.169241 + 0.365052I
a = 0.44926 + 2.73952I
b = 1.309540 + 0.396544I
5.17385 2.30230I 3.82886 + 2.71981I
u = 0.169241 0.365052I
a = 0.44926 2.73952I
b = 1.309540 0.396544I
5.17385 + 2.30230I 3.82886 2.71981I
u = 1.68460
a = 0.119390
b = 0.539942
11.4397 17.8090
u = 1.75412
a = 0.934890
b = 1.23668
8.88794 1.55820
15
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 2u
8
+ 3u
7
+ 2u
6
u
5
4u
4
4u
3
u
2
+ 2u + 1)
· (u
16
+ 2u
15
+ ··· 6u + 1)(u
20
7u
19
+ ··· 454u + 73)
c
2
(u
2
u + 1)
10
(u
9
+ 2u
8
u
7
4u
6
4u
5
u
4
+ 2u
3
+ 3u
2
+ 2u + 1)
· (u
16
+ 13u
15
+ ··· + 208u + 32)
c
3
, c
8
(u
9
+ u
8
5u
7
5u
6
+ 10u
5
+ 10u
4
9u
3
8u
2
+ 3u + 1)
· (u
16
u
15
+ ··· + u + 1)(u
20
+ u
19
+ ··· 40u + 7)
c
4
, c
10
(u
9
u
8
5u
7
+ 5u
6
+ 10u
5
10u
4
9u
3
+ 8u
2
+ 3u 1)
· (u
16
u
15
+ ··· + u + 1)(u
20
+ u
19
+ ··· 40u + 7)
c
5
(u
2
u + 1)
10
(u
9
2u
8
u
7
+ 4u
6
4u
5
+ u
4
+ 2u
3
3u
2
+ 2u 1)
· (u
16
+ 13u
15
+ ··· + 208u + 32)
c
6
, c
7
(u
5
+ u
4
2u
3
u
2
+ u 1)
4
· (u
9
u
8
6u
7
+ 5u
6
+ 12u
5
7u
4
9u
3
+ 2u
2
+ u + 1)
· (u
16
6u
15
+ ··· + 2u + 4)
c
9
(u
9
+ u
8
+ ··· 3u 1)(u
16
u
15
+ ··· 15u + 1)
· (u
20
+ 3u
19
+ ··· + 60u + 7)
c
11
, c
12
(u
5
+ u
4
2u
3
u
2
+ u 1)
4
· (u
9
+ u
8
6u
7
5u
6
+ 12u
5
+ 7u
4
9u
3
2u
2
+ u 1)
· (u
16
6u
15
+ ··· + 2u + 4)
16
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
9
+ 2y
8
y
7
2y
6
+ y
5
+ 4y
4
9y
2
+ 6y 1)
· (y
16
+ 22y
15
+ ··· 52y + 1)(y
20
+ 19y
19
+ ··· + 54932y + 5329)
c
2
, c
5
(y
2
+ y + 1)
10
(y
9
6y
8
+ 9y
7
4y
5
y
4
+ 2y
3
+ y
2
2y 1)
· (y
16
5y
15
+ ··· 5888y + 1024)
c
3
, c
4
, c
8
c
10
(y
9
11y
8
+ ··· + 25y 1)(y
16
19y
15
+ ··· 7y + 1)
· (y
20
21y
19
+ ··· 1404y + 49)
c
6
, c
7
, c
11
c
12
(y
5
5y
4
+ 8y
3
3y
2
y 1)
4
· (y
9
13y
8
+ 70y
7
201y
6
+ 328y
5
295y
4
+ 123y
3
8y
2
3y 1)
· (y
16
18y
15
+ ··· 60y + 16)
c
9
(y
9
+ 3y
8
+ 4y
7
12y
6
24y
5
11y
4
+ 39y
3
+ 15y
2
y 1)
· (y
16
+ 27y
15
+ ··· 229y + 1)(y
20
+ 27y
19
+ ··· + 2672y + 49)
17